

Cognitive Characteristics that Influence Effectiveness of Students during

Computer Programming Process

V.G. Renumol, D. Janakiram and S. Jayaprakash
Department of Computer Science and Engineering,

Indian Institute of Technology Madras,

Chennai, India.

 Abstract

What are the cognitive characteristics
that influence the effectiveness of a
student during the computer
programming process? To investigate
this question, a comparative study has
been conducted on verbal protocols
collected from a set of effective and
ineffective students. It is observed that
there are differences in certain cognitive
characteristics, among the groups. Also
there are variations in the effectiveness
and sequence of subtasks during the
process. A well-defined pattern is
observed with the effective students.
The study has concluded that certain
procedural cognitive concepts are
critical to decide the effectiveness
during programming; in addition to the
knowledge of programming language
constructs.

1. Introduction

Computer programming is a highly
rewarding skill. But, teaching as well as
learning of computer programming is a
challenge in Computing Education
[McGettrick et al. 2005]. Different
publications in programming education
show that the failure rate and drop-out
rate of programming courses are
relatively high [Robins et al. 2003;
Mancy and Reid 2004; McGettrick et al.
2005] and the overall effectiveness is

poor. Even though there are
motivational factors to learn
programming [Jenkins 2001], many
novices find it very difficult to learn
programming. Various studies have
been conducted by researchers on
different aspects of programming
education to increase the quality of
programming education, but even after
forty years of research, there are gaps in
programming education. Even though
programming is mainly a cognitive task,
studies on programming education from
cognitive perspective are very rare.
Hence the main objective of this study is
to investigate on cognitive
characteristics of students during
programming process.

The students in programming course can
be broadly categorized as effective and
ineffective based on their effectiveness
in programming. Effective students can
write programs and they typically learn
programming with moderate effort.
Most of the time, programming is a self-
discovered process for them. Whereas,
the ineffective students cannot write
correct programs and need more
personal attention and cognitive support
to learn programming. Since the failure
rate is high in programming courses, the
ineffective category plays a significant

1270

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

role in the effectiveness of programming
courses. This study tried to find out the
cognitive behavioral characteristics that
differentiate these two groups during the
programming process. The study has
been conducted only to characterize the
state of mind of the participants with
respect to effectiveness during the
programming process and not to
investigate on how the participants
become effective or ineffective over a
period of time, which is beyond the
scope of this study.

The article is organized as follows:
Section 2 describes the related work.
Section 3 describes the methodology -
verbal protocol collection and
classification. Section 4 describes the
qualitative analysis and section 5
describes the quantitative analysis.
Finally section 6 concludes the article.

2. Related Work

From the literature survey it is obvious
that many studies have been conducted
on various aspects of programming
education to improve its effectiveness.
For example, studies on development of
teaching strategies for programming
courses [Winslow 1996; Campbell and
Bolker 2002; Robins et al. 2003;
Bennedsen and Caspersen 2005;
Caspersen and Bennedsen 2007;
Alkhalifa 2008; Caspersen and Kolling
2009], difficulties in learning various
features of a programming language
[Milne and Rowe 2002; Lahtinen et al.
2005; Garner, Haden and Robins 2005],
development of interactive multimedia
tools to help students learn
programming [Al-Imamy, Alizadeh and
Nour 2006; El-Zein, Langrish and
Balaam 2007; Lee, Pradhan and
Dalgarno 2008], failure rates in

Introductory Programming Courses
(IPC) [Bennedsen and Caspersen 2007],
predicting programming skill of students
[Mazlack 1980; Mancy and Reid 2004;
de Raadt et al. 2005; Dehnadi and
Bornat 2006; Simon et al. 2006],
programming skill evaluation [Farrow
and King 2008], first programming
language to teach [Mclver and Conway
1996; Robins, Haden and Garner 2006;
Kaplan 2010], plagiarism in
programming [Joy and Luck 1999;
Bowyer and Hall 2001; Goel and Rao
2008; Rosales et al. 2008] etc.

Programming is a human-centered
activity where one needs to design a
solution for a given problem and then
translate it into a sequence of computer
language instructions. But, most of the
programming languages are designed
from machine point-of-view,
considering machine efficiency related
issues rather than human-related issues
[Shneiderman 1975]. Hence,
programming demands different
cognitive skills [Gael 2005; Xu and
Rajlich 2004], which are generally not
taught in programming courses.
Typically, teachers spend most of the
time to teach the programming language
syntax and semantics [Caspersen and
Kolling, 2009]. They show readymade
programs in the class and explain the
execution sequence or algorithm, where
they are necessitated to show the
program-development process.
Moreover, students use the text books,
which generally show correct and
complete programs with intermediate
outputs. But being a static media they
are not able to show the dynamic
program-development process
[Bennedsen and Caspersen, 2005].
Students can use it mainly to acquire
factual knowledge. However, the

1271

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

learning curve for different
programming languages varies based on
the language and the cognitive
characteristics of the learner [White and
Sivitanides 2002]. And most of the
programming languages are developed
from professional point of view rather
than an educational point of view. All
the above factors increase the difficulty
for the novices to learn programming,
which in turn increases the challenge to
programming educators.

Looking this challenge from a cognitive
perspective may improve the situation,
because programming necessitates more
cognitive effort from the learner to
become an effective programmer.
However, studies from the cognitive
perspective are very rare in
programming education. A previous
study by the authors [Renumol et al.
2010] was an exploration to identify the
cognitive processes (CPs) of the
effective and the ineffective students
during the programming process (using
C language). CP is a process in the
brain, which does information retrieval
and/or information storage and/or
information processing. The above-
mentioned study identified a set of 42
CPs relevant for both the effective and
the ineffective students. Basically, this
result gives knowledge on the CPs of
the programming process and can make
teachers aware of the cognitive
difficulty (due to many CPs) to learn
programming. But, if the effective and
the ineffective students have the same
set of CPs, then what makes them
different during the programming
process? This study is an attempt to
answer it using the methodology Verbal
Protocols Analysis (VPA), which is
explained in the next section.

3. Verbal Protocol Collection And

Classification

Verbal Protocols (VPs) are oral records
of the thought process of a participant
during a task. It can be recorded while
performing the task (concurrent verbal
protocol) or immediately after the task
(retrospective verbal protocol) [Ericsson
and Simon 1984/1993]. Concurrent
verbalization is better over retrospective
for long duration tasks [Kuusela and
Paul 2000] like programming.
Therefore, in this study the participants
were asked to verbalize their thoughts
during the programming task and the
experimenter recorded it as audio files.
The VP files are then used with other
artifacts for the analysis.

VP Collection: Generally, a small
sample size is feasible for think aloud
methods due to high cost and time for
the protocol analysis [Davis and
Bistodeau 1993; Hungerford et al. 2004;
Isenberg 1986; Krahmer and Ummelen
2004]. However, in this study 45 VPs
have been collected in order to improve
the quality of analysis, especially the
quantitative analysis. Moreover, it can
provide a rich data for the qualitative
analysis. The participants were
undergraduates, postgraduates or
research scholars in computer science
and engineering and have undergone a
programming course in C language.
Their experience in ‘C’ language ranges
from one to many years, which indicates
the number of years since they started
learning ‘C’ programming language.
That is, some traces have been there in
their brain since then. However, studies
do not support a strong relation between
experience and effectiveness
[Hungerford et al. 2004]. This cognitive
study gives importance to their

1272

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

effectiveness rather than experience or
demographic details, because it attempts
to characterize the strategy and state of
the mind with respect to effectiveness
during the task.

The experiment was conducted at an
individual level with the paper-and-
pencil method. There was no time
constraint to complete the task. The
environment for the experiment was
noise-free, realistic, and comfortable.
The experimenter instructed the
participants about the experiment
beforehand and clarified their doubts
related to the experiment. There were 30
programming questions taken from a
regarded text book of C programming
[Gottfried 1991] and are given in the
appendix A of [Renumol et al. 2010].
The experimenter asked the participants
to select a question of his/her choice
which has not been memorized by the
subject. A program which is already
memorized by the subject will not reveal
the actual effectiveness of the subject. It
will be a recollection process only.
Once they selected a question,
immediately they started solving it and
verbalized their thoughts during the
entire programming process and the
experimenter recorded it as an audio
file.

The study used concurrent verbalization
and it often lacks completeness since it
is done along with the task because the
subjects tend to be silent when they
concentrate more on the primary task of
programming. This leads to an
incomplete and incoherent VP. Hence
the experimenter kept on reminding the
participants to keep talking when the
silent pauses exceeded 10-15 seconds
and also avoided social communication.

VP Classification: After the collection
of the data, there are mainly two
artifacts - VP as audio files and the
participants’ worksheets. The latter will
contain the rough work, the intermediate
steps and the final program of the
participants. To classify the participants
as effective or ineffective, only the final
programs are needed. Each of the
programs written on worksheets has
been edited and compiled to check the
effectiveness of the participant.
Programs with logical and syntax errors
were put in the ineffective category.
Some of them were incomplete,
showing their ineffectiveness. The
programs which compiled properly have
been executed to see the correctness of
the logic. Those run correctly were put
in the effective category. During this
process, the experimenter corrected
some trivial syntax mistakes such as
missing semicolon, brackets etc. which
the participant also would have done,
provided a computer to do the task.
Finally, 25 students have been classified
as effective and 20 as ineffective out of
the 45 students participated in the
experiment.

After the collection and classification of
the VPs, two types of analyses have
been conducted on the data - qualitative
and quantitative. They are discussed in
the following sections.

4. Qualitative Analysis And

Observations

It has been decided to employ content
analysis as the methodology for the
qualitative analysis. The analysis and its
results are explained in the following
section.

1273

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

4.1 Content analysis

It is a methodology to study the content
of communication and is widely used in
Social Science research [Krippendorff
2004]. The analyst systematically goes
through the communication artifact to
find out the properties of the content by
analyzing who says what, why, in which
context, with what mental state, whether
certain words are repeated, the diction,
the action, the punctuation etc. The
communication artifact can be textual,
audio or video information. In this study
the analyst has done content analysis on
the transcriptions and/or the audio VP
files of both the groups by going
through them several times to infer
some patterns and trends. The worksheet
also has been referred whenever needed,
for example, to get the context, the
action etc. The analyst has observed that
there are intensity variations in CPs,
difference in the usage of higher and
lower CPs, and variations in the

effectiveness and sequence of subtasks,
among the groups. These observations
are described in the following
subsections.

4.1.1 Intensity Variation of CPs. It is
observed that there are variations in
intensity of the CPs, which means that
there are variations in the potency of the
CPs, among the groups. For example,
abstraction, translation, induction,
deduction, comprehension, analysis,
synthesis etc. were stronger and faster in
the effective students and weaker and
slower in the ineffective. Thus these
CPs seem to support programming
process. On the other hand, the CP,
confusion was stronger with the latter
than the former. The analyst could find
several such instances of different CPs
from the collected VPs. Some example
excerpts for intensity variations in CPs
like abstraction, translation and
confusion are given in Table I.

Table I. Examples for intensity variations
Cognitive
Process

Excerpt from effective subject Excerpt from ineffective subject

Abstraction So first I will draw a sample
output to see how it looks, the
figure A….(subject is
drawing). So I find that the
height ‘h’ is equal to the initial
number of blank spaces. It is
denoted by ‘x’. So what I
should have is; for each line
there should be one less
number of blank spaces, in the
beginning. And considering the
number of characters, it should
begin with one character in the
first line and for the further
lines; it should be incremented
by 2. so …now the logic is
clear.. [subject is able to

So we have to get this thing: One * and
then one * on left side and one on right
side. One again, one in the middle, no,
one in…………(subject draws) this kind
of thing ………….…so what do I need?
...one row will increase like this ….. one
row will increase like this and the other
will like this and the starting element, it
is like array; not array exactly. Like…
1,2,3,4,5,6; leaving this space blank, this
space middle blank……..hm…I need
more…………so first of all I need 2
variables: one varying like this and one
varying like this.(subject showing x axis
and y axis) [subject is not able to
abstract correctly]

1274

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

abstract things easily]

Translation So if head == null create
memory for that. So head=; we
have to use the malloc()
function. (struct node *)
malloc(size(struct node)).
Current is made as current’s
next node.
Current=current.next. [subject
is able to translate]

We have allocated the space for the
elements, then will write the loop like:
for(x=1; x<=n; x++) and y from 1 to n;
y++, ah…so…if… if x=y then
…………… .so basically I am thinking
over what exactly is the code I should
write. [subject is not able to translate]

Confusion I can write a loop here itself
……..so for(j= it always starts
with s; j<………..;++j, in this
case, 0, 4-?, s position is?
[Confusion]
Ok. i=0, n=4, 4-0=4; j<4. it is
…(murmering) starts with s+1;
this is s+1, position after this;
j< that is, 4-? i in this case is 1,
that is 3……… n is 4, 4-i; i is
0; j<4. ha. this is fine. Ok, So
now have the…..sorry..this is c.
so now we have the ‘for’ loop
to iterate through column
values [This excerpt shows that
though the subject had slight
confusion, but able to
overcome it and proceed with
the task]

….start for loop again i=0;i<j; equal
should come or not? i=1 ; i<j; then i
should increase………….i should
always print in the, which position? 1,2
….it should always print in the what? n,
this is what? n,..n,1…..I can’t do that
also……..(murmuring)…….n-1 spaces
……..no I am not getting………I am not
getting what should I do….how should I
use the ….main funda I am not getting.
[This excerpt shows that the subject is
undergoing confusion and not able to
proceed with the task. Confusion is very
intense here]

4.1.2 Usage of lower and higher level

CPs. There are two types of CPs – lower
and higher level [Wang et al. 2006].
Lower-level CPs need less cognitive
effort, whereas higher CPs are conscious
CPs, which put more cognitive load on
the brain. Higher-level CPs are carried
out with the help of one or more lower
and/or higher-level CPs. Through the
content analysis, the analyst could
observe that the effective subjects

properly use the higher and lower level
CPs in order to achieve the goal and
they are stronger in them. This was not
the case with the ineffective subjects.
For example, problem solving is a
higher level CP which needs other CPs
like comprehension, abstraction,
analogy, decision making, reasoning,
attention, analysis, synthesis etc. On the
other hand, sensational CPs (vision,
audition etc.), memorization,

1275

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

recollection etc. are examples of lower
level CPs. The ineffective subjects
prefer to stay in lower-level CPs such as
memorization and recollection and are
weaker in higher level CPs. For
instance, the ineffective students were
mostly unable to explain the cause-
effect relation, which is a higher CP

called reasoning. Table II shows an
example for this. In this example, the
problem given for both the cases was
matrix multiplication. One can see that
the effective subject is going
successfully through various CPs and
the ineffective subject is unable to do it.

Table II. Usage of higher and lower-level CPs

Excerpt from an effective subject Excerpt from an ineffective
subject

So the bigger loop, outer loop should be for(i=0;
i<m;i++), that is I am going over the rows of m1, then
there is some second loop, which should go over…...
These two outer loops should actually correspond to the
final dimensions of the matrix. Right? That is m x p.
The second loop should go over p. for (int j=0;
j<p;j++)…….[Synthesis, Reasoning, Explanation,
Comprehension]
How do I do the addition part? [Interrogation] So each
row, multiply each row by each column basically. I
know that this is some element-wise product.
[Recollection] So pick up the first element of the first
row of m1, multiply it with the first element of the first
column of m2 , then the second element of the first row
multiplied with the second element of the column, so
on…right? [Explanation] So let me start, ‘i’ ; ‘ i ‘ is
going over the row; so for the same value of ‘i’
change;……….. change the value of ………..the
column…. And here in this case for the same value of p
change the value of the row, this is how it works. Ok?
[Induction, Synthesis]
This m and n are going to be the element of m3. I have
to initialize ……m3[i,j] to zero here, [Synthesis]
so that when I add up all the things I can just treat it as
sum=sum+n….[Explanation]
then I have to state one loop to ‘k’ such that the k value
has to go over n here, [Synthesis]
because that is the only dimension which is remaining
and those are the number of columns of m1 and number
of rows of m2. ok? [Explanation, reasoning]
For each such thing, I just have to multiply it,…i j;
m3[i][j]=m3[i][j]+m1[i][k]*m2[k][j]. … [Synthesis,
Translation]

For this recursion
for(i=0;i<=3..so for ar[0] we
are having r1 and for ar[2]
we are having r2 and so on..
Next we are taking 3
elements and go on
multiplication till this loop is
continued. So the
multiplication is done like
multiplication condition,
mult1=(r1*c1) and (r2*c2)
and (r3*c3), mult2=(r2*c1),
(r2*c2),(r3*c3);
mult3=(r3*c1),
(r3*c2),(r3*c3). Next after

scanf(“%d”,…we just print
r1, r2 and r3. so the printf
will give the result of mult1,
mult2 and mult3
[The subject does not have
any reasoning for the
statements, seems he is
trying to recollect matrix
multiplication rather than
synthesizing. It seems that
the subject has forgotten the
language syntax and not able
to translate what he knows
about matrix multiplication]

1276

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

4.1.3 Subtasks and their effectiveness.
By the content analysis, the analyst
could also observe various subtasks the
subjects do during the programming
process. They are, in general, problem
understanding, design, coding, testing
and iteration. In problem understanding
phase the participants try to select and
comprehend a question from the given
list of questions. This takes one or two
minutes. In the design phase they try to
plan the solution, in the coding phase
they translate the design to a program
and in the testing phase they check
whether the program is correct or not. If
it is not correct they have to modify the
design or code accordingly. For this,
they iterate through the design or code
and modify it. These last four phases
take few minutes to hours to complete,
based on how effective the subject is.

All the 45 VPs have been analyzed for
the subtasks and their effectiveness. The
starting and ending of each of the
subtasks have been noticed from the
audio files and the worksheets. Clarity
of the boundary of the subtasks were
more in the case of the effective subjects
than that of the ineffective subjects. The
latter had a tendency to mix up the
subtasks, especially design and coding.
However, an attempt has been made to
mark the boundary of the subtasks of the
ineffective subjects also, based on the
context. It was observed that most of the
effective subjects went through all the
phases whereas most of the ineffective

subjects did not go precisely through all
the phases.

The analyst has evaluated the
effectiveness of each of the subtasks for
each of the participants and given marks
out of five. This is done by hearing the
audio files several times and evaluating
correctness of the subtasks from the
worksheets. A mark of one indicates
extremely ineffective in the subtask and
five indicates fully effective in the
subtask. For most of the ineffective
subjects what the subject called as
coding was an amalgamation of coding
with design. So the analyst evaluated the
hidden design in the code and put marks
accordingly. Such merging was very
rare with the effective subjects. Marks
for iteration have been put based on how
many times they iterated through the
process and how much useful each
iteration was. Two tables have been
formed from the evaluation results – one
for the effective subjects with 25 rows
and the other for the ineffective subjects
with 20 rows. Each has columns such as
design, coding, testing and iteration. The
problem-understanding phase was left
out from the table since nobody found
any difficulty in understanding the
selected problem. Two graphs have been
drawn based on the values from these
tables; with the subtasks on the x-axis
and marks on the y-axis. The graph of
the effective category is given in Fig. 1
and that of the ineffective category is
given in Fig. 2.

1277

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

Design Coding Testing Iteration

0

1

2

3

4

5

6

Effective Students

stud1 stud2 stud3 stud4 stud5 stud6 stud7 stud8 stud9 stud10 stud11 stud12 stud13

stud14 stud15 stud16 stud17 stud18 stud19 stud20 stud21 stud22 stud23 stud24 stud25

Subtasks

M
a

rk
s

(E
ff

e
c

ti
ve

n
e

s
s

)

Fig. 1: Subtasks and their effectiveness of the Effective students

Design Coding Testing Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ineffective students

stud1 stud2 stud3 stud4 stud5 stud6 stud7 stud8 stud9 stud10

stud11 stud12 stud13 stud14 stud15 stud16 stud17 stud18 stud19 stud20

Subtasks

M
a
rk

s
(E

ff
e
c
ti
ve

n
e
s
s
)

Fig. 2: Subtasks and their effectiveness of the Ineffective students

It is observed from the graphs that the
effective subjects are highly effective in
each of the subtasks whereas the
ineffective subjects are less effective in
each of the subtasks. The latter has a
tendency to put more effort in coding
and overlooking the other inevitable
phases of program development, such as
design and testing. The effective
subjects iterated more times than the
ineffective subjects. When the former
iterated through the phases, they
improved over the solution which was
rare with the latter category.

4.1.4 Subtasks and their sequence. As
an extension of the previous
observations, analysis has been done to
see the pattern of sequencing through
the subtasks for both the categories. It is
observed that the sequence of subtasks
during programming is different for
both the effective and the ineffective
groups. The effective students have a
sequence in the following order during
the process:

1. Problem comprehension
2. Design
3. Coding
4. Testing

1278

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

5. Iteration
The above pattern is observed invariably
with the effective subjects whereas it is
rarely observed with the ineffective
subjects. The ineffective category does
not have a proper sequence during the
task. After reading and roughly
comprehending the question, most of the
ineffective subjects have hopped
directly to the coding phase by skipping
the design. They have a tendency to mix
coding with design. They rarely have

gone through design, coding, testing and
iteration effectively. Fig. 3 and 4 show
the pattern of the subtask sequence of
the effective and the ineffective subjects
respectively. In Fig.4 the thick arrows
show the frequent path of an ineffective
subject. That is jumping to coding phase
from problem comprehension and then
leading to an incorrect program. Dotted-
curved arrows are the rarely traversed
paths by the ineffective students.

 Fig. 3: Pattern of subtask sequencing by the effective category

 Fig. 4: Pattern of subtask sequencing by the ineffective category

Problem
Comprehension

Design

Coding

Testing

Incorrect
Program

Iteration (rarely
done)

Ineffective Subjects

Problem
Comprehension

Design

Coding

Testing

Program Iteration

Effective Subjects

1279

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

Hence, it is observed that the effective
subjects go through layers of abstraction
(problem understanding, design, coding,
testing and iteration) and they are highly
effective in each layer of abstraction.
Layers of abstraction reduce the
complexity of the task since only a
small portion of the task is handled at a
time and thus the cognitive load on the
brain is also reduced. Literature shows
that abstraction is a key skill required
for computing [Kramer 2007]. Wing
[Wing 2006] also says that
computational thinking requires
multiple levels of abstraction. Hence,
their strategy can be considered as a
relevant factor for their effectiveness
during the entire programming process.

On the other hand, the ineffective
subjects rarely start with design after
problem comprehension. But design is
an important phase which links the
problem domain with the solution
domain. They spend most of the time in
coding phase and have a tendency to
mix coding with design. Also they very
rarely test and debug the code.
Therefore the layer of abstraction is
weak during the task, which increases
the complexity of the task and cognitive
load on the brain. Hence they become
ineffective in each of the subtasks and
consecutively ineffective in the entire
task.

Therefore, it was observed from the
qualitative analysis of the 45 VPs that
the effective students have better
strategy to solve a given programming
problem. They successfully go through
different phases of program construction
like understanding the problem, design
the solution, coding and testing, in order
to develop the program incrementally.
Also they iterate through any of these

phases to improve or correct the
program. In order to corroborate this
observation, a quantitative analysis has
been done further, which is explained in
the next section.

5. Quantitative Analysis

To substantiate the above-mentioned
observations, a hypothesis was framed
from the observation as follows and
verified statistically.

Hypothesis: Effective students
successfully go through layers of
abstraction (LOA) such as problem
understanding, design, coding and
testing to develop the program/solution
incrementally and iterate through the
LOA to correct or improve the solution.
Such pattern was not observed with the
ineffective students.

Null Hypothesis: There is no difference
between the effective and the ineffective
students.

In order to test the hypothesis it was
decided to conduct a quantitative
analysis called discriminant analysis. It
is a statistical method for examining
differences between two or more groups
of objects with respect to several
variables simultaneously [Klecka 1980].
Discriminant models are estimated from
these variables and the objects are
classified using this model. In this study,
effectiveness has been taken as the
dependent (categorical) variable in non-
metric form (1- effective, 0- ineffective)
and the design, coding, testing, LOA,
and iteration are taken as the
independent (predictor) variables in
metric form. The effectiveness of
participants has already been measured
by testing the final program. If the

1280

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

program executed correctly then the
candidate is effective otherwise he/she
is ineffective. As explained in the
previous section, the analyst has
evaluated the effectiveness of each of
the participants in each of the subtasks
(design, coding and testing) and given
marks out of five. This was done by
hearing the audio files several times,
and by evaluating the subtasks from the
worksheets. A mark of one indicates
very less effective in the subtask and
five indicates fully effective in the
subtask. The LOA values are not
available in the tables from the
qualitative analysis phase. Hence it has
been calculated row-wise by taking the

average of the design, coding and
testing marks. A value of three or more
indicates that the subject has a better
LOA. Thus all the independent variables
are measured in a five-point Likert
scale. The independent variables from
the 45 VPs have been codified in metric
form and made into a table of 45 rows.
A sample of it (first 10 rows) is shown
in Table III. The complete table has
been input to the statistical software,
Statistical Package for Social Sciences
(SPSS) version 15.0 for discriminant
analysis. The software estimated the
discriminant model from the variables
and classified the students as effective
and ineffective, using this model.

 Table III: Sample of Coded Data for Discriminant Analysis

Sl.No. Effective Design Coding Testing LOA Iteration
1 1 5 5 4 4.666667 2
2 1 5 5 5 5 3
3 1 5 5 5 5 3
4 1 5 5 5 5 3
5 1 5 5 5 5 4
6 1 5 5 4 4.666667 3
7 0 1 2 1 1.333333 1
8 1 5 4 4 4.333333 4
9 0 2 3 1 2 1

10 1 5 5 3 4.333333 2

 Table IV. Classification Results (a)

 Effective
Predicted Group

Membership Total

 .00 1.00 .00
Original Count .00 19 1 20
 1.00 0 25 25
 % .00 95.0 5.0 100.0
 1.00 .0 100.0 100.0

(a) 97.8% of original grouped cases correctly classified.

1281

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

The classification result of the software
is given in Table IV. All cases from the
effective group are classified correctly
(100% correct classification) and one
case from the ineffective group is
moved (95% correct classification) to
the effective group. Thus the software
classified 26 students as effective and 19
students as ineffective out of the 45
cases, showing 97.8% of correctness in
the classification.

In summary, the SPSS results
corroborated the observation that there
is difference between the effective and
the ineffective programmers in their
strategy. The selected predictors
(design, coding, testing, LOA and
iteration) are significant in
differentiating the effective and the
ineffective students. The effective
students have better abstraction layers,
they iterate through the layers to
improve or correct the solution and, they
are effective through each of the
subtasks. On the other hand, the
ineffective students did not exhibit any
well-defined strategy during the task.

6. Conclusion

The study has analyzed 45 VPs to find
out the disparity in the effectiveness
among the effective and the ineffective
students, during C programming.
Content analysis was done first and
observed that there are intensity
variations in CPs, difference in usage of
higher and lower CPs, and variations in
the effectiveness and sequence of
subtasks of the programming process,
among the groups.

The above observations from the
qualitative analysis have been
statistically verified by discriminant

analysis using the SPSS tool. The SPSS
results corroborated the observation that
there is difference between the effective
and the ineffective programmers in their
procedural strategy and showed 97.8%
of accuracy in the classification.
Therefore one can conclude that the
procedural knowledge predominantly
decides the effectiveness in
programming task. This warrants a
further study to develop a teaching
strategy mainly for ineffective students,
giving importance to procedural
concepts. Further research with more
diverse data in different programming
paradigms and languages can strengthen
the results of this study.

References

1. AL-IMAMY, S., ALIZADEH, J.
& NOUR, M. A. 2006. On the
development of a programming
teaching tool: The effect of
teaching by templates on the
learning process. Journal of

Information Technology

Education. 5, 271–283.
2. ALKHALIFA, E. M. 2008.

Sequential programming
instruction and gender
differences. IEEE Transactions

on Education. 51, 4, 417–422.
3. BENNEDSEN, J. &

CASPERSEN, M. E. 2005.
Revealing the programming
process. In Proceedings of the

36th SIGCSE Technical

Symposium on Computer

Science Education (SIGCSE’05).
186–190.

4. BENNEDSEN, J. &
CASPERSEN, M. E. 2007.
Failure rates in introductory
programming. Inroads-ACM

SIGCSE Bulletin, 39, 2, 32–36.

1282

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

5. Bowyer, K. W. & L.O. Hall
(2001) Reducing Effects of
Plagiarism in Programming
Classes. Journal of Information

Systems Education, 12(3), 141-
148.

6. CAMPBELL, W. & BOLKER,
E. 2002. Teaching programming
by immersion, reading, and
writing. In Proceedings of the

32nd ASEE/IEEE Frontiers in

Education Conference

(ASEE’02). 23–28.
7. CASPERSEN, M. E. &

BENNEDSEN, J. 2007.
Instructional design of a
programming course – A
learning theoretic approach. In
Proceedings of the Workshop on

International Computing

Education Research (ICER’07).
111–122.

8. CASPERSEN, M.E. & M.
KOLLING (2009) STREAM: A
First Programming Process.
ACM Transactions on

Computing Education, 9(1), 1-
29.

9. DAVIS J. N. & BISTODEAU,
L. 1993. How do L1 and L2
reading differ? Evidence from
think aloud protocols. Modern

Language Journal 77, 4, 459–
472.

10. DE RAADT, M., HAMILTON,
M., LISTER, R., TUTTY, J.,
BAKER, B., BOX, I., CUTTS,
Q., FINCHER, S., HAMER, J.,
HADEN, P., PETRE, M.,
ROBINS, A., & SIMON. 2005.
Approaches to learning in
computer programming:
Students and their effect on
success. In Proceedings of the

Annual International Conference

of the Higher Education

Research and Development

Society of Australasia

(HERDSA’05). 407–414.
11. DEHNADI, S. & BORNAT, R.

2006. The camel has two humps.
Technical report. School of
Computing, Middlesex
University, UK.

12. EL-ZEIN, A., LANGRISH, T.,
& BALAAM, N. 2007. A self-
practice online tool for teaching
and learning computational skills
in engineering curricula. In
Proceedings of the International

Conference on Engineering

Education (ICEE’07).
13. ERICSSON, K. A. & SIMON,

H. A. 1984/1993. Protocol

analysis: Verbal reports as data.
Rev. ed. Cambridge: MIT Press.

14. FARROW M. & KING, P. J. B.
2008. Experiences with online
programming examinations.
IEEE Trans. Educ. 51, 2, 251–
255.

15. Gael, Y. (2005) A theory of
Program Comprehension:
Joining Vision Science and
Program comprehension,
Technical Report, GEODES,
University of Montreal, Canada,
December, 1-26.

16. GARNER, S., HADEN, P. &
ROBINS, A. 2005. “My
Program is correct But it Doesn’t
Run: A Preliminary
Investigation of Novice
Programmers’ Problems”, In
Proceedings of the Australasian

Computing Education

Conference (ACE ‘05), pp. 173-
180.

17. Goel, S. & Rao, D. (2008)
Plagiarism and its Detection in
Programming Languages,
Technical Report, Department of

1283

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

Computer Science and
Information Technology, JIITU,
May, 1-8.

18. GOTTFRIED, B. S. 1991.
Theory and problems of

programming with C. Schaum’s

outline series. Tata McGraw-Hill
Edition.

19. Hungerford, B., A.R. Hevner,
and R.W. Collins. 2004.
Reviewing software diagrams: A
cognitive study. IEEE
Transactions on Software
Engineering 30 (2): 82-96.

20. ISENBERG, D. J. 1986.
Thinking and managing: A
verbal protocol analysis of
managerial problem solving.
Acad. Manage. J. 29, 4, 775–
788.

21. JENKINS, T. 2001. The
Motivation of Students of
Programming. SIGCSE Bulletin,

33(3), 53-56.
22. Joy, M. & M. Luck (1999)

Plagiarism in Programming
Assignments, IEEE Transactions

On Education, 42(2), 129-133.
23. KAPLAN, R.M. 2010. Choosing

a first programming language, In
Proceedings of the ACM

Conference on Information

Technology Education.
24. KLECKA, W. R. 1980.

Discriminant analysis for Social

Sciences. Sage Publications, 71
pages.

25. KRAHMER, E. & UMMELEN,
N. 2004. Thinking about
thinking aloud: A comparison of
two verbal protocols for usability
testing. IEEE Trans. Prof.

Commun. 47, 2, 105–117.
26. KRAMER, J. 2007. Is

Abstraction the Key to

Computing? Communications of

the ACM. Vol. 50, No.4. 37-42.
27. KRIPPENDORFF, K. 2004.

Content analysis: an

introduction to its methodology,

2nd ed. Sage Publications, 413
pages.

28. KUUSELA, H. & PAUL, P.
2000. A comparison of
concurrent and retrospective
verbal protocol analysis. Am. J.

Psych. 113, 3, 387–404.
29. LAHTINEN, E. ALA-MUTKA,

K. & JÄRVINEN, H. 2005. A
study of the difficulties of novice
programmers. In Proceedings of

the 10th Annual Conference on

Innovation and Technology in

Computer Science Education

(ITiCSE’05). 14–18.
30. Lee, M. J. W., S. Pradhan & B.

Dalgarno (2008) The
Effectiveness of Screencasts and
Cognitive Tools as Scaffolding
for Novice Object-Oriented
Programmers. Journal of

Information Technology

Education, 7, 61-80
31. Mclver, L. & D. Conway (1996)

Seven Deadly Sins of
Introductory Programming
Language Design. Proceedings
of International Conference on

Software Engineering:

Education and Practice,

January, New Zealand, 1-8.
32. MANCY, R. & REID, N. 2004.

Aspects of cognitive style and
programming. In Proceedings of

the16th Workshop of the

Psychology of Programming

Interest Group (PPIG’04). 1–9..
33. MCGETTRICK, A., BOYLE,

R., IBBET, R., LLOYD, J.,
LOVEGROVE, G., &
MANDER, K. 2005. Grand

1284

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

challenges in computing:
Education – A summary.
Computer Journal. 48, 1, 42–48.

34. MILNE, I. & ROWE, G. 2002.
Difficulties in learning and
teaching programming – Views
of students and tutors. J. Educ.

Inf. Technol. 7, 1, 55–66.
35. RENUMOL, V. G.,

JAYAPRAKASH, S., &
JANAKIRAM, D. 2009.
Classification of cognitive
difficulties of students to learn
computer programming.
Technical report No. IITM-CSE-
DOS-2009-01. Distributed and
Object Systems Lab, Department
of Computer Science and
Engineering, IIT Madras, India.

36. RENUMOL, V. G.,
JANAKIRAM, D., &
JAYAPRAKASH, S. 2010.
Identification of cognitive
processes of effective and
ineffective students during
computer programming. ACM

Trans. Computing Education 10,
3, Article 10, 1-21.

37. ROBINS, A., ROUNTREE, J.,
& ROUNTREE, N. 2003.
Learning and teaching
programming: A review and
discussion. Computer Sci. Educ.

J. 13, 137–172.
38. ROBINS, A., HADEN, P. &

GARNER, S. 2006. Problem
Distributions in a CS1 Course, In
Proceedings of the 8th

Australasian Computing

Education Conference

(ACE’06).
39. Rosales, F., A. Garcia, S.

Rodriguez, J. Pedraza, R.
Mendez & M. M. Nieto (2008)
Detection of Plagiarism in
Programming Assignments ,

IEEE Transactions On

Education, 51(2), 174- 183.
40. Shneiderman, B. (1975)

Cognitive Psychology and
Programming Language Design,
ACM SIGPLAN, 46-47.

41. Simon, Fincher,S., Robins, A.,
Baker, B., Box,I., Cutts, Q., De
Raadt, M., Haden, P., Hamer, J.,
Hamilton, M., Lister, R., Petre,
M., Sutton, K., Tolhurst, D., &
Tutty, J. 2006. Predictors of
success in a first programming
course. In Proceedings of the 8th

Australasian Computing

Education Conference

(ACE’06).
42. Wang, Y., Patel, S. & Patel, D.

2006 A Layered Reference
Model of the Brain (LRMB).
IEEE Transactions on Systems,

Man, and Cybernetics, 36(2),

124-133.
43. White, G.L. and M. P.

Sivitanides (2002) A Theory of
the Relationships between
Cognitive Requirements of
Computer Programming
Languages and Programmers’
Cognitive Characteristics,
Journal of Information Systems

Education, 13(1), 59-66.
44. WING, J.M. 2006.

Computational thinking,
Communications of the ACM 49,
3, 33–35.

45. WINSLOW, L. E. 1996.
Programming pedagogy – A
psychological overview. ACM

SIGCSE Bulletin 28, 3, 17–25.
46. Xu, S. and V. Rajlich (2004)

Cognitive Process during Program
Debugging, Proceedings of Third

IEEE International Conference on

Cognitive Informatics, August,
Victoria, 1-7.

1285

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120742

