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Abstract. The Navier-Stokes equations are a collection of partial 

differential equations that describe fluid motion in liquids and 

gases, and provide a mathematical framework for modeling fluid 

behavior in various scenarios. Solving them correctly reveals 

information about fluid behavior such as turbulence, laminar flow, 

and vortex formation. In practical applications, numerical methods 

such as finite difference, finite element, and computational fluid 

dynamics (CFD) are frequently used to approximate Navier-Stokes 

equation solutions. Solving the Navier-Stokes equations is a 

challenging task due to their nonlinearity and complexity, The 

main idea behind PINNs is to incorporate a physical system's 

governing equations into the neural network's training process. In 

this study, the Navier-Stokes equation is solved using physics-

informed neural networks(PINN) to provide insight into the 

potential of PINNs in fluid dynamics for computationally less 

expensive calculations without compromising the accuracy using 

L-BFGS optimizer algorithm for computationally less 

expensive(CLE) calculations. 

Keywords: PINN, Fluid dynamics, Neural Networks, 

Optimisation, deep learning. 

1 INTRODUCTION 

The Navier-Stokes equation in fluid mechanics is a partial 

differential equation that describes the flow of incompressible 

fluids. The equation is a generalization of one developed by 

Swiss mathematician Leonhard Euler in the 18th century to 

describe the flow of incompressible and frictionless fluids. Fluid 

dynamics is a critical field in physics and engineering 

investigating the complex motions of liquids and gases. The 

Navier-Stokes equations—a collection of intricate partial 

differential equations that illuminate phenomena such as 

turbulence, laminar flow, and vortex formation—are central to 

understanding fluid behavior. The accurate solution of these 

equations provides valuable insights into fluid motion dynamics, 

but their nonlinear and 

complex nature makes numerical approximation difficult. 

In response to this challenge, researchers have developed 

Physics-Informed Neural Networks (PINNs) [1]. PINNs 

provide a promising way to address the computational 

demands associated with solving the Navier-Stokes equations by 

incorporating the governing equations of a physical system 

into the training process of a neural network. This study 

aims to investigate the potential of PINNs in fluid 

dynamics, to perform computationally less expensive 

calculations without sacrificing accuracy. We focus on the 

application of the L-BFGS optimizer algorithm [2] to 

improve computational efficiency, to make fluid dynamics 

simulations more practical and accessible.DeepXDE is a 

library intended for scientific machine learning and physics-

based learning. It is used to solve partial differential 

equations (PDEs) and other similar problems. The library 

improves the accuracy and efficiency of PDE solutions by 

combining deep learning techniques and physics-based 

constraints, this library can be used to solve PINNs more 

effectivel 

Fig1: PINN structure in dde library(DeepXDE)[4] 
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The contributions to the paper are as follows, we first 

explore the concept of navier stokes and its numerical 

form, then move on to computational form and interpret it 

as per the DeepXDE library norms. The learning rate, 

hyperparametrization, and other Neural network terms will 

be discussed based on the PINN, Then we discuss the 

optimizers and the reason behind choosing the L-

BFGS optimizer for this particular case. We move on to 

the results and discussions and the proof of concept at the 

very end. 

2 LITERATURE REVIEW 

Imbalanced datasets have long posed a challenge in 

machine learning, making it difficult to train models that 

accurately capture minority classes or 

underrepresented patterns. However, the introduction of 

Physics-Informed Neural Networks (PINNs) has resulted 

in a paradigm shift in the field of scientific machine 

learning, providing a novel approach to solving partial 

differential equations (PDEs) and other physical problems. 

Notably, PINNs incorporate a 

system's governing equations during training, reducing the 

need for large labeled datasets and providing an elegant 

solution to imbalanced data challenges. 

The development of PINNs began with the seminal work of 

Raissi et al. in 2017, who introduced the concept 

of Physics-Informed Neural Networks [1]. This 

groundbreaking approach seamlessly integrates physics-

based constraints into neural network training, allowing 

complex PDEs to be solved without the need for large 

amounts of labeled data. The key innovation is PINNs' 

ability to learn from limited observational data while 

adhering to the underlying physical laws that govern the 

system. In subsequent years, researchers have 

investigated and expanded the applications of PINNs. 

Raissi et al. expanded the capabilities of PINNs to solve 

inverse problems in 2018 [6]. This development 

represents a significant step forward in using PINNs for 

tasks other than direct PDE solutions, demonstrating 

their versatility and potential in scientific machine-

learning   
The introduction of the L-BFGS optimizer algorithm in 

2019 resulted in improvements in PINN efficiency [7]. 

This algorithm, incorporated into the PINN framework, 

addressed computational expenses, allowing for 

computationally less expensive (CLE) calculations 

without sacrificing solution accuracy. The L-BFGS 

optimizer helped to make PINNs more practical and 

accessible, particularly in fluid dynamics and related 

fields. Continuing the progress, recent studies have 

focused on improving PINN training strategies, 

investigating hybrid approaches that combine physics-

based constraints with data-driven insights [8]. These 

efforts aim to improve the robustness and generalization 

capabilities of PINNs across a wide range of scientific 

applications. I 

believe that this research, which combines neural networks 

and physics-based constraints, not only mitigates the 

challenges associated with imbalanced datasets but also 

opens up new avenues for discovering intricate patterns in 

scientific domains. 

applications.

3 METHODOLOGY 

This research simulates fluid flow governed by the 

incompressible Navier-Stokes equations. Boundary 

conditions that define the rectangular fluid domain 

include zero pressure gradient at the outlet, an inlet 

velocity, and no-slip conditions on the walls. The 

incompressible Navier-Stokes equations describe the 

motion of a fluid and are fundamental in fluid dynamics. 
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The velocity components in the x and y directions are 

represented by the symbols u and v, respectively. 
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Accurately simulating incompressible flows requires 

solving the Pressure Poisson Equation. 

To keep the fluid incompressible throughout the 

simulation, it aids in maintaining a divergence-free velocity 

field. Realistic fluid flow scenarios can be simulated by 

using numerical techniques in computational fluid 

dynamics (CFD), which require an understanding of and 

ability to solve the Pressure Poisson Equation. The 

dde.geometry is used to define the fluid domain. Rectangle 

class with L and D specified dimensions. Boundary_wall, 

Boundary_inlet, and Boundary_outlet are the three 

different boundary functions that enforce the boundary 

conditions. These features aid in locating the inlet, outlet, 

and wall points, respectively. Using the dde.maps, the 

neural network architecture is defined.class for feedforward 

neural networks, or FNNs. The network is made up of five 

hidden layers, each with 64 neurons, an input layer with 

two neurons (representing x and y coordinates), and an 

output layer with three neurons (representing u, v, and p). 

Glorot uniform weight initialization and the hyperbolic 

tangent activation function are used. 
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Fig.2: Neural Network schematic for the PINN, contains 2 

input neurons, 5 hidden layers, each with 64 neurons each, 

and 1 output layer with 3 neurons. In the input layer, the 

spatial coordinates x and y are represented as neurons, In 

the next 5 hidden layers, each with 64 neurons are 

responsible for capturing and learning the complex 

relationships and features within the fluid flow data. In the 

output layer, the velocity components in the x and y 

directions are received along with the pressure. 

The dde.DirichletBC class is used to impose Dirichlet 

boundary conditions. In particular, the following 

conditions are used: bc_outlet_p and bc_outlet_v for the 

outlet, bc_inlet_u, and bc_inlet_v for the inlet, and 

bc_wall_u and bc_wall_v for the wall. The system of 

partial differential equations (PDEs) that represents the 

incompressible Navier-Stokes equations is defined by the 

pde function. The dde.data.PDE class is employed to 

generate training and testing data for the PINN. Random 

points within the fluid domain are sampled, and the 

corresponding solutions are obtained by solving the PDEs. 

The generated data includes both domain and boundary 

points. 

Fig.3: This visual representation illustrates the scattered 

points strategically selected 

within the fluid domain for training the Physics-Informed 

Neural Network (PINN). As the PINN is trained on these 

scattered points, it adapts its neural network weights to 

approximate the complex relationships inherent in the 

Navier-Stokes equations. This training methodology 

enables the PINN to simulate and predict fluid flow 

behaviors with high accuracy and efficiency. 

This methodology guarantees a thorough comprehension of 

fluid behavior and allows the network to generalize 

significantly outside of the training dataset. The importance 

of scattered point training in improving the robustness and 

accuracy of PINNs for fluid dynamics simulations is 

highlighted by seminal works like the Deep Galerkin 

Method (DGM) introduced by Sirignano and Spiliopoulos 

[8] and the framework for solving nonlinear PDEs

developed by Raissi et al. [1]. When taken as a whole,

these experiments show how important scattered points are

to improving PINNs' ability to forecast complex fluid flow

scenarios.

First, the Adam optimizer—which is known for its

effectiveness when dealing with  non-stationary  goals

and noise-affected gradients—is used (Kingma & Ba,

2014)[9]. By making this decision, the network may more

easily traverse the solution space and get closer to a logical

answer during the early phases of training. Following the

Adam optimizer, the training process undergoes refinement

using the L-BFGS optimizer (Byrd et al., 1995)[10]. L-

BFGS, a quasi-Newton method, is well-suited for scenarios

where the solution space exhibits intricacies such as

complexity and nonlinearity. The transition to L-BFGS

enables the network to fine-tune its weights more

efficiently,

contributing to improved convergence and computational

efficiency. This dual-optimizer strategy is complemented by

the judicious use of randomly sampled points within the

fluid domain. By adopting this comprehensive

approach, the PINN is trained to not only minimize

residual errors in the Navier-Stokes equations but also

adapt to the intricacies of fluid dynamics. The synergy of

deep learning techniques, sequential

optimizers, and spatial sampling exemplifies a robust

training  

The training process took approximately 5354.1 seconds,

during which the model iteratively refined its weights to

minimize the difference between predicted and actual

values. The choice of a high number of epochs(10000)

indicates a comprehensive learning process, essential for

capturing complex relationships in the fluid dynamics

data. This duration reflects the computational effort

invested in training the PINN for accurate simulation of the

Navier-Stokes equations. Visualization aids in

understanding the simulated fluid flow patterns within the

rectangular domain. In summation, the presented

research encapsulates a robust methodology, seamlessly

amalgamating the prowess of PINNs with the elegance

inherent in the Navier-Stokes equations for simulating

fluid dynamics. This innovative approach, backed by

references

[8] and [11], imparts a data-driven and computationally

efficient solution, showcasing the capability to model

intricate fluid flow phenomena with accuracy and

insight.

methodology.
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4 RESULTS AND DISCUSSION 

As a final step in this research, the trained Physics-

Informed Neural Network (PINN) is thoroughly assessed 

on a collection of randomly selected points. The 

visualized fluid domain formed through this 

comprehensive methodology showcases the successful 

fusion of PINNs with the elegance  encapsulated  in  

the Navier-Stokes equations. 

Fig.4: Visual representation generated by the PINN for 

the simulation of 2D Navier-stokes equation. The three 

outputs comply with the network provided beforehand in 

this research(fig.2), the velocity components u,v, and the 

pressure p. 

As you can see in the results, as the fluid flows into the 

rectangular domain, the initial value being one, due to the 

viscosity in the domain a boundary layer is formed 

resulting in reducing the value from 1 in the u direction. 

As the fluid flows through the rectangular domain, due to 

the formation of the boundary layer, the flow is directed 

towards the center axis of the domain, hence resulting in 

a variation of the v component of the velocity, hence the 

discrepancy in the v direction showed in the visualization 

(fig.4) along with the pressure variations with the lowest 

pressure at the end of the domain. 

The synergy of these components not only accurately 

captures the underlying physics of fluid dynamics but also 

demonstrates a data-driven and computationally efficient 

solution for modeling intricate fluid flow phenomena. The 

amalgamation of PINNs and the Navier-Stokes equations 

provides a robust framework that goes beyond traditional 

numerical methods, offering a sophisticated yet efficient 

approach to fluid flow modeling. 
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