
Code Generation for Verified Model based

Embedded Systems

Pravin Y. Karmore

Research Scholar

RTM Nagpur University

Nagpur, INDIA

Pradeep K. Butey
Dept. of Computer Science

Kamla Nehru College

Nagpur, INDIA

Abstract— Verification of requirements in the early stages of

system development reduces the cost of testing the system. In

this paper we analyses the different approaches for verification

of model based embedded system requirements. Various

modeling languages have their own tools for the development

and code generation. The selection of proper tool in the design

stage of embedded system, developer can understand the

requirements of hardware and software to build the system.

Verification and code generation will be more helpful for the

development of safety-critical embedded systems. Modeling

languages can be used to develop reliable embedded software

code. However, verified generated code usability depends on

embedded software developers.

Keywords— Embedded System, Model based designing,

Verification and code generation.

I. INTRODUCTION
A big challenge for embedded software engineering is to

address this growing variety and complexity of the software
in the embedded system and ensure sufficient product quality.
In order to achieve this, structured embedded software
engineering and automation are inevitable [4]. An embedded
system is a specifically designed computing device which is
used inside of a device. For example, an embedded system in
a microwave oven accepts user input from the panel, manages
the LCD display, and controls the heating elements of
microwave. Embedded systems generally use
microprocessors that contain many functions of a computer
on a single device (i.e. System-on-chip). Embedded software
is often integrated in highly complex devices. Medical device
software, automotive software, avionics software, military
software and railway software are all used to control devices
on which people's lives depend. A fault in that software may
not just be inconvenient, it could be disastrous. The many of
embedded software developers uses traditional programming
languages such as C and C++. It uses inbuilt processes and
techniques in the language to improve reliability and reduce
security flaws. However, the verified code generation with
model based architecture (MBA) [4] approach met with
increasing success. Modeling has a major role during
embedded software development. In runtime, software
requirement specifications are implemented by expected
behaviors, and the software components of software could be
specify as component mode. Application logical design is
separated from software implementation with MBA. Unified
Modeling Language (UML) as a key MBD approach is
widely used to model software architecture, component,
object, and relationships among them. Some non-functional
properties of embedded software are real-time, reliability and

safety were described by UML. Embedded software
development methodologies historically have amended to
concentrate on tools that support the embedded software
developer with system configuration, integration, and
particularly testing. In this paper, we try to illustrate the use
of modeling languages for verified code development for
embedded systems. Models must be articulated in a modeling
language with a properly defined grammar and semantics
accomplish by expressing both static structure and dynamic
behavior at an abstract level removed from the programming
domain [11]. Through the Unified Modeling Language
(UML) and the Systems Modeling Language (SysML)
[1],[3],[7] provides a set of diagrams with semantic meaning
that enable users to communicate the structure and behavior
of a design.

II. BACKGROUND

A. Embedded System

An embedded system is a specialized microcontroller

based computing device used as a part of another system or

machine. Normally, an embedded system is built on a single

microprocessor board with the software stored in ROM.

Some common examples of applications of embedded

systems are telecommunications, automobiles, consumer

electronics, and plant control. Even though the application

domains are dissimilar from each other, they have universal

organization in functional configuration. A layered embedded

system structure, including application programming

interfaces, hardware-dependent software, application

software, and hardware platform is shown in Fig. 1 [5][6].

Application program interfaces are essential for

communication between the hardware-dependent software

(System Software) and the application layer of software

(Application programs). The hardware-dependent software is

attached with the external physical hardware and network.

Real-time Operating System (RTOS) and device drivers are

closely attached to the hardware platform of the system.

According to an application domain, performance and size

are the constraints that usually influence the hardware

platform. As per specific application, a processor and

memory system must meet a minimum requirement.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060316
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 184

Fig.1. Architecture of an embedded system

B. Designing Embedded System

An embedded system designing includes main four steps

[7]. The basic steps are the following:

 Requirements specification

 Hardware and software partitioning

 Software design

 Hardware design

 Interface design

 System integration and test

System developers can derive required functions after

evaluating system requirements. These functions are

considered for allocation of hardware or software.

Development of hardware and software is done parallel with

the interface design. After development of all required

hardware and software components, they are integrated to

build a system and go ahead for the testing of system. The

system level design steps are shown in Fig. 2.

Fig. 2. System-level design processes

III. OVERVIEW OF UML AND SYSML

The modeling using the Unified Modeling Language

(UML) and the Systems Modeling Language (SysML)

provides a rich set of diagrams with semantic meaning that

allow users to communicate the structure and behavior of a

design as well as maintain consistency across user views [8].

C. Unified Modeling Language

In software engineering, the Unified Modeling Language

(UML) [1] has become more popular and widely used as a

visual modeling language since 1997. Fig. 3 depicts the

different types of diagrams available with the latest version of

UML. The latest version of UML allows the system

developer to create 14 types of diagrams. It is divided into

two main categories: structure diagram and behaviour

diagram.

Fig.3. The latest version of UML allows 14 types of diagrams

The structural information category has seven diagram

types such as profile, class, composite structure, component,

deployment, object and package. The second category is for

general types of behavior and used to create activity,

interaction, use case and state machine diagrams. Further,

interaction category has sequence, communication,

interaction overview and timing diagrams.

D. Systems Modeling Language

For additional system-engineering concepts in other

modeling tools ranging from Visio to Verilog used to model

and then integrated them. This will difficult in integrating as

per different viewpoints and obtaining traceability, therefore

the Object Management Group (OMG) decided to design

UML for systems engineering. In the year 2003, a customized

version of UML suitable for systems engineering to be

specially made by the OMG's System Engineering Domain

Special Interest Group (SE DSIG) for systems engineering

was intended to support modeling of a broad range of

systems, which may include data, hardware, software,

procedures, personnel, and facilities. As a result of this, a

consortium called SysML Partners proposed the Systems

Modeling Language (SysML) [3]. Initially, many new

diagrams were considered, but finally just two diagrams the

Requirements Diagram and the Parametric Equations

Diagram were considered.

1) Requirements Diagrams

The Requirements Diagram has an underlying requirements

model. SysML states: "The requirements model illustrates the

SysML support for describing textual necessities and

concerning them to the specification models, analysis models,

and design models. A requirement represents the behavior,

structure, and/or properties that a system, component, or

other model components must satisfy.” [9]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060316
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 185

2) Parametric Equations Diagrams

Parametric Equations Diagrams are usually used to model

properties and their relationships. The diagrams specify the

allowable range values for complex mathematical and logical

expressions as well as constraints. Generally a reference to

the language is used to state the expressions and constraints.

Fig. 4. Requirements diagram for vehicle

The parametric model can include logical expressions,

differential equations such as {when Y=7 or X<1}, or other

constraints such as {Y< 3x+7}, expressed in a specific

language, such as MathML or a programming language.

Generally, parametric models are captured in analysis models

to support performance models; feedback and control; and

engineering models for safety, reliability, mass properties,

and design to cost [9]. The SysML specification of a

simplified model of the antilock braking system in the Car is

shown in Fig. 6.

Fig. 5. Parametric equations diagram for weapon and firing

IV. MODEL BASED DESIGN

Model based design (MBD) is based on the efficient use of

models as a primary objective throughout the software

engineering life cycle. The main objective of MBD is to

provide a central role to functional models in the

specification, design, integration, and validation of software.

Model driven development uses models to represent a

system’s elements, the structural relationships between them

and their dynamic interactions and behavior. Modeling

structural relationship supports design exploration and system

partitioning. The modeling behavior and interactions are

required to verify designs by verifying models and for code

generation. But many embedded software developers hesitate

to accept the generated code. The rejection of code by

developers means loss of MBD advantages. Use of the MBD

approach means accepting automatic code generation from

models. A properly defined grammar and semantics models is

capable of expressing both static structure and dynamic

behavior. Such type of models at an abstract level

differentiated from the programming domain must be

articulated in a modeling language. These languages divided

into two groups:

A. Vendor-specific language – It is developed and promoted

by a specific vendor of an MBD platform such as Esterel

from Esterel Technologies, MatLab and Simulink from

MathWorks, and the ASD language used in Verum Software

Technologies’ Analytical Software Design (ASD): Suite [10]

(see Fig. 7 below). ASD Suite allows the system developer

to create an initial set of requirements. There is no

requirement of coding, testing, and refining each component

in separate steps. In view of this, the modeling tool identifies

both the external and internal performance of the elements

using its two basic model types: interface models and design

models.

 Fig. 6. SysML specifications for antilock breaking system in the Car

B. Standardized languages – A group of interested industry

users and MBD platform vendors defined languages, which

are most commonly based on the Unified Modeling Language

(UML).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060316
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 186

Fig. 7. ASD: Suit Model Driven Design [10]

II. TEST DRIVEN DEVELOPMENT

Test driven development (TDD) provides various

advantages over the traditional software development/test

cycle. The test driven development using modeling provides

the developer to create an initial set of requirements. In TDD,

a developer finds out ways to build the system testable,

designs as per the specifications, writes tests and builds,

testing strategies, and then writes the functional code to meet

the specified requirements of the test-spawned design [12]

[13].

Advantages of TDD in embedded software:

1. The code is always tested. Testing drives the design of

the code. The code is improved because of the

decoupling required to create testable code.

2. The system grows organically as more knowledge of the

system is gained. The tests are "living" documentation,

because the knowledge is gained in tests.

3. The developers can alter existing code or add new

features with confidence because automated regression

testing will reveal failures and unexpected results.

4. Because of the inconsistency of hardware and software

during development, bugs are due to software, hardware,

or a combination of the two.

5. The software bugs can be removed to such an extent that

it becomes easier to locate, by method of elimination, the

cause of the unexpected system.

V. VERIFICATION OF MODEL DRIVEN DESIGN

Using MBD, we can eliminate specification and design

errors early in the development cycle where they are cheapest

and easiest to rectify. It helps to increase the degree of

automation that can be applied to the development process by

means of automatic verified code generation. The test driven

development of MBD facilitate parallel hardware/software

design by enabling system models to be verified using a

simulated execution mechanism on development hosts before

the target system is available (see Fig. 8) [13]. Such a

development reduces the required testing effort by applying

automated formal verification methods to the functional

models in collaboration with simulating execution behavior

instead of relying solely on testing the implemented program

code [12].

A. Executable models

The MBD leads to design system rigorous and precise

enough to allow for verified code generation, in addition,

executable models can be executed on the development

system by means of simulation very early in the development

life cycle. Executable model provides the rapid and early

feedback on specifications and requirements that are verified

with the actual requirements of the system. It allows

functional verification to perform on the development host

design without accessing software running on the target

machine. This is very important in case of parallel

development of hardware and software development. There

are two popular platforms are available, IBM’s Rational

Rhapsody and Graphics Bridge Point. Both use UML-based

modeling languages. The model can be “generated” into code

for the model-based design which would run on an embedded

target. Using the high end tools, such as IBM Rational

Rhapsody, the structure and behavior of the complete model-

driven design can be automatically created (see Fig. 9). The

model execution with Rational Rhapsody enables early

design validation when bugs are less costly to fix.

B. Scalability

The symbolical testing in early design phase examines the

overall state space of an embedded software design to

identify whether or not the particular properties hold under all

possible inputs. There are different approaches to for

different model driven design platforms. Some MBD

platforms limit the class of designs that can be verified. For

example, SCADE Suite of Esterel Technologies deals with

synchronous, deterministic designs. A compositional

verification approach by ASD of Verum Software

Technologies provides verification of entire system

component by component to prove the properties still hold

when the components are integrated to form the complete

system (see Fig. 9). Using this approach completely

concurrent and asynchronous design was properly tested for

compliance with the specified properties. It also describes the

absence of typical asynchronous and concurrent design bugs

such as race conditions, live locks and deadlocks. Simulation

and testing are normally useless at reducing such errors.

Fig. 8. Model based testing of embedded system components

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060316
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 187

Fig. 9. Model execution with IBM Rational Rhapsody

The MBD platforms widely used in the safety, security

and mission-critical domains such as rail transportation,

aerospace, automotive and military applications is gradually

increasing. If an MBD platform is used with sufficient

verification and testing facilities on design models, the unit

testing requirement can be reduced. The MBD standards

differentiate between the operational embedded software

changed as part of the system from the modeling tools used to

build that software. The different standards for safety-critical

embedded software often needs the tool users to carry out an

evaluation of the tool to classify it according to whether or

not the tool itself can introduce errors into the operational

embedded software and to perform an evaluation of the tool

against the appropriate criteria for safe and secure use.

VI. CONCLUSION

Model driven design is an important system development

technique worth considering for embedded systems that have

safety, security, and/or reliability requirements. The

consideration of the most appropriate MBD platform for a

particular component and for the overall system requires that

developers understand the major technical advantages and

disadvantages of available tools. The verified code generation

for embedded system using modeling languages is more

efficient to reduce cost of testing. Verification early in the

design phase ensures that the software uses the full capability

of the hardware and thus avoids the redesign of hardware.

The requirements verification approach to model based

design of embedded system has potential development cost

and time efficiencies and ability to reduce the occurrence of

software design flaws. The development of universal tool that

can be used to model and generate verified software code for

all the needs of embedded system development is the future

work. The care should be taken while selecting the tool for

the designing of such a system. In general, test driven models

that are developed using modeling language tools works as a

right path for the specified target.

REFRENCES

[1] Object Management Group. OMG Unified Modeling Language (OMG

UML), Infrastructure, Version 2.4.1; August 2011.www.sysml.org.
[2] Michael J. Karlesky, William I. Bereza, and Carl B. Erickson, Effective

Test Driven Development for Embedded Software, Ph.D. Thesis.

[3] SysML Object Management Group (OMG), 2003. UMLTM for
Systems Engineering Request For Proposal OMG Document: ad/03-03-

41.

[4] Pravin Karmore and Pradeep Butey, Analysis of Model-based Testing
Methodology for Embedded Systems, International Journal of

Advanced Research in Computer Science and Software Engineering,

Volume 6, Issue 5, P.P 308-314, May 2016.
[5] Alberto Sangiovanni-Vincentelli and Grant Martin, “Platform-Based

Design and Software Design Methodology for Embedded Systems,”

IEEE Design & Test of Computers, November-December, 2001, pp.23-
33.

[6] M. Sgroi, L. Lavagno, and A. SangiovanniVincentelli, “Formal Models

for Embedded Systems Design,” IEEE Design & Test of Computers,

April-June, 2000, pp.2-15.

[7] Byeongdo Kang, Young-Jik Kwon, Roger Y. Lee, “A Design and Test

Technique for Embedded Software”, Proceedings of the 2005 Third
ACIS IEEE Int'l Conference on Software Engineering Research,

Management and Applications (SERA’05), 2005.

[8] Matthew Hause, Francis Thom, and Alan Moore, “An overview of
Systems Modeling Language”, December 2005.

[9] Mellor SJ, Balcer MJ. Executable UML, A Foundation for Model-

Driven Architecture. Reading, MA, Addison-Wesley; 2002.
[10] Guy Broadfoot,Using model-driven development to reduce system

software security vulnerabilities, Verum Software Technologies, March

2014.
[11] Padma Iyenghar, ElkePulvermueller and Clemens Westerkamp,

“Towards Model-Based Test Automation for Embedded Systems Using

UML and UTP”, IEEE, ITFA, 2011.
[12] Deepak A. Mathaikutty, SumitAhuja and AjitDingankar, “Model-

driven Test Generation for System Level Validation”. IEEE, 1-4244-

1480, 2007.

[13] David Astels, Test Driven Development: A Practical Guide, Upper

Saddle River, NJ: Prentice Hall PTR, 2003.

Authors Profile

 Pravin Y. Karmore pursuing Ph.D. in Computer

Science from RTM Nagpur University, Nagpur. He is
obtained Master in Computer Applications degree from

RTM Nagpur University, Nagpur. And M.Phil. degree

in Computer Science from Alagappa University,
Karaikudi. At present he is working as Assistant

Professor at Dept. of Computer Applications, Shri

Ramdeobaba College of Engineering and Management,
Nagpur. His research area is Software Engineering, Embedded Systems and

Neural Networks.

Dr. Padeep K. Butey obtained M.Sc. degree and

PGDCS&A from RTM Nagpur University, Nagpur.
He obtained his Ph.D. degree in Computer Science

from RTM Nagpur University, Nagpur. Now he is

working as Associate Professor and Head at Dept. of
Computer Science, Kamla Nehru College, Nagpur. He

has published more than 35 research papers in various

national and international conferences and journals.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060316
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 188

