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Abstract—Homogeneous balance method (HB) is applied to the 

(2+1)-dimensional Lotka-Volterra system to construct exact 

solutions. A homogeneous system of equations for the quasi-

solution is solved. The travelling wave quasi-solution leads to 

the solitary wave solution of the system. According to the 

different system parameters, three ecosystems; predator-prey, 

symbiosis and competition are analyzed and plotted. The 

chase-repulsion relationship is cleared in the two opposite 

soliton waves for the predator-prey case. The inhibit and favor 

between species are obvious in competition and symbioses 

cases. 

 Keywords— Lotka-Volterra equations; Homogeneous balance 
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I. INTRODUCTION

Investigation of  the interaction between species plays an 

important role in mathematical ecology [1-8], technology 

evolution [9-11] and other applications [12, 13]. There are 

six interaction modes between species in an ecosystem [14], 

namely, neutralism, competition, symbioses, 

commensalism, amensalism and predation (predator-prey). 

Predator-prey dynamics has been extensively studied by 

Lotka-Volterra models [15-18]. Many authors have focused 

on solving and analyzing the Lotka-Volterra models. 

Among them, Alam and Tunc [19], constructed many 

families of exact solutions of nonlinear Predator-prey 

equations using the exp (-()) expansion method. Kraenkel 

et al [20], Applied the 
𝐺′

𝐺
 expansion method to drive exact

solutions to a predator-prey with Allee effect prey per capita 

growth rate. They discussed the system for two different 

wave speeds and reported three different solutions for each 

wave velocity. In [21], the Khasminskii’s theory of periodic 

solution, was applied to identify that the system fulfils a 

nontrivial positive T -periodic solution. Numerical 

simulations in different cases were analyzed [22-24]. The 

existence of traveling wave solutions for a diffusive 

predator–prey system were discussed by using the original 

Wazewskii’s theory  [25]. Different pattern formations for 

the Predator-prey system were discussed in [26-28].  

The plenteous number of mathematical methods of 

solutions of differential equations (DEs) [15, 29-43], 

authorized scientists to pointedly elucidate the different 

mathematical models. Some of these methods are; singular 

manifold method [29, 30], Hirota’s bilinear method [31, 35], 

transformed rational function method [39, 41], exponential 

function method [36], Darboux transformation [32, 40], 

conservation laws and symmetry methods [42, 43], 

homotopy analysis transformation method [33, 34], direct 

algebraic method [37], 
𝐺′

𝐺
expansion method [38] and 

homogeneous balance method [44-47] . This work is 

motivated to solve and analyze the (2+1)-dimensions Lotka-

Volterra system. The homogenous balance method is 

applied to find the exact soliton solution of this system. The 

paper is arranged as follows. In section II, the homogenous 

balance method is described. In section III, the method is 

applied to solve the Lotka-Volterra system in (2+1)-

dimensions.  Section IV, is devoted to analyze and discuss 

the results. The paper ends with conclusions in section V. 

II. DESCRIPTION OF THE HOMOGENEOUS

BALANCE METHOD 

The homogeneous balance method [44-47], is a 

systematic and effective for finding explicit solitary wave 

solutions. Consider a system of partial differential equations 

(PDE);  

{
𝑝1(𝜑, 𝜑𝑥, 𝜑𝑡 , 𝜑𝑦 , 𝜑𝑥𝑥 , 𝜑𝑦𝑦 , … . ) = 0

𝑝2(𝜓, 𝜓𝑥 , 𝜓𝑡 , 𝜓𝑦 , 𝜓𝑥𝑥 , 𝜓𝑦𝑦 , … . ) = 0
(1)

Where p1 and p2 are polynomials in ,   and their partial 

derivatives.  A function 𝜉 = 𝜉(𝑥, 𝑦, 𝑡) is considered as a 

quasi-solution of the system (1) if there are functions f = f(𝜉) 

and 𝑔 = 𝑔(𝜉), of only one argument so that, a nominated 

linear combination of;  

1, 𝑓(𝜉), 𝑓𝑥(𝜉), 𝑓𝑡(𝜉), 𝑓𝑦(𝜉), 𝑓𝑥𝑥(𝜉), 𝑓𝑦𝑦(𝜉), 𝑓𝑥𝑦(𝜉)….  (2) 

and;1, 𝑔(𝜉), 𝑔𝑥(𝜉), 𝑔𝑡(𝜉), 𝑔𝑦(𝜉), 𝑔𝑥𝑥(𝜉), 𝑔𝑦𝑦(𝜉), 𝑔𝑥𝑦(𝜉)….

(3)     

Are solutions of the system (1). The HB method is recapped 

in the prosecuting steps; 

Step 1: Choose the solution of (1) as a linear combination of 

(2) and (3), satisfying the balance between the highly

nonlinear and the highest order derivative terms in the

system (1).

Step (2): Substitute the combination picked out in step 1 into

the system (1). Collect all terms with the highest degree of 𝜉
(x, y, t) and set their coefficients to zero. Secure a system of

ordinary differential equations (ODEs) in f(𝜉) and 𝑔(𝜉),
solve this system to find  f(𝜉), 𝑔(𝜉) and relations between

their nonlinear derivatives.

Step (3): Replace for nonlinear derivatives of  𝑔(𝜉) and f(𝜉),

then collect all the terms with the same order of

𝑓, 𝑓′, 𝑓′′, 𝑓′′′, … , 𝑔, 𝑔′, 𝑔′′, 𝑔′′′, … , and set their  coefficients

to zero. Get a homogeneous system of ODEs in  (x, y, t).

According to the homogeneous property of this system of

equations 𝜉 (x, y, t) can be predicted as an exponential

function.

Step (4): Substiute f(𝜉), 𝑔(𝜉) and 𝜉 (x, y, t) in the linear

combination from step(1), then the solution of the system (1)

is obtained.
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III. SOLITARY WAVE SOLUTION OF (2+1)-

DIMENSIONAL LOTKA-VOLTERRA SYSTEM 

 

The (2+1) dimensional Lotka-Volterra system is 

represented as; 

𝑑1𝜑𝑥𝑥 + 𝑑1𝜑𝑦𝑦 − 𝜑𝑡 + 𝑟𝜑 (1 −
𝜑

𝑘
) − 𝛼1𝜑𝜓 = 0               (4)                                                          

𝑑2𝜓𝑥𝑥 + 𝑑2𝜓𝑦𝑦 − 𝜓𝑡 − 𝜇𝜓 + 𝛼2𝜑𝜓 = 0                            (5)                                                                          

Where (x, y, t) and (x, y, t) are the species densities, d1 

and d2 are specific diffusion rate, r is the population intrinsic 

rate of growth, k is the carrying capacity,  is the per capita 

injury rate and ’s represent consumption interaction 

coefficient between species. 

In this section the homogeneous balance method is 

applied to find the exact solution of the Lotka-Volterra 

system (4)-(5). Choose the solution of this system as a linear 

combination in the form; 

𝜑(𝑥, 𝑦, 𝑡) =
𝜕𝛽1𝑓(𝜉)

𝜕𝑥𝛽1
                                                               (6)                                                                                                            

𝜓(𝑥, 𝑦, 𝑡) =
𝜕𝛽2𝑔(𝜉)

𝜕𝑥𝛽2
                                                               (7)                                                                                         

The balance between the highly nonlinear and the highest 

order derivative terms in the system (4)-(5), results in 1 = 

2 = 2. Then the linear combination (6) and (7) is written as; 

𝜑(𝑥, 𝑦, 𝑡) = 𝑓′′𝜉𝑥
2 + 𝑓′𝜉𝑥𝑥                                                   (8)                                                                                                  

𝜓(𝑥, 𝑦, 𝑡) = 𝑔′′𝜉𝑥
2 + 𝑔′𝜉𝑥𝑥                                                    (9)                                                        

Substitute (8) and (9) into (4); 

(−
𝑟

𝑘
𝑓′′2 + 𝑑1𝑓

(4) − 𝛼1𝑓
′′𝑔′′) 𝜉𝑥

4 + (−𝛼1𝑔
′′𝑓′𝜉𝑥𝑥 +

𝑑1𝑓
(4)𝜉𝑦

2 − 𝑓′′′𝜉𝑡 + 6𝑑1𝑓
′′′𝜉𝑥𝑥 −

2𝑟

𝑘
𝑓′′𝑓′𝜉𝑥𝑥 −

𝛼1𝑓
′′𝑔′𝜉𝑥𝑥 + 𝑑1𝑓

′′′𝜉𝑦𝑦 + 𝑟𝑓′′) 𝜉𝑥
2 + (4𝑑1𝑓

′′′𝜉𝑦𝜉𝑥𝑦 +

4𝑑1𝑓
′′𝜉𝑥𝑥𝑥 + 2𝑑1𝑓

′′𝜉𝑥𝑦𝑦 − 2𝑓
′′𝜉𝑥𝑡)𝜉𝑥 + 𝑟𝑓

′𝜉𝑥𝑥 +

𝑑1𝑓
′𝜉4𝑥 + 𝑑1𝑓

′′′𝜉𝑦
2𝜉𝑥𝑥 + 𝑑1𝑓

′′𝜉𝑦𝑦𝜉𝑥𝑥 + 3𝑑1𝑓
′′𝜉𝑥𝑥

2 +

2𝑑1𝑓
′′𝜉𝑥𝑦

2 + 2𝑑1𝑓
′′𝜉𝑦𝜉𝑥𝑥𝑦 −

𝑟

𝑘
𝑓′2𝜉𝑥𝑥

2 − 𝑓′𝜉𝑥𝑥𝑡 −

𝛼1𝑓
′𝑔′𝜉𝑥𝑥

2 − 𝑓′′𝜉𝑡𝜉𝑥𝑥 + 𝑑1𝑓
′𝜉𝑥𝑥𝑦𝑦 = 0                                                                    

(10) 

Substitute (8) and (9) into (5); 

(𝛼2𝑓
′′𝑔′′ + 𝑑2𝑔

(4))𝜉𝑥
4 + (𝑑2𝑔

(4)𝜉𝑦
2 + 𝛼2𝑓

′𝑔′′𝜉𝑥𝑥 +

𝛼2𝑓
′′𝑔′𝜉𝑥𝑥 + 6𝑑2𝑔

′′′𝜉𝑥𝑥 + 𝑑2𝑔
′′′𝜉𝑦𝑦 − 𝑔

′′′𝜉𝑡 − 𝜇𝑔
′′)𝜉𝑥

2 +

(4𝑑2𝑔
′′′𝜉𝑥𝑦𝜉𝑦 + 4𝑑2𝑔

′′𝜉𝑥𝑥𝑥 + 2𝑑2𝑔
′′𝜉𝑥𝑦𝑦 − 2𝑔

′′𝜉𝑥𝑡)𝜉𝑥 +

𝑑2𝑔
′′′𝜉𝑦

2𝜉𝑥𝑥 + 2𝛼2𝑔
′𝑓′𝜉𝑥𝑥

2 + 𝑑2𝑔
′′′𝜉𝑥𝑥

2 + 𝑑2𝑔
′′𝜉𝑦𝑦𝜉𝑥𝑥 +

2𝑑2𝑔
′′𝜉𝑦𝜉𝑥𝑥𝑦 + 2𝑑2𝑔

′′𝜉𝑥𝑦
2 − 𝑔′′𝜉𝑡𝜉𝑥𝑥 − 𝜇𝑔

′𝜉𝑥𝑥 +

𝑑2𝑔
′𝜉4𝑥 + 𝑑2𝑔

′𝜉𝑥𝑥𝑦𝑦 − 𝑔
′𝜉𝑥𝑥𝑡 = 0                                                         

(11)                                                                                  

Setting the coefficient of 𝜉𝑥
4 = 0, after setting  𝜉𝑥 = −𝜉𝑦, 

yielding a system of ordinary differential equations;  

{
−
𝑟

𝑘
𝑓′′2 + 2𝑑1𝑓

(4) − 𝛼1𝑓
′′𝑔′′ = 0

𝛼2𝑓
′′𝑔′′ + 2𝑑2𝑔

(4) = 0
                                      (12)                                                                         

The solutions of this ODE system are; 

𝑓 = 𝐶1𝑙𝑛𝜉,   𝐶1 =
12𝑑2

𝛼2
                                                           (13)                                                                                           

𝑔 = 𝐶2𝑙𝑛𝜉, 𝐶2 = −
12𝑟𝑑2

𝛼1𝛼2𝑘
−

12𝑑1

𝛼1
                                            (14)                                                                                         

The relations between the nonlinear derivatives of 𝑔(𝜉) and 

f(𝜉) are summarized as;  

{
 
 

 
 𝑓′

2
= −𝐶1𝑓

′′ ,   𝑓′𝑓′′ = −
1

2
𝐶1𝑓

′′′         

𝑔′
2
= −𝐶2𝑔

′′ ,     𝑔′𝑔′′ = −
1

2
𝐶2𝑔

′′′          

𝑔′𝑓′′ = 𝑓′𝑔′′ = −
1

2
𝐶1𝑔

′′′ = −
1

2
𝐶2𝑓

′′′

𝑓′𝑔′ = −𝐶1𝑔
′′ = −𝐶2𝑓

′′                        

                         (15)                                                              

By using (12) and (15) the equations (10) and (11) are 

simplified as;  

(𝛼1𝐶2𝑓
′′′𝜉𝑥𝑥 − 𝑓

′′′𝜉𝑡 + 6𝑑1𝑓
′′′𝜉𝑥𝑥 +

𝑟

𝑘
𝐶1𝑓

′′′𝜉𝑥𝑥 + 𝑑1𝑓
′′′𝜉𝑦𝑦 +

𝑟𝑓′′) 𝜉𝑥
2 + (4𝑑1𝑓

′′′𝜉𝑦𝜉𝑥𝑦 + 4𝑑1𝑓
′′𝜉𝑥𝑥𝑥 + 2𝑑1𝑓

′′𝜉𝑥𝑦𝑦 −

2𝑓′′𝜉𝑥𝑡)𝜉𝑥 + 𝑟𝑓
′𝜉𝑥𝑥 + 𝑑1𝑓

′𝜉4𝑥 + 𝑑1𝑓
′′𝜉𝑦𝑦𝜉𝑥𝑥 + 3𝑑1𝑓

′′𝜉𝑥𝑥
2 +

2𝑑1𝑓
′′𝜉𝑥𝑦

2 + 2𝑑1𝑓
′′𝜉𝑦𝜑𝑥𝑥𝑦 +

𝑟

𝑘
𝐶1𝑓

′′𝜉𝑥𝑥
2 − 𝑓′𝜉𝑥𝑥𝑡 +

𝛼1𝐶2𝑓
′′𝜉𝑥𝑥

2 − 𝑓′′𝜉𝑡𝜉𝑥𝑥 + 𝑑1𝑓
′𝜉𝑥𝑥𝑦𝑦 = 0                                                    

(16)                                                                                                                                       

(−𝛼2𝐶1 𝑔
′′′𝜉𝑥𝑥 + 6𝑑2𝑔

′′′𝜉𝑥𝑥 + 6𝑑2𝑔
′′′𝜉𝑦𝑦 − 𝑔

′′′𝜉𝑡 −

𝜇𝑔′′)𝜉𝑥
2 + (4𝑑2𝑔

′′′𝜉𝑥𝑦𝜉𝑦 + 4𝑑2𝑔
′′𝜉𝑥𝑥𝑥 + 2𝑑2𝑔

′′𝜉𝑥𝑦𝑦 −

2𝑔′′𝜉𝑥𝑡)𝜉𝑥 + 𝑑2𝑔
′′𝜉𝑦

2𝜉𝑥𝑥 − 𝛼2𝐶1𝑔
′′𝜉𝑥𝑥

2 + 3𝑑2𝑔
′′𝜉𝑥𝑥

2 +

𝑑2𝑔
′′𝜉𝑦𝑦𝜉𝑥𝑥 + 2𝑑2𝑔

′′𝜉𝑦𝜉𝑥𝑥𝑦 + 2𝑑2𝑔
′′𝜉𝑥𝑦

2 − 𝑔′′𝜉𝑡𝜉𝑥𝑥 −

𝜇𝑔′𝜉𝑥𝑥 + 𝑑2𝑔
′𝜉4𝑥 + 𝑑2𝑔

′𝜉𝑥𝑥𝑦𝑦 − 𝑔
′𝜉𝑥𝑥𝑡 = 0                        

(17)                                                         

setting the coefficients of 𝑓′′′, 𝑓′′ 𝑎𝑛𝑑 𝑓′ in (16) and the 

coefficients 𝑔′′′, 𝑔′′𝑎𝑛𝑑 𝑔′ in (17) equal to zero; yields a 

system of partial differential equations for 𝜉 (x, y, t); 

(𝛼1𝐶2𝜉𝑥𝑥 − 𝜉𝑡 + 6𝑑1𝜉𝑥𝑥 +
𝑟𝐶1

𝑘
𝜉𝑥𝑥 + 𝑑1𝜉𝑦𝑦) 𝜉𝑥

2 +

4𝑑1𝜉𝑦𝜉𝑥𝑦𝜉𝑥 = 0                                                                      (18)                                                     

𝑟𝜉𝑥
2 + (4𝑑1𝜉𝑥𝑥𝑥 + 2𝑑1𝜉𝑥𝑦𝑦 + 2𝜉𝑥𝑡)𝜉𝑥 − 𝑑1𝜉𝑦𝑦𝜉𝑥𝑥 + 3𝑑1𝜉𝑥𝑥

2 +

2𝑑1𝜉𝑥𝑦
2 + 2𝑑1𝜉𝑦𝜉𝑥𝑥𝑦 +

𝑟𝐶1

𝑘
𝜉𝑥𝑥
2 + 𝛼1𝐶2𝜉𝑥𝑥

2 + 𝜉𝑡𝜉𝑥𝑥 = 0             

(19)                                                                                                                                                                                                        

𝑑1𝜉4𝑥 − 𝑟𝜉𝑥𝑥 − 𝜉𝑥𝑥𝑡 + 𝑑1𝜉𝑥𝑥𝑦𝑦 = 0                                    (20)                                                                                    

(−𝛼2𝐶1 𝜉𝑥𝑥 + 6𝑑2𝜉𝑥𝑥 − 𝑑2𝜉𝑦𝑦 − 𝜉𝑡)𝜉𝑥
2 + 𝑑2𝜉𝑦

2𝜉𝑥𝑥 +

4𝑑2𝜉𝑥𝑦𝜉𝑦𝜉𝑥 = 0                                                                   (21)                                                                                        

−𝜇𝜉𝑥
2 + (4𝑑2𝜉𝑥𝑥𝑥 − 2𝑑2𝜉𝑥𝑦𝑦 − 2𝜉𝑥𝑡)𝜉𝑥 − 2𝛼2𝐶1𝜉𝑥𝑥

2 −

𝑑2𝜉𝑦𝑦𝜉𝑥𝑥 + 2𝑑2𝜉𝑦𝜉𝑥𝑥𝑦 + 2𝑑2𝜉𝑥𝑦
2 − 𝜑𝑡𝜑𝑥𝑥 + 3𝑑1𝜉𝑥𝑥

2 = 0                           

(22)                                                                                                               

−𝜇𝜉𝑥𝑥 + 𝑑2𝜉4𝑥 − 𝑑2𝜉𝑥𝑥𝑦𝑦 − 𝜉𝑥𝑥𝑡 = 0                                 (23)                                                                                        

 

To solve the homogeneous system (18)-(23), assume that  

𝜉(𝑥, 𝑦, 𝑡) = 1 + 𝑒𝛼𝑥+𝛽𝑦+𝛾𝑡+𝛿                                                (24)                                                                                                

Where , ,  are to be determined and  is a  constant. 

Substitute (24) into the system (18)-(24), considering that 

𝜉𝑥 = −𝜉𝑦. It is found that 𝜉(𝑥, 𝑦, 𝑡) satisfies this system of 

equations when,  = 2d1,  
𝑑1

𝑑2
= 2, =22d2  and 𝛼 = −𝛽. 

Then the solution of the Lotka-Volterra system (4)-(5) is; 

𝜑(𝑥, 𝑦, 𝑡) =
𝐶1𝛼

2

4
sech2 (

1

2
(𝛼𝑥 + 𝛽𝑦 + 𝛾𝑡 + 𝛿))               (25)                                                            

𝜓(𝑥, 𝑦, 𝑡) =
𝐶2𝛼

2

4
sech2 (

1

2
(𝛼𝑥 + 𝛽𝑦 + 𝛾𝑡 + 𝛿))               (26)                                                          

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060519
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

876

www.ijert.org
www.ijert.org
www.ijert.org


IV. RESULTS AND DISCUSSION 

This section is motivated to plot and discuss the 

solutions of the system (4)-(5). The dynamics of the species 

densities are varied according to the system parameters. It is 

clear that the relation between species is affected by the 

signs of the interaction coefficients (’s). Table 1 illustrate 

three relations between species for different (’s) signs.  

TABLE I.  THE EFFECT OF THE INTERACTION 

COEFFICIENTS’ SIGNS IN THE RELATION BETWEEN SPECIES. 
Relation between 

species 
Sign 

of 1 

Sign 

of 2 

Sign of interaction 

term in equation (4) 
Sign of interaction 

term in equation (5) 

Prey-Predator + + − + 

Symbiosis − + + + 

Competition + − 
− 

− 

 

The prey-predator relation is presented in Fig. 1, for t = 0, t 

= 5 and t =10 with the parameters α1 = α2 = 50, d1 =10 , d2 

= 5, k = 10, r = 30, μ = 10, α = 1, β = −1, γ =−1 and  = 1.  

The densities evolve in two opposite solitary waves, which 

confirms the chase-repulsion relation between species. The 

increase in the prey density reveals a decrease in predator 

density and vice versa.  The two dimensional plot for this 

case is shown in Fig.2, at y =2. 

 

Fig. 1: (a, b and c) is the prey evolution and (d, e and f) is the predator 

evolution for α1 = α2 = 50, d1 =10 , d2 = 5, k = 10, r = 30, μ = 10, α = 1, 

β = -1, γ =-1 and  = 1 at t = 0, t = 5 and t =10. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The 2D-prey- predator evolution at α1=α2=50, d1=10, d2=5, k=10, 

r=30, μ=10, α=1, β=−1, γ=−1, =1 and y=2 for t =0, t =5 and t =10. 

 

The symbiosis relation between species appears when α1 is 

negative. Fig.3, represents the symbiosis relation between  

and  for α1=−100, α2=50,  d1=10, d2=5, k =1, r =30, μ=10, 

α=1, β =−1, γ =−1, δ =1, t=2 and y=1. The solitary waves 

show that both species favor each other.   

The competition relation between  and   is illustrated in 

Fig.4, for α1 =100, α2 =−50, d1 =100, d2 =50, k=1, r=30, 

μ=10, α=1, β=−1, γ=−1, δ=1, t=2 and y=1. The solution 

shows that Both species inhibit each other. 

 

Fig. 3: The symbiosis relation between  and  for α1=−100, α2=50,  

d1=10, d2=5, k =1, r =30, μ=10, α=1, β =-1, γ =-1, δ =1, t=2 and y=1,(a) 

represents , (b) represents  and (c) is the 2D solitons. 

 

Fig. 4: The competition relation between  and  for α1=-100, α2=-50,  

d1=100, d2=50, k =1, r =30, μ=10, α=1, β =-1, γ =-1, δ =1, t=2 and 

y=1,(a) represents , (b) represents  and (c) is the 2D solitons. 

(a) t
=

(b)  
t

(c) 
t=10 

(d) 
t=0 (e) 
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V. CONCLUSIONS 

 

Homogeneous balance method is effective in detecting the 

solitary wave solution of the Lotka-Volterra system. Three 

interaction relations are discussed and plotted. The chase-

repulsion relation between species is conspicuous in the two 

opposite solitary waves of the prey-predator case. The 

dynamics of the system is discussed for the different 

parameter values. The symbiosis and competition relations 

manifested at different signs of the interaction coefficients 

1 and 2. 
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