
Code Instrumentation using Dynamic Program

Analysis Tools

Mr. D. S. Panchal
Department of CS & IT,

Dr. B.A.M.U. Aurangabad

Aurangabad, India.

Dr. S. N. Deshmukh

Department of CS & IT,

Dr. B.A.M.U. Aurangabad

Aurangabad, India.

Abstract— in this paper we have studied and analyzed different

dynamic analysis tools and code slicing techniques.

1) Dynamic program analysis tool is a tool used to analyze the

program at program execution time. Code Instrumentation using

dynamic program analysis tool means inserting extra code into

the executed program to collect runtime information or code

within a tool which is able to handle the program at program

execution time.

2) Program Slicing is an effective for narrowing the focus of

attention to the relevant parts of a program during the process of

debugging. The two known program slicing methodologies are

static and dynamic slicing.

 This Paper criticizes the above tools.

Keywords— Instrumentation; analysis; Executable; Code;

slicing; Static; Dynamic; variable;

I. INTRODUCTION

A. Code Instrumentation:

Code Instrumentation is a technique to insert the extra code

into already developed application executables with the help of

program analysis tool known as dynamic program analysis tool

i.e. Pin Tool. Pin tool is developed with the help of a

framework known as pin. This pin framework provides an API

for supporting pin tool development which is created by Intel.

With the help of pin tool user can check memory leakages, find

programming faults, reduce the extra code redundancy. When

you run program within a pin tool, it will stop the program

execution at first instruction of the executable and generates

("compiles") new code for the straight line code sequence

starting at this instruction. It then transfers control to the

generated sequence. The generated code sequence is almost

identical to the original one, but Pin ensures that it regains

control when a branch exits the sequence. After regaining

control, Pin generates more code for the branch target and

continues execution Reference number as in [1]. Pin makes this

efficient by keeping all of the generated code in memory so it

can be reused and directly branching from one sequence to

another. Pin can be used to insert C/C++ any code in any

places into the executable dynamically. You can either start

new process directly from pin tool or attach and detach to an

already running process Reference number as in [1]. Like a

debugger, Pin can attach to a process, instrument it, collect

profiles, and eventually detach. The applications only enter

instrumentation overhead during the period that Pin is attached.

The ability to attach and detach is a necessity for the

instrumentation of large, long-running applications. When

developing the pin tool you are actually telling pin how to

generate the code from the main executable. It allows tool

developer to analyze an application at the program instruction

level without any detail information about the underlying

instruction set. Pin API is designed as architecture and

operating system independent means making source

compatible on different architecture and operating system. It

supports Linux and Windows executables for IA-32, Intel(R)

64, and IA-64 architectures. As per the need pin tool can access

architecture specific details. Pin provides efficient

instrumentation by using a just-in-time (JIT) compiler to insert

and optimize code. In addition to some standard techniques for

dynamic instrumentation systems including code caching and

trace linking, Pin uses different techniques like in lining,

register re-allocation, run time analysis and instruction

scheduling to use instrumentation Reference number as in [2].

Program analysis can be used to find and to detect source code

like program testing, program monitored during bugs are

found. Dynamic analysis is also used for profiling the program,

understanding the program and studies the programming

patterns. A user may write instrumentation tools using an API

that is rich enough to allow many plug-INS to be source

compatible for all the supported instruction sets. Pin allows a

tool to insert function calls at any point in the program. It

automatically saves and restores registers so the inserted call

does not overwrite application registers.

B. Program Slicing:

Program slicing is an effective for narrowing the focus of

attention to the relevant parts of a program during the process

of debugging. The two known program slicing methodologies

are static program slicing and dynamic slicing. The inaccuracy

is a problem in static slices since they consider all execution

that reach the slicing criteria point rather than a fixed execution

under which the program is being debugged. Dynamic slicing

is precise but expensive due to runtime overhead.

 For example, in C programs that make extensive use

of pointers, the traditional nature of static data dependency

analysis leads to highly inaccurate and considerably larger

program slices. Since the main aim of slicing is to identify the

subset of program statement that are of interest for a given

purpose, the traditional computed, large slices are clearly

undesirable. Recognizing the need for accurate slicing, korel

207

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

and Laski suggested the idea of dynamic slicing. Dynamic

program slices are constructed upon users input. It has been

shown that the dynamic slices can be considerably smaller than

static slices. The importance of slicing extends well

beyond debugging of programs. Increasingly applications

aimed at improving software quality, reliability, security and

performance are becoming candidates for making use of

dynamic slicing. Examples of these applications include:

detecting spyware that has been installed on systems without

the user knowledge, carrying out dependence based software

testing, and measuring module structure for the purpose of

code restructuring, extracting business logic and business rules

from legacy code.

 Program slices have been suggested and used in

separating business logic from the remaining code and in

identifying business rules in large code base. Business rules

typically consist of calculations and the conditions/constraints

under which the calculations are done. Almost all of earlier

work applies static program slicing techniques, which often has

high inaccuracy and hence identifies large part of the code

pieces, thus necessitating the use of filtering mechanisms to

extract rules. This prompts the exploration of dynamic slicing.

 Most of the work is done in static slicing while dynamic

slicing is only in theory. Dynamic slicing was considered

costly for computation of slice but gives precise results. As

now-a-days memory is costly and processors are faster, we

focused on dynamic slicing. We aim to study various

techniques of dynamic slicing as a part of these code

instrumentation techniques:

 To decide the best techniques of dynamic slicing and

implementation, measure of this technique could be

comparison of static to dynamic slicing in terms of

i) Length of accuracy of slice

ii) Time to get slice

 Find all paths to implement this dynamic slicing

technique and compare them to get the best one.

 Given a slicing criterion to find all slices that can

affect this criterion (because lot of input variables can

point to the same output variables) reference number

as in [9].

II. DYNAMIC PROGRAM ANALYSIS

Dynamic program analysis for runtime verification can be

used for many purposes, such as security or safety policy

monitoring, debugging, testing, verification, validation,

profiling, fault protection, behavior modification (e.g.

recovery) etc. In C programming many times user defined

variables will not use on entire application code, these

variables consuming large amount of memory which are called

wastage of memory i.e. memory space having no use. effect is

memory get consumed and decrease the performance of

application program execution, at that time we require extra

memory for program execution on execution time which is not

get back from operating system after program execution and

user cannot change the executed code so we require a

technique to insert code when program is executing. For that,

user can use a technique known as Code Instrumentation using

dynamic program analysis tool and program slicing which is

able to narrowing the focus of attention to the relevant parts of

program during process of debugging. Using these techniques

we can collect runtime information of program such as unused

variables space, programming faults, logging information,

programming speed etc. And improve the performance of

entire program.

III. PROGRAM INSTRUMENTATION

Program instrumentation using dynamic program analysis

tool is used to improve the programming speed, generating

traces, finding the programming fault and resolve them, delete

unwanted source code and insert new source code into program

executables and program slicing is to identify the subset of

program statement as per the execution need, the traditional

computed, large slices are clearly undesirable. Recognizing the

need for accurate slicing, korel and Laski suggested the idea of

dynamic slicing. Dynamic program slices are constructed upon

users input. It has been shown that the dynamic slices can be

considerably smaller than static slices. By using these two

techniques we can improve whole performance of application

program without any deadlocks or obstacles by analyzing and

recording the runtime behavior of program executables.

IV. PIN TOOL

Pin tool can be used to insert C/C++ arbitrary code in

arbitrary places in the dynamically executed executable; you

can either start a new process directly from pin tool (our own

program that uses Pin framework) or attach to an already

running process. When developing the pin tool, you’re actually

telling Pin how to generate the code from the main executable:

i.e. the code addition/modification processes. When you run a

program within a pin tool, it will stop the program execution at

first instruction and modify the code generation process. Then

it will generate the code it will later execute by using one of the

following modes:

i) TRACE_AddInstrumentFunction API call.

ii) INS_AddInstrumentFunction API call.

iii) IMG_AddInstrumentFunction API call.

iv) RTN_AddInstrumentFunction API call.

1) System Design and Approach

To understand functioning of dynamic program analysis,

capture memory leakages in application program. Memory leak

occur when a program consume some memory for its execution

but unable to release it back to the main memory, A memory

leak decrease the performance of software application due to

reducing the available memory size. Due to low available

memory system program get slow down or some of the

application program get failed. The aim is to detect the

memory leakages and collect required information to fix the

memory leakage problems for efficiently and easily.

A. Memory Leak detection

Dynamic program analysis process starts by instrumenting the

binary file. This instrumentation will inject few call back

methods into the binary file. These methods will get invoked

208

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

when a particular condition is met. This instrumented binary is

executed in a test environment which monitors the program

behavior. The inputs to the Program are given at its runtime.

The program execution is follows a desired path depending on

the input given and calling the instrumented methods to

perform specified actions. This action involves writing a log

containing required information on to a file. This log is then

passed to an analyzer program which then computes and

generates a report showing the analysis results. This analyzer

contains a data structure used to store the information and

perform operations and then generate the report. The

instrumentation can also be done on source code which

requires a compilation phase to generate a binary which will be

run in test environment and program will be analyzed in the

same manner as explained above.

Fig. 1. Memory Leak Detection Process.

2) Analysis of Data to be collected

Program instrumentation should generate a log specific to the

inputs given. This log must have all the information about

memory allocation, modification and release. When a call to

free is done, we have to match the memory address with

previously allocated address therefore memory address is

needed in the log. Also, needed to calculate total amount of

memory leakage all the parameter values passed to the function

along with its return value must be logged. For the location of

defects, instrumentation should add where in the Source

program the memory call occurred. In case of binary

instrumentation, only instruction address is not sufficient as

location, therefore actual location (le-name and line no) can be

logged using the debugging information from binary.

3) Instrumentation for memory leakages.

To detect memory leak on function level for that

instrumentation is used. All the memory related functions like

malloc(), calloc(), realloc() and free() are instrumented using

the technique method wrappers. These function calls are

instrumented by registering callback methods before and after

every function call. Appropriate number of parameters is

passed to the callback methods. Also, to start instrumentation,

main () function is also wrapped. Figure 1 shows the program

flow due to instrumentation.

4) Log Analysis

To analyze the log, an allocation table is to be maintained

reflecting all details like address, size, and location about each

memory allocation. Entries are added for logs generated by

malloc() and calloc(). Entries are marked as "freed" for logs

generated by free() for matching the memory address. After

building data structures for the entire log, search for the entries

which are not marked as "freed" and declare them as memory

leaks To avoid program crash due to invalid free(), analysis of

free() should be done while instrumenting only. Statistical

analysis includes the percentage of memory allocation which

was freed during program run, total memory leakage in bytes,

distribution of memory leaks within multiple files, etc.

B. Uninitialized Variable Detection

Instrumentation should collect detailed data about each variable

which may consist of location where variable is declared,

storage type and default values, use and define points of it

along the path. In case of arrays, only variable name is not

sufficient, index is also required to be logged. For composite

variables, name of variable along with the internal name of the

field is necessary to locate the exact uninitialized variable. If a

variable is written (initialized) through pointer, then the pointer

pointing to it must also be logged.

1) Instrumentation for uninitialized variable detection

To detect uninitialized variables, one way is to track all the

reads and writes happening in the program. If source code

instrumentation is used, instrumenting code (extra code to log

the read/write) has to be added at each type of assignment. If

binary instrumentation is used, individual instruction is to be

instrumented to check whether it is reading or writing to some

variables, arrays, composite variables (records/structures) and

pointers. Also scope of variables should be taken into

consideration. To detect un-int variable at source level, both the

source code and binary code instrumentation techniques are

used. Source code instrumentation allows finding out all the

variable names used in the program as well as their addresses.

On the other hand, binary instrumentation allows to keep a

track of every read/write happening to those variables.

2) Log Analysis for Uninitialized variable

To detect uninitialized variables, first a table of initialization is

maintained having entries of all the variables. Global variables

and other variables with default values are marked as initialized

at start. When a variable is written, it is also marked as

initialize. If a variable is read before getting written, it is

uninitialized. The report generated should contain all

information about the fault to make it easier for developer to

fix the fault.

209

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

V. DYNAMIC SLICING

A. Executable Dynamic Slices

An executable dynamic slice is a slice that can be executed and

it preserves a value of a variable of interest. An executable

dynamic slice of program P on slicing criterion C is any

syntactically correct and executable program P that is obtained

from P by deleting zero or more statements and when executed

on program input x produces an execution trace Tx for which

there exist the similar execution position q such that the value

of yq in Tx equals the value of yq́ ' in Tx́ ' The existing

algorithms for the computation of dynamic slices can be

classified as trace-based (execution trace) algorithm and non-

trace based algorithms.

1) Execution trace based

In the trace based algorithms an execution trace of the program

is first recorded and the computation of a dynamic slice is

performed on the recorded execution trace. During recording of

the execution trace different types of information is recorded

depending on the algorithm. Typically, an execution trace

contains information about the statement executed and

variables defined or used at this statement (especially, variables

used or defined that cannot be determined by static analysis,

e.g. addresses of array elements used or defined).

a) Program dependence graph based algorithm

This is precise algorithm for dynamic slicing. The algorithm

uses the concept of data and control dependencies to compute

dynamic program slices. Dynamic dependencies between

actions are captured by two types of dependencies: data

dependence and control dependence. The data dependence

captures the situation where one action (node) assigns a value

to an item of data and the other action (node) uses that value.

Control dependence captures the dependence between test

nodes and nodes that have been chosen to be executed by these

test nodes. The program dependence graph of a program has

one node for each simple statement(assignment, read, write

etc., as opposed to compound-statement like if-then-else,

while-do etc.) and one node for each control predicate

expression (the condition expression in if-then-else, while-do

etc.) and two types of directed edges for data dependence and

control-dependence.

 Once a program is executed and its execution trace

collected, precise dynamic slicing typically involves two tasks:

pre-processing which builds dependence graph by recovering

dynamic dependences from the programs execution trace and

slicing which computes slices for given slicing requests by

traversing the dynamic dependence graph. In Zhang and Gupta

proposed three precise dynamic slicing algorithms that differ in

the degree of preprocessing they carry out prior to computing

any dynamic slices. The full preprocessing (FP) algorithm

builds the entire dependence graph before slicing. The no

preprocessing (NP) does not perform any preprocessing but

rather during slicing it uses demand driven analysis for

recovering dynamic dependencies and caches the recovered

dependencies for potential future reuse. Finally the limited

preprocessing (LP) algorithm performs some preprocessing to

first increase the execution trace and then during slicing it uses

demand driven analysis to recover the dynamic dependences

from the compacted execution trace.

b) Dynamic Dependence Graph

Hiralal and Horgon proposed concept of Dynamic

Dependence Graph(DDG) in which node is created for each

occurrence of a statement in the execution history, with

outgoing dependence edges to only those statements (their

specific occurrences) on which this statement occurrence is

dependent Reference number, as in [18]. Every node in the

new dependence graph will have at most one outgoing edge

for each variable used at the statement. Once we have

constructed the dynamic dependence graph for the given

execution history, we can easily obtain the dynamic slice for a

variable, var, by first finding the node similar to the last

definition of var in the execution history, and then finding all

nodes in the graph reachable from that node. Dynamic

Dependence Graph for the program in following figure the test

case (N=3, X=-4, 3, -2). Nodes in bold give the Dynamic slice

for this test-case with respect to variable Z at the end of

execution.

Begin

S1: read(N);

 S2: I=1;

 S3: While(I<=N)

 do

 S4: Read(X);

 S5: If(X<0)

then

S6: Y=f1(X);

else

S7: Y=f2(X);

end_if;

S8: z:=f3(Y);

S9: WRITE(z);

S10: I:=I+1;

end_while;

end

Fig. 2. Example

The size of a Dynamic Dependence Graph (total number of

nodes and edges) is, in general, unbounded. This is because the

number of nodes in the graph is equal to the number of

statements in the execution history, which, in general, may

depend on values of run-time inputs. So instead of creating a

new node for every occurrence of a statement in the execution

history, create a new node only if another node with the same

transitive dependencies does not already exist. This new graph

is known as the Reduced Dynamic Dependence Graph

(RDDG). The Reduced Dynamic Dependence Graph for the

Program in Figure 2 for the test case (N=3, X=-4, 3, -2) is

shown in Fig. 4.

210

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

Fig. 3. Dynamic Dependence Graph for figure 2

Fig. 4. Reduced DDG for Fig. 3

2) Non-execution Trace Based

In non-trace based algorithms an execution trace is

not recorded and dynamic slices are computed during program

execution.

a) Forward Algorithm

The forward algorithm starts from the first statement in the

program and proceeds “forward” with program execution and

at the same time performs the computation of dynamic slices

for program variables along with the program execution. The

following are two sample condition used by the forward

algorithm to compute dynamic slices during program

execution.

1. If value of variable v has not been modified during

execution of block B, and none of the statements

executed inside of block B belong to the dynamic

slice of variable v, the block is not included in the

dynamic slice for variable v at the exit from B.

2. A dynamic slice for a variable modified by an

assignment is a union of dynamic slices of all

variables used at the assignment. Refer fig. 5 for

example

Fig. 5. Block Diagram

Fig. 6. Forward Algorithm Result

b) Static Program Dependence Based Algorithm

In this algorithm the program dependence graph of the program

is first derived. The program dependency graph captures the

data and control dependencies in the program. During program

execution the edges (representing data or control dependence)

of the program dependence graph that occurred during program

execution are marked. After the program execution, the

algorithm traverses the program dependence graph only along

the marked edges to find a dynamic slice as in figure: 7.

Fig. 7. Static Algorithm

211

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

B. Issues in Implementation of Non Executable Dynamic

Slice

For a given slicing criterion C=(x,yq), a non-

executable dynamic slice contains statements that “influence”

the variable of interest Yq during program execution on input

x. There is no hypothesis about the execution of the dynamic

slice and preservation of the value of variable y. In most cases

non-execution dynamic slices cannot be executed. Figure 8

shows a non-executable trace.

Fig. 8. Non Execution Trace

C. Implementation of Program Slicing

Approach III (DDG) and Approach IV (RDDG) reference

number, as in [14] and are stated as approach 1 and approach 3

in Algorithm section. In Addition, we developed modified

algorithm called xDDG which is better than DDG in terms of

time of compute slice and no. Of nodes, and is better than

RDDG in terms of memory of dependence graph.

1) Problem with WET

The Whole Execution Trace (WET) is a unified representation

that holds full execution history including, control flow, value,

address and dependence (data and control) histories. WET is

essentially a static representation of the program that is labeled

with the dynamic profile information. This provides a direct

access to all of the relevant profile information associated with

every execution instance of every statement.

If conditional statement is present in program, WET is not

in order of execution of statements. During conditional

statements in program, the order of trace is as follows:

i) First trace is of first function statement.

ii) Next trace is of statement next to conditional

statement then of statement next to if-then-else.

iii) After that there is trace of 1st statement of else part.

iv) Then the trace of remaining statement starts from

beginning.

v) Depending on the first condition, first statement in

true block reappears in trace. While the false block

statement doesn’t.

That is why we need to consider the trace in which the

dependencies node is yet to occur. We need to keep a list of

visited nodes otherwise we will go into infinite loop because of

problem with WET.

2) Algorithms

Here are the algorithms to construct dependence graphs from

execution trace and get dynamic slice. The three algorithms

differ in terms of dependence graph.

a) Approach 1 (DDG):

i) Using Whole Execution Trace, we construct nodes.

ii) Dependencies for each node in trace are stored. Thus,

Dynamic Dependence Graph (DDG) is obtained.

iii) To compute dynamic slice for given statement, we

traverse constructed DDG from given trace until all

dependencies are resolved. The list of all visited nodes

is out-putted as dynamic slice.

b) Approach 2 (xDDG): We have designed this

algorithm. This is possible only because node of dependence

graph is considered as tuple instead of line number.

i) Initially, construct nodes same as in DDG using WET.

ii) Check every time whether new constructed node has

same dependencies as earlier nodes.

iii) If yes, combine the nodes.

iv) After the last trace, extended DDG (xDDG) is

constructed.

v) Start traversing nodes from the similar trace no. Of

given statement.

vi) Visit each node and similar dependency nodes.

vii) Keep a list of visited nodes.

viii) For each node repeat step 6 only if the node is not in

visited nodes.

c) Approach 3 (RDDG): Same as xDDG algorithm,

only difference is:

i) Instead of just storing the dependencies, we store

the whole slice for each similar node.

ii) So we also need to maintain a list of nodes whose

dependencies are yet to occur.

iii) And only those nodes present in the slice of

required node and above list are resolved.

212

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

We need to maintain a visited nodes list during resolution to

prevent infinite loop.

Example:

1. #include<stdio.h>

2. int main()

 {

3. int i, x, z, n=3;

4. i=0;

5. while(i<n){

6. scanf(“%d”,&x);

7. if(x<0){

8. y=x+x;

9. } else {

10. y=x*x;

11. }

12. z=y+2;

13. printf(“%d”,z);

14. i=i+1;

15. }

16. }

Fig. 9. A C example

VI. CONCLUSIONS

Code instrumentation using Dynamic Program Analysis

tools helps to reduce development effort and eases extension.

i.e. pin tool is easy to use and handle inserting the code into the

running program application code and attach or detach to

running application process. You can follow each instruction,

function, system call, etc. By using Pin you have a complete

control over the dynamically executing program. Therefore,

you can use it in various tasks. Like in c/c++ programming and

attach or detach to running application process. And improve

the whole performance of application process by changing its

behavior by inserting the code dynamically on runtime

application program.

Program slicing is a useful and needful technique for today’s

programming world, because consuming memory by

executables is very much loss of time and decrease in speed

also. Therefore programming slicing algorithm Like DDG in

terms of number of nodes and time to compute dynamic slice,

RDDG in terms of memory of dependence graph are

applicable. For programs of with very long time executions the

forward approach of dynamic slice computation has been

proposed Reference number as in [11].

REFERENCES

[1] http://software.intel.com/sites/landingpage/pintool/docs/49306/Pin/html/

[2] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, StevenWallace Vijay, Janapa Reddi, Kim Hazelwood,
“Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation”, Intel Corporation, University of Colorado.

[3] Alex Skaletsky, Tevi Devor, Nadav Chachmon, Robert Cohn, Kim
Hazelwood, Vladimir Vladimirov, Moshe Bach, “Dynamic Program
Analysis of Microsoft Windows Applications”, Intel Corporation,
University of Virginia.

[4] Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi
Devor, Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons,
Harish Patil, and Ady Tal,“Analyzing Parallel Programs with Pin”, intel.

[5] Patrick Wood, “A Survey of Performance Analysis Tools”,
pwood@wustl.edu.

[6] Quan Jia, “Introduction to the Pin Instrumentation Tool”, George Mason
University, Mar. 27 2013.

[7] Prashanth P. Bungale, Chi-Keung Luk, “PinOS: A Programmable
Framework for Whole-System Dynamic Instrumentation”, Intel
Corporation, Hudson, MA and Harvard University, Cambridge, MA,
Intel Corporation, Hudson, MA.

[8] Aamer Jaleel, Chi-Keung Luk, Bobbie Manne, Harish Patil “Using the
Pin Instrumentation Tool for Computer Architecture Research”, Intel®
Corporation, June 17, 2006.

[9] http://www.sciencedirect.com/science/article/pii/S0950584998000895

[10] http://www0.cs.ucl.ac.uk/staff/mharman/exe1.html

[11] Bogdan Koral, Jurgen Rilling, “Application of Dynamic Slicing in
Program Debugging”, Department of Computer Science Illinois Institute
of Technology, Chicago, IL 60616, USA.

[12] Xiangyu Zhang and Rajiv Gupta, “Whole Execution Traces”, In
proceeding of IEEE/ACM 37th International symposium on
Microarchitecture, pages 105-116, Portland, Oregan, December 2004.

[13] Klaus IIavelund, “Dynamic Program Analysis”, Kostrel Technology,
Palo Alto, California, USA.

[14] http://resources.infosecinstitute.com/pin-dynamic-binary-
instrumentation-framework/

[15] Aditya Khamparia, Saira Banu J., “Program Analysis with Dyanmic
Instrumentation Pin and Performance Tools”, Computer Science and
Engineering Institute of Technology, SCSE, Vellore, India.

[16] Anthony M. Sloane, “Generating Dynamic Program Analysis Tools”,
Department of Computer Science, James Cook University, QLD,
Australia, tony@cs.jcu.edu.au.

[17] Herbert Ritch, Harry M. Sneed, “Reverse Engineering via Dynamic
Analysis”, Software Engineering Service, D-8012 Ottobrunn, Germany.

[18] Hiralal Agrawal and Joseph R. Horgan, “Dynamic Program Slicing”, In
proceeding of the ACM SIGPLAN 1990 conference on Programming
language design and implementation (PLDI 90, PP.246-256, (1990)).

[19] http://onlinelibrary.wiley.com/doi/10.1002/swf.41/full

[20] Markus Mock, Darren C. Atkinson, “Improving Program Slicing with
Dynamic Points-To Data”, Department of Computer Science &
Engineering , University of Washington.

[21] Jiri Slaby, Jan Strejeck, and Marek Tritik, “Symbiotic: Synergy of
Instrumentation, Slicing, and Symbolic Execution”, Faculty of
Informatics, Masaryk University Botanicka 68a, 60200 Brono, Czech
Republic.

[22] Tevi Devor, “Pin: Intel’s Dynamic Binary Instrumentation Engine Pin
Tutorial”, Intel Corporation.

[23] Bas Cornelissan , Andy Zaidmain, Arie van Deursen, Leon Moonen,
Rainer Koschke, “A Systematic Survey of Program Comprehension
through Dynamic Analysis”, Student, Member IEEE, Member IEEE
Computer Society.

[24] Markus Denker, Orla Greevy, Michele Lanza, “Higher Abstraction for
Dyanamic Analysis”, Software Composition Group, University of
Berne, Switzerland, Faculty of Informatics University Lugano
Switzerland.

[25] Mayur Naik, “ Static and Dyanamic Program Analysis : Synergies and
Applications”, Intel Labs Berkely, CS 243, Standford University, March
9, 2011.

[26] Walter Binder, Philippe Moret, Danilo Ansaloni, Aibek Sarimbekov,
Akira Yokokawa, eric Tanter, “Towards a Domain-Specific Aspect
Language for Dynamic Program Analysis”, Faculty of Informatics
University of Lugano-Switzerland, PLEIAD Laboatory, Computer
Science Department(DCC), University of Chile-Chile.

[27] Zhiqiang Lin, “CS 6V81-05: System Security and Malicious Code
Analysis Dynamic Binary Instrumentation”, Department of Computer
Science, University of Texas at Dallas, january 30th, 2012.

[28] Walter Binder, “Higher-Level Abstractions for Instrumentation-based
Dynamic Program Analysis”, Dynamic Analysis Group, Faculty of
Informatics University of Lugano.

213

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

[29] Nicholas Nethercote, “Dynamic Binary Analysis and Instrumentation”,
15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom, PP.
43-48, November 2004.

[30] Xingyu Zhang, Rajiv Gupta, “Whole Execution Traces”, The Unversity
of Arizona, Department of Computer Science Tucson, Arizona 85721.

[31] Xingyu Zhang, Rajiv Gupta , “Cost Effective Dynamic Programming
Slicing”, Department of Computer Science, The University of Arizona
Tucson, Arizona 85721.

214

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040306

