

Cloud Computing and Big Data Analytics

 Nitin Choudhary
1
 and Prateek Singh

2

1.Student, Northern India Engineering College, Shastri Park

2 Student, Northern India Engineering College, Shastri Park

Abstract

A large volume of data is generated by many

applications which cannot be managed by traditional

relational database management system. As

organizations use larger and larger data warehouses

for ever increasing data processing need, the

performance requirements continue to outpace the

capabilities of the traditional approaches. The cloud

based approach offers a means for meeting the

performance and scalability points of the enterprise

data management providing agility to the database

management infrastructure. As with other cloud

environments, data management in the cloud benefits

end users by offering a pay-as-you-go (or utility based)

model and adaptable resource requirements that free

up enterprises from the need to purchase traditional

hardware and to go through extensive procurement

process frequently. The data management, integration

and analytics can be offloaded to public and/or private

clouds. By using public cloud, enterprises can get

processing power and infrastructure as needed,

whereas with public cloud enterprises can improve the

utilization of the existing infrastructure. By using cloud

computing, enterprises can effectively handle the wide

ranging database requirements with minimum effort,

thus allowing them to focus on the core work rather

than getting bogged down with infrastructure. Despite

all these benefits, decision to move from dedicated

infrastructure to the cloud based Data processing

depends on several logistics and operational factors

such as security, privacy, availability etc

1. Introduction
Many industries such as telecom, retail, health care, etc.

generate large amount of data. Querying and analysing such

massive data for business is becoming the need of the hour.

Traditionally, data warehouses have been used to manage the

large amount of data. The warehouses and solutions can

perform analytics on big volume once in days or one can

perform transactions on small amounts of data being

produced by industries is very large, for example, the Indian

telecom generates more than 1 terabyte of call detail

records(CDR’s) daily. This large data is known as BIG

DATA and it exceeds the processing capacity of conventional

database systems. For such large data, warehouses are not

practical and their infrastructure is costly and the analytics of

data is slow.To overcome the shortcomings of traditional

warehouses and systems, clouds are used. They are cheap and

allow businesses to off-load computing tasks while saving IT

costs and resources. The cloud providers have no intervention

and provide self- service. The clients/businesses have to pay

just for their usage. As the cloud resources are shared by

many users/clients, cost of computing is very low

comparatively.This report outlines the challenges in analysing

big data for both, data at rest and data in motion. For big data

at rest there are two systems:
1. No SQL for interactive data serving environment

2. System for large scale analytics based on Map

Reduce Paradigms such as Hadoop.

For big data in motion, the report presents use-cases and

illustrative algorithms of data stream management system

(DSMS).

This report talks about the following topics:

1. Cloud data management: cloud computing can be

used for performing massive scale data analytics in

a cost effective and scalable manner. In this section

we discuss the interplay of cloud computing and

data management; and the factors one should

consider while moving from a dedicated data

management infrastructure to a cloud based

infrastructure.

2. No SQL: It encompasses a number of techniques

for processing massive data in distributed manner.

Currently it is used for all the alternative data

management technologies which are used for

solving the problems for which relational databases

are a bad fit. It enables efficient capture, storage,

search, sharing, analytics, and visualization of the

massive scale data.

3. Hadoop MapReduce: It is used for writing

applications processing vast amount of data in

parallel on large clusters of machines in a fault-

tolerant manner. This framework involves writing

two user defined generic functions: map and

reduce.

4. Data Stream Management System: Data Stream

Management Systems (DSMSs) allow user to

analyze the data-in-motion. This analysis is done in

real-time thereby allowing users to trigger

important events to enable enterprises to perform

actions just-in-time yielding better results for the

businesses.

2700

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121082

5. Querying data over cloud: Various high level

query languages have been developed so that one

can avoid writing low level MapReduce programs.

Queries written in these languages are in turn

translated into equivalent MapReduce jobs by the

compiler and these jobs are then consequently

executed on Hadoop. Three of these languages

Hive, Jaql and Pig.

6. Data Management Applications Over Cloud: In

this section, we consider three example applications

where large scale data management over cloud is

used. These are specific use-case examples in

telecom, finance, and sensors domains.

6.1 Dashboard for CDR Processing

6.2 Credit Card Fraud Detection

6.3 Spatio-temporal Data Processing

This report also talks about big data processing that involves

interactive processing and decision support processing of

data at rest and real time processing of data in motion.

2. CLOUD DATA MANAGEMENT
Cloud computing is the use of computing resources (hardware

and software) that are delivered as a service over a network

(typically the Internet). The name comes from the common

use of a cloud-shaped symbol as an abstraction for the

complex infrastructure it contains in system diagrams. Cloud

computing entrusts remote services with a user's data,

software and computation.Cloud computing performs large

scale analytics in a cost effective manner. Big data cannot be

managed by traditional warehouses or database systems, but

it can be managed effectively by cloud. The users don’t need

to purchase additional hardware as they can pay the cloud

providers according to their usage. The data management,

integration and analytics can be offloaded to public or/and

private clouds. With private cloud usage , businesses can

improve the utilization of existing infrastructure with public

cloud usage , businesses can get processing power and

infrastructure as needed. By using cloud computing ,

businesses can concentrate on their core work and

enhancement rather than face data analytics problems.

There are few factors to be taken care of:

1. AVAILABILITY GUARANTEES : Out of real

time transactional data & analytics infrastructure ,

one may be willing to put its analytics infrastructure

over the cloud . hence, each cloud computing

provider can ensure a certain amount of availability

guarantees.

2. RELIABILTY: One must ensure the cloud’s

reliability for providing services before loading it

with data.

3. SECURITY: For organisations with confidential

information , the cloud must be secure and

password enabled.

4. MAINTAINABILITY: One must make sure that

maintenance operations and data organisation

facilities are provided by the cloud.

3.Techniques Used
3.1 No SQL

NoSQL consists of a no. of techniques used for processing

massive data in distributed manner, which includes efficient

capture, storage, search, sharing, analytics and visualization

of the massive scale data. Relational databases are not

designed for distributed horizontal scaling, therefore the main

reason for using NoSQL is the scalability issues. Thus, we

use two technologies for meeting scalability requirements:-

1. Replication: In replication, we use a master slave

architecture wherein reads can be performed at any

of the replicated slave, whereas writes are

performed at the master.

2. Sharding: Sharding also known as partitioning

requires the application to be partitioned first,

defeating the very purpose of relational databases.

3.1.1 Characteristics of No SQL databases

A very important difference between the traditional databases

and NoSQL databases is that the latter does not support

updates and deletes. The reason behind this is that most of the

applications do not need these operations rather they maintain

different versions of the same data. Some of the examples are

CDR’s (call detail records), human resource databases etc.

These operations are handled using insertion with version

control. Relational databases provide ACID(atomicity,

consistency, integrity and durability) properties.

 Since atomicity of over more than one record is not

required in most of the cases, therefore single key

atomicity is provided by No SQL databases.

 Consistency can be ensured using eventual

consistency where reconciliation happens

asynchronously to have eventually consistent

database.

 Durability is ensured in both the traditional and No

SQL databases but the traditional databases uses

expansive hardware whereas No SQL databases

provide that with cluster of disks with replication

and other fault tolerance mechanism.

Alternatives of ACID

BASE (basic availability soft state and eventual consistent)If

one nees to scale up for processing massive amount of data

the he/she has to go for BASE.

No SQL data models

No SQL databases are flexible, they can support various types

of data models. No SQL databases support key value pairs,

hierarchical data, geo-spatial data, graph data, etc., using a

simple model. We describe the three data models used in No

SQL:

1. Key value stores: In a key-value read and write

operations to a data item are uniquely identified by its key.

Amazon dynamo is an example of key-value store in which

values are opaque to the system. It provides incremental

scalability; hence keys are partitioned dynamically using a

hash function to distribute data over a set of machines or

nodes. Each node knows about its peers which in turn allow

any node to forward a key’s read or write operation to the

correct set of nodes. These operations are performed on a

number of nodes to handle data durability and availability.

2701

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121082

2. Document stores : In document stores, value associated

with the key is a document which is not opaque to the

database; hence, it can be queried. Amazon’s simple DB[30],

Mongo DB[32] and apache’s couch DB[31] are some

examples of No SQL databases using this model.

3. Column family stores: In this model, data is organized

into tables. Each record is identified by a row-key. Each row

has a number of columns which are organized into column-

families. It supports transactions only under a single row key.

Data is partitioned by sorting row-keys lexicographically. Big

Table can serve data from disk as well as memory. Data is

organized into table which are characterised by their start-key

and end-key. Meta-data are maintained to locate tablet-server

for a particular key.

3.2 Hadoop

Hadoop is a generic framework to write massive scale data

application which involves writing two user defined generic

functions:

Map
 In the map step, a master node takes the input data

and the processing problem, divides it further into smaller

data chunks and sub-problems; and then distributes them to

worker nodes, which then processes one or more chunks

using the sub-problem assigned to it. Specifically, each map

process, takes a set of {key, value} pairs and generates one or

more intermediate{key, value} pairs for each input key.

Reduce
In the reduce step, intermediate key-value pairs are processed

to produce the output of the input problem. Each reduce

instance takes a key and an array of values as input and

produces output after processing the array of values:

 Map(k1,v1) • list(k2,v2)

 Reduce(k2, list(v2)) • list(v3)

Example of a MapReduce implementation for a scenario

where one wants to find the list of customers having total

transaction value more than $1000:

void map(String rowId, String row):

 // rowId: row name

 // row: a transaction recode

customerId= extract customer-id from row

transactionValue= extract transaction value from row

EmitIntermediate(customerId, transactionValue);

void reduce(String customerId, Iterator partialValues):

 // customerId: Id to identify a customer

 // partialValues: a list of transaction values

 int sum = 0;

 for each pv in partialValues:

 sum += pv;

 if(pv > 1000)

 Emit(cutsomerId, sum);

3.2.1 Hadoop

Hadoop is the most popular open source implementation of

MapReduce framework Which is used for writing

applications processing vast amount of data in parallel on

large clusters of machines in a fault-tolerant manner.

Machines can be added and removed from the clusters as and

when required. In Hadoop, data is stored on Hadoop

Distributed File System (HDFS) which is a massively

distributed file system designed to run on cheap commodity

hardware.

Steps:

1.Each file is broken into a number of blocks and these blocks

are then parsed by user-defined code into {key, value} pairs

to be read by map functions.

2. The map functions are executed on distributed machines to

generate output {key, value} pairs which are written on their

respective local disks.

3. Each reduce function uses HTTP GET method to pull {key,

value} pairs corresponding to its allocated key space.

4. A reduce instance processes the key and array to get the

desired output.

Architecture

HDFS follows master-slave architecture. An HDFS cluster

has a single master called name node and a number of slave

nodes. The name node manages the file system name space.It

divides the file into blocks, and replicates them to different

machines. Slaves, also called data nodes, manage the storage

corresponding to that node. Fault tolerance is achieved by

replicating data blocks over a number of nodes. The master

node monitors progress of data processing slave nodes and in

case it fails or it is slow, reassigns the corresponding data-

block processing to another slave node. In Hadoop,

applications can be written as a series of MapReduce tasks

also.

4. DATA STREAM MANAGEMENT SYSTEM (DSMS)

DSMS is for analysis of ‘data in motion’. In contrast to

conventional databases, the analysis is done in real-time and

actions are performed ‘just in time’. These systems can

perform stream operations and these systems can be thought

of as a series of connected operators. Source operators are

source tuples. Intermediate operators perform operations such

as join etc. sink operators have the output.

 Various stream processing systems

VARIOUS STREAM PROCESSING SYSTEMS INCLUDE:

IBM’s infosphere, twitter’s storm and yahoo’s s4.

1. IBM’s infosphere is a component based distributed

stream processing platform. It supports higher data

rates and various input types and provides load

balancing and scheduling.

2. Twitter’s storm provides a general framework for

batch operations just like hadoop. Spouts are

entities that handle the insertion of data types into

the topology and bolts are entities that perform

operations. Spouts and bolts are programmed using

programming languages. Spouts and bolts are

connected by stream to form a directed graph.

Storm also provides fault tolerance.

3. In S4 terminology, the basic computation unit is

processing element (PE) and processing nodes

2702

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121082

(PN’s) are logical hosts for PE’s. Each stream is

described as a sequence of events having pairs of

keys and attributes. Each PE consumes exactly

those events which correspond to the value on

which it is keyed.

4.1 Quering Data Over The Cloud

As discussed earlier, processing data in hadoop requires

programming MapReduce using programming languages like

python, JAVA, etc. This has many problems as it is time

consuming, highly skilled developers are required, proper

scheduling required and that all reducers should have equal

distribution of data to process.To overcome these problems

‘high- level query languages’ have been developed. For

example: SQL.

 Three high-level query languages are:

1. HIVE: developed by Facebook.All the features of

Hive are very SQL-like so the effort to learn and

use Hive is minimal. Like SQL, table schema has to

be provided and data has to be filled in. Table can

be partitioned on a set of attributes and these

partitions make data fetching easier.Hive has the

same operations as SQL such as join, group by etc.

2. PIG: it is a high level scripting language developed

by Yahoo. It follows the declarative style of SQL

and low level procedural style of MapReduce.

There is step-wise transformation and the

transformation carried out in each step is fairly

high-level e.g., filtering, aggregation etc., similar to

as in SQL. The program written in Pig is parsed and

a directed acyclic graph is made with all the

necessary optimizations to be performed at this

stage. This plan is compiled and then optimized by

the MapReduce optimizer and then it is sent to the

to Hadoop job manager for execution. Unlike Hive,

schemas here are optional. Pig supports complex

and non-atomic data types such as map and tuple as

fields of a table. Pig provides debugging

environment.

3. JAQL: Jaql is a functional data query language,

designed by IBM and is built upon JavaScript

Object Notation (JSON) [8] data model. Jaql is a

general purpose data-flow language that

manipulates semi-structured information in the

form of abstract JSON values. Jaql provides easy

migration between different languages like

javasrcipt and python. Supports atomic values such

as numbers and strings. Jaql also provides a user

with the capability of developing modules, a

concept similar to Java packages. A set of related

functions can be bunched together to form a

module. A Jaql script can import a module and can

use the functions provided by the module.

Querying streaming data :

There are two languages for this:

Continuous Query language: CQL is an SQL based

declarative language for continuously querying streaming and

dynamic data.CQL semantics is based on three classes of

operator:

1. Stream-to-Relation, relation-to-relation, and

relation-to-stream. In stream-to-relation operators,

CQL has three classes of sliding window operators:

time-based, tuple-based, and partitioned. In the first

two window operators, window size is specified

using a time-interval T and the number of tuples N,

respectively. The partitioned window operator is

similar to SQL group-by which groups N tuples

using specified attributes as keys.

2. Relation-to-Relation operators are derived from

traditional relational queries. CQL has three

relation-to-stream operators: Istream, Dstream and

Rstream. Applying an Istream/ Dstream

(insert/delete stream) operator to a relation R results

in a stream of tuples inserted/deleted into/from the

relation R. The Rstream (relation steam) generates a

stream element <s,τ> whenever tuple s is in relation

R at time τ. It should be noted that there are no

stream-to-stream operators in CQL.

The continuous query is compiled using query plan and added

to other queries. Each query plan runs continuously with three

types of components: operators, queues, and synopses. Each

operator reads from input queues, processes the input based

on its semantics, and writes output to output queues.

Synopses store the intermediate stage needed by continuous

query plans.

Stream Processing Language:

structured application development language to build

applications over Info Sphere streams. It supports structured

as well as unstructured data stream processing. It provides a

toolkit of operators using which one can implement any

relational query with window extensions. Among operators:

 functor

is used for performing tuple level operations such as filtering,

projection, attribute creation, etc.;

 aggregate

 is used for grouping and summarization;

 join

 is used for correlating two streams;

 barrier

 is used for consuming tuples from multiple streams and

outputting a tuple in a particular order;

 punctor

 is also for tuple level manipulations where conditions on

current and past tuples are evaluated for generating

punctuations in the output stream;

 split

 is used for routing tuples to multiple output streams; and

 delay

operator is used for delaying a stream based on a user-

supplied time interval. Besides these System-S also has edge

adaptors and user defined operators.

 source

adaptor is used for creating stream from an external source.

This adaptor is capable of parsing, tuple creation, and

interacting with diverse external devices.

2703

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121082

 sink

 adaptor can be used to write tuples into a file or a

network. It supports three types of windowing:

tumbling window, sliding window, and

punctuation-based window.

5. Conclusion

1. The increasing amount of data led to the different

technologies such as NoSQL, Hadoop, Streaming

data processing; Pig, Jaql, Hive, CQL, SPL for

querying And distributed processing.

2. There are various advantages in moving to cloud

resources from dedicated resources for data

management.

3. But some of the enterprises and governments are

still skeptical about moving to cloud. More work is

required for cloud security, privacy and isolation

areas to alleviate these fears.

4. For given cloud resources one needs to associate

required resources for both the modules (bulk and

stream data processing) so that the whole system

can provide the required response time with

sufficient accuracy. More research is required for

facilitating such systems.

6. Refrences

[1] A. Abouzeid, K. B. Pawlikowski, D. J. Abadi, A. Rasin,

and

A. Silberschatz. HadoopDB: An Architectural Hybrid of

MapReduce

and DBMS Technologies for Analytical Workloads. PVLDB,

2(1):922–933, 2009.

[2] D. Agrawal, S. Das, and A. E. Abbadi. Big data and cloud

computing: New wine or just new bottles? PVLDB,

3(2):1647–1648,

2010.

[3] D. Agrawal, A. El Abbadi, S. Antony, and S. Das. Data

Management

Challenges in Cloud Computing Infrastructures. In DNIS,

pages

1–10, 2010.

[4] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava,

and

R. Ramakrishnan. Asynchronous view maintenance for vlsd

databases. In SIGMOD Conference, pages 179–192, 2009.

[5] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold. A

comparison of

flexible schemas for software as a service. In SIGMOD,

pages

881–888, 2009.

[6] P. Bernstein, C. Rein, and S. Das. Hyder – A

Transactional Record

Manager for Shared Flash. In CIDR, 2011.

[7] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T.

Kraska.

Building a database on S3. In SIGMOD, pages 251–264,

2008.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A

Distributed Storage System for Structured Data. In OSDI,

pages

205–218, 2006.

[9] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C.

Welton.

Mad skills: New analysis practices for big data. PVLDB,

2(2):1481–1492, 2009.

[10] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A.

Silberstein,

P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R.

Yerneni.

PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB

Endow.,

1(2):1277–1288, 2008.

[11] C. Curino, E. Jones, Y. Zhang, E. Wu, and S. Madden.

Relational

Cloud: The Case for a Database Service. Technical Report

2010-14,

CSAIL, MIT, 2010. http://hdl.handle.net/1721.1/52606.

[12] S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi.

ElasTraS: An

Elastic, Scalable, and Self Managing Transactional Database

for the

Cloud. Technical Report 2010-04, CS, UCSB, 2010.

[13] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: An

Elastic

Transactional Data Store in the Cloud. In USENIX HotCloud,

2009.

[14] S. Das, D. Agrawal, and A. El Abbadi. G-Store: A

Scalable Data

Store for Transactional Multi key Access in the Cloud. In

ACM

SOCC, 2010.

[15] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.

Live Database

Migration for Elasticity in a Multitenant Database for Cloud

Platforms. Technical Report 2010-09, CS, UCSB, 2010.

[16] S. Das, Y. Sismanis, K. Beyer, R. Gemulla, P. Haas, and

J. McPherson. Ricardo: Integrating R and Hadoop. In

SIGMOD,

2704

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121082

