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Abstract  
 

A large volume of data is generated by many 

applications which cannot be managed by traditional 

relational database management system. As 

organizations use larger and larger data warehouses 

for ever increasing data processing need, the 

performance requirements continue to outpace the 

capabilities of the traditional approaches. The cloud 

based approach offers a means for meeting the 

performance and scalability points of the enterprise 

data management providing agility to the database 

management infrastructure. As with other cloud 

environments, data management in the cloud benefits 

end users by offering a pay-as-you-go (or utility based) 

model and adaptable resource requirements that free 

up enterprises from the need to purchase traditional 

hardware and to go through extensive procurement 

process frequently. The data management, integration 

and analytics can be offloaded to public and/or private 

clouds. By using public cloud, enterprises can get 

processing power and infrastructure as needed, 

whereas with public cloud enterprises can improve the 

utilization of the existing infrastructure. By using cloud 

computing, enterprises can effectively handle the wide 

ranging database requirements with minimum effort, 

thus allowing them to focus on the core work rather 

than getting bogged down with infrastructure. Despite 

all these benefits, decision to move from dedicated 

infrastructure to the cloud based Data processing 

depends on several logistics and operational factors 

such as security, privacy, availability etc 

1. Introduction  
Many industries such as telecom, retail, health care, etc. 

generate large amount of data. Querying and analysing such 

massive data for business is becoming the need of the hour. 

Traditionally, data warehouses have been used to manage the 

large amount of data. The warehouses and solutions can 

perform analytics on big volume once in days or one can 

perform transactions on small amounts of data being 

produced by industries is very large, for example, the Indian 

telecom generates more than 1 terabyte of call detail 

records(CDR’s) daily. This large data is known as BIG 

DATA and it exceeds the processing capacity of conventional 

database systems. For such large data, warehouses are not 

practical and their infrastructure is costly and the analytics of 

data is slow.To overcome the shortcomings of traditional  

 

 

warehouses and systems, clouds are used. They are cheap and 

allow businesses to off-load computing tasks while saving IT 

costs and resources. The cloud providers have no intervention 

and provide self- service. The clients/businesses have to pay 

just for their usage. As the cloud resources are shared by 

many users/clients, cost of computing is very low 

comparatively.This report outlines the challenges in analysing 

big data for both, data at rest and data in motion. For big data 

at rest there are two systems: 
1. No SQL for interactive data serving environment  

2. System for large scale analytics based on Map 

Reduce Paradigms such as Hadoop. 

For big data in motion, the report presents use-cases and 

illustrative algorithms of data stream management system 

(DSMS). 

This report talks about the following topics: 

1. Cloud data management: cloud computing can be 

used for performing massive scale data analytics in 

a cost effective and scalable manner. In this section 

we discuss the interplay of cloud computing and 

data management; and the factors one should 

consider while moving from a dedicated data 

management infrastructure to a cloud based 

infrastructure. 

2. No SQL: It encompasses a number of techniques 

for processing massive data in distributed manner. 

Currently it is used for all the alternative data 

management technologies which are used for 

solving the problems for which relational databases 

are a bad fit. It enables efficient capture, storage, 

search, sharing, analytics, and visualization of the 

massive scale data. 

3. Hadoop MapReduce: It is used for writing 

applications processing vast amount of data in 

parallel on large clusters of machines in a fault-

tolerant manner. This framework involves writing 

two user defined generic functions: map and 

reduce. 

4. Data Stream Management System: Data Stream 

Management Systems (DSMSs) allow user to 

analyze the data-in-motion. This analysis is done in 

real-time thereby allowing users to trigger 

important events to enable enterprises to perform 

actions just-in-time yielding better results for the 

businesses. 
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5. Querying data over cloud: Various high level 

query languages have been developed so that one 

can avoid writing low level MapReduce programs. 

Queries written in these languages are in turn 

translated into equivalent MapReduce jobs by the 

compiler and these jobs are then consequently 

executed on Hadoop. Three of these languages 

Hive, Jaql and Pig. 

6. Data Management Applications Over Cloud: In 

this section, we consider three example applications 

where large scale data management over cloud is 

used. These are specific use-case examples in 

telecom, finance, and sensors domains. 

6.1 Dashboard for CDR Processing 

6.2 Credit Card Fraud Detection 

6.3 Spatio-temporal Data Processing 

 

This report also talks about big data processing that involves 

interactive processing and decision support processing of 

data at rest and real time processing of data in motion. 

 

2. CLOUD DATA MANAGEMENT 
Cloud computing is the use of computing resources (hardware 

and software) that are delivered as a service over a network 

(typically the Internet). The name comes from the common 

use of a cloud-shaped symbol as an abstraction for the 

complex infrastructure it contains in system diagrams. Cloud 

computing entrusts remote services with a user's data, 

software and computation.Cloud computing performs large 

scale analytics in a cost effective manner. Big data cannot be 

managed by traditional warehouses or database systems, but 

it can be managed effectively by cloud. The users don’t need 

to purchase additional hardware as they can pay the cloud 

providers according to their usage. The data management, 

integration and analytics can be offloaded to public or/and 

private clouds. With private cloud usage , businesses can 

improve the utilization of existing infrastructure with public 

cloud usage  , businesses can get processing power and 

infrastructure as needed. By using cloud computing , 

businesses can concentrate on their core work and 

enhancement rather than face data analytics problems. 

There are few factors to be taken care of: 

1. AVAILABILITY GUARANTEES : Out of  real 

time transactional data & analytics infrastructure , 

one may be willing to put its analytics infrastructure 

over the cloud . hence, each cloud computing 

provider can ensure a certain amount of availability 

guarantees. 

2. RELIABILTY: One must ensure the cloud’s 

reliability  for  providing services before loading it 

with data. 

3. SECURITY: For organisations with confidential 

information , the cloud must be secure and 

password enabled. 

4. MAINTAINABILITY: One must make sure that 

maintenance operations and data organisation 

facilities are provided by the cloud. 

 

3.Techniques Used 
3.1 No SQL 

NoSQL consists of a no. of techniques used for processing 

massive data in distributed manner, which includes efficient 

capture, storage, search, sharing, analytics and visualization 

of the massive scale data. Relational databases are not 

designed for distributed horizontal scaling, therefore the main 

reason for using NoSQL is the scalability issues. Thus, we 

use two technologies for meeting scalability requirements:- 

1. Replication: In replication, we use a master slave 

architecture wherein reads can be performed at any 

of the replicated slave, whereas writes are 

performed at the master. 

2. Sharding: Sharding also known as partitioning 

requires the application to be partitioned first, 

defeating the very purpose of relational databases. 

3.1.1 Characteristics of No SQL databases 

A very important difference between the traditional databases 

and NoSQL databases is that the latter does not support 

updates and deletes. The reason behind this is that most of the 

applications do not need these operations rather they maintain 

different versions of the same data. Some of the examples are 

CDR’s (call detail records), human resource databases etc. 

These operations are handled using insertion with version 

control. Relational databases provide ACID(atomicity, 

consistency, integrity and durability) properties. 

 Since atomicity of over more than one record is not 

required in most of the cases, therefore single key 

atomicity is provided by No SQL databases. 

 Consistency can be ensured using eventual 

consistency where reconciliation happens 

asynchronously to have eventually consistent 

database.  

 Durability is ensured in both the traditional and No 

SQL databases but the traditional databases uses 

expansive hardware whereas No SQL databases 

provide that with cluster of disks with replication 

and other fault tolerance mechanism. 

Alternatives of ACID 

BASE (basic availability soft state and eventual consistent)If 

one nees to scale up for processing massive amount of data 

the he/she has to go for BASE. 

No SQL data models 

No SQL databases are flexible, they can support various types 

of data models. No SQL databases support key value pairs, 

hierarchical data, geo-spatial data, graph data, etc., using a 

simple model. We describe the three data models used in No 

SQL: 

1.   Key value stores: In a key-value read and write   

operations to a data item are uniquely identified by its key. 

Amazon dynamo is an example of key-value store in which 

values are opaque to the system. It provides incremental 

scalability; hence keys are partitioned dynamically using a 

hash function to distribute data over a set of machines or 

nodes. Each node knows about its peers which in turn allow 

any node to forward a key’s read or write operation to the 

correct set of nodes. These operations are performed on a 

number of nodes to handle data durability and availability. 
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2.   Document stores : In document stores, value associated 

with the key is a document which is not opaque to the 

database; hence, it can be queried. Amazon’s simple DB[30], 

Mongo DB[32] and apache’s couch DB[31] are some 

examples of No SQL databases using this model. 

3.  Column family stores: In this model, data is organized 

into tables. Each record is identified by a row-key. Each row 

has a number of columns which are organized into column-

families. It supports transactions only under a single row key. 

Data is partitioned by sorting row-keys lexicographically. Big 

Table can serve data from disk as well as memory. Data is 

organized into table which are characterised by their start-key 

and end-key. Meta-data are maintained to locate tablet-server 

for a particular key. 

3.2 Hadoop 

Hadoop is a generic framework to write massive scale data 

application which involves writing two user defined generic 

functions: 

Map 
 In the map step, a master node takes the input data 

and the processing problem, divides it further into smaller 

data chunks and sub-problems; and then distributes them to 

worker nodes, which then  processes one or more chunks 

using the sub-problem assigned to it. Specifically, each map 

process, takes a set of {key, value} pairs and generates one or 

more intermediate{key, value} pairs for each input key.   

Reduce 
In the reduce step, intermediate key-value pairs are processed 

to produce the output of the input problem. Each reduce 

instance takes a key and an array of values as input and 

produces output after processing the array of values: 

 

            Map(k1,v1) • list(k2,v2) 

            Reduce(k2, list(v2)) • list(v3) 

Example of a  MapReduce implementation for a scenario 

where one  wants to find the list of customers having total 

transaction value more than $1000:  

 

void map(String rowId, String row):  

 // rowId: row name  

 // row: a transaction recode  

customerId= extract customer-id from row  

transactionValue= extract transaction value from row  

EmitIntermediate(customerId, transactionValue);  

void reduce(String customerId, Iterator partialValues):  

 // customerId: Id to identify a customer  

 // partialValues: a list of transaction values  

 int sum = 0;  

 for each pv in partialValues:  

 sum += pv;  

 if(pv > 1000)  

 Emit(cutsomerId, sum); 

  

 

3.2.1 Hadoop 

Hadoop is the most popular open source implementation of 

MapReduce framework Which is used for writing 

applications processing vast amount of data in parallel on 

large clusters of machines in a fault-tolerant manner. 

Machines can be added and removed from the clusters as and 

when required.  In Hadoop, data is stored on Hadoop 

Distributed File System (HDFS) which is a massively 

distributed file system designed to run on cheap commodity 

hardware.  

 

Steps: 

1.Each file is broken into a number of blocks and these blocks 

are then parsed by user-defined code into {key, value} pairs 

to be read by map functions. 

 

2. The map functions are executed on distributed machines to 

generate output {key, value} pairs which are written on their 

respective local disks. 

 

3. Each reduce function uses HTTP GET method to pull {key, 

value} pairs corresponding to its allocated key space. 

 

4. A reduce instance processes the key and array to get the 

desired output. 

 

Architecture  

HDFS follows master-slave architecture. An HDFS cluster 

has a single master called name node and a number of slave 

nodes. The name node manages the file system name space.It 

divides the file into blocks, and replicates them to different 

machines. Slaves, also called data nodes, manage the storage 

corresponding to that node. Fault tolerance is achieved by 

replicating data blocks over a number of nodes. The master 

node monitors progress of data processing slave nodes and in 

case it fails or it is slow, reassigns the corresponding data-

block  processing to another slave node. In Hadoop, 

applications can be written as a series of MapReduce tasks 

also.  

 

4. DATA STREAM MANAGEMENT SYSTEM (DSMS) 

DSMS is for analysis of ‘data in motion’. In contrast to 

conventional databases, the analysis is done in real-time and 

actions are performed ‘just in time’. These systems can 

perform stream operations and these systems can be thought 

of as a series of connected operators. Source operators are 

source tuples. Intermediate operators perform operations such 

as join etc. sink operators have the output. 

                

 Various stream processing systems 

VARIOUS STREAM PROCESSING SYSTEMS INCLUDE: 

IBM’s infosphere, twitter’s storm and yahoo’s s4. 

1. IBM’s infosphere is a component based distributed 

stream processing platform. It supports higher data 

rates and various input types and provides load 

balancing and scheduling. 

2. Twitter’s storm provides a general framework for 

batch operations just like hadoop. Spouts are 

entities that handle the insertion of data types into 

the topology and bolts are entities that perform 

operations. Spouts and bolts are programmed using 

programming languages. Spouts and bolts are 

connected by stream to form a directed graph. 

Storm also provides fault tolerance. 

3. In S4 terminology, the basic computation unit is 

processing element (PE) and processing nodes 

2702

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121082



  

  

 

 

  
 

(PN’s) are logical hosts for PE’s. Each stream is 

described as a sequence of events having pairs of 

keys and attributes. Each PE consumes exactly 

those events which correspond to the value on 

which it is keyed. 

 

4.1 Quering Data Over The Cloud 

As discussed earlier, processing data in hadoop requires 

programming MapReduce using programming languages like 

python, JAVA, etc. This has many problems as it is time 

consuming, highly skilled developers are required, proper 

scheduling required and that all reducers should have equal 

distribution of data to process.To overcome these problems 

‘high- level query languages’ have been developed. For 

example: SQL. 

 Three high-level query languages are: 

 

1. HIVE: developed by Facebook.All the features of 

Hive are very SQL-like so the effort to learn and 

use Hive is minimal. Like SQL, table schema has to 

be provided and data has to be filled in. Table can 

be partitioned on a set of attributes and these 

partitions make data fetching easier.Hive has the 

same operations as SQL such as join, group by etc. 

2. PIG: it is a high level scripting language developed 

by Yahoo. It follows the declarative style of SQL  

and low level procedural style of MapReduce. 

There is step-wise transformation and the 

transformation carried out in each step is fairly 

high-level e.g., filtering, aggregation etc., similar to 

as in SQL. The program written in Pig is parsed and 

a directed acyclic graph is made with all the 

necessary optimizations to be performed at this 

stage. This plan is compiled and then optimized by 

the MapReduce optimizer and then it is sent to the 

to Hadoop job manager for execution. Unlike Hive, 

schemas here are optional. Pig supports complex 

and non-atomic data types such as map and tuple as 

fields of a table. Pig provides debugging 

environment.  

3. JAQL: Jaql is a functional data query language, 

designed by IBM and is built upon JavaScript 

Object Notation (JSON) [8] data model. Jaql is a 

general purpose data-flow language that 

manipulates semi-structured information in the 

form of abstract JSON values. Jaql provides easy 

migration between different languages like 

javasrcipt and python. Supports atomic values such 

as numbers and strings. Jaql also provides a user 

with the capability of developing modules, a 

concept similar to Java packages. A set of related 

functions can be bunched together to form a 

module. A Jaql script can import a module and can 

use the functions provided by the module. 

 

Querying streaming data : 

There are two languages for this:  

Continuous Query language: CQL is an SQL based 

declarative language for continuously querying streaming and 

dynamic data.CQL semantics is based on three classes of 

operator:  

1. Stream-to-Relation, relation-to-relation, and 

relation-to-stream. In stream-to-relation operators, 

CQL has three classes of sliding window operators: 

time-based, tuple-based, and partitioned. In the first 

two window operators, window size is specified 

using a time-interval T and the number of tuples N, 

respectively. The partitioned window operator is 

similar to SQL group-by which groups N tuples 

using specified attributes as keys.  

2. Relation-to-Relation operators are derived from 

traditional relational queries. CQL has three 

relation-to-stream operators: Istream, Dstream and 

Rstream. Applying an Istream/ Dstream 

(insert/delete stream) operator to a relation R results 

in a stream of tuples inserted/deleted into/from the 

relation R. The Rstream (relation steam) generates a 

stream element <s,τ> whenever tuple s is in relation 

R at time τ. It should be noted that there are no 

stream-to-stream operators in CQL. 

The continuous query is compiled using query plan and added 

to other queries. Each query plan runs continuously with three 

types of components: operators, queues, and synopses. Each 

operator reads from input queues, processes the input based 

on its semantics, and writes output to output queues.                              

Synopses store the intermediate stage needed by continuous 

query plans. 

 

Stream Processing Language: 

structured application development language to build 

applications over Info Sphere streams. It supports structured 

as well as unstructured data stream processing. It provides a 

toolkit of operators using which one can implement any 

relational query with window extensions. Among operators: 

 functor 

is used for performing tuple level operations such as filtering, 

projection, attribute creation, etc.; 

 aggregate 

 is used for grouping and summarization;  

 join 

 is used for correlating two streams;  

 barrier 

 is used for consuming tuples from multiple streams and 

outputting a tuple in a particular order; 

 punctor 

 is also for tuple level manipulations where conditions on  

current and past tuples are evaluated for generating 

punctuations in the output stream;  

 split 

 is used for routing tuples to multiple output streams; and  

 delay  

operator is used for delaying a stream based on a user-

supplied time interval. Besides these System-S also has edge 

adaptors and user defined operators. 

 source  

adaptor is used for creating stream from an external source. 

This adaptor is capable of parsing, tuple creation, and 

interacting with diverse external devices. 
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 sink  

 adaptor can be used to write tuples into a file or a 

network. It supports three types of windowing: 

tumbling window, sliding window, and 

punctuation-based window. 

 

5.  Conclusion 

 

1. The increasing amount of data led to the different 

technologies such as NoSQL, Hadoop, Streaming 

data processing; Pig, Jaql, Hive, CQL, SPL for 

querying And distributed processing.  

2. There are various advantages in moving to cloud 

resources from dedicated resources for data 

management.  

3. But some of the enterprises and governments are 

still skeptical about moving to cloud. More work is 

required for cloud security, privacy and isolation 

areas to alleviate these fears.  

4. For given cloud resources one needs to associate 

required resources for both the modules (bulk and 

stream data processing) so that the whole system 

can provide the required response time with 

sufficient accuracy. More research is required for 

facilitating such systems. 
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