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 Abstract  :      We have evaluated the  total mechanical energy of the  long 

wavelength  longitudinal optical (LO) phonons.  Then we have calculated  the transition 
probability for the interaction of electrons  with long wavelength  longitudinal optical 
(LO)phonons  in the  spatially inhomogeneous medium. For the evaluation of  transition 
probability   we have calculated the advanced Green’s function and hence the retarded 
Green’s function. finally   we have used the transition probability to find the expression 
for  the collision integral for the interaction of electrons with long wavelength LO 
phonons in spatially inhomogeneous medium.   
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1. Introduction :   

There are various types of electron-phonon interaction[1], such as 

interaction of the electrons with longitudinal optical (LO) phonons known as 

Fro hlich interaction, deformation potential interaction, interaction of the electrons 

with optical phonons due to deformation of the lattice which is important only in 

the non-ionic crystals where the Fro elich interaction is not present, and interaction 

of the electrons with acoustic phonons due to piezoelectric fields which is often 

weaker than the deformation-potential interaction. We have to mainly consider 

only the interaction of long wavelength LO phonons with electrons. 

 

   
  

 2. Energy of  LO phonon      
 In case of ionic crystals, the optical phonons produce a dipolar field when 

the oppositely charged ions oscillate as a whole with respect to each other [2]. This 

dipolar field polarizes the electrons and leads to the coupling of electrons and 

phonons. Consider a biatomic ionic crystal, under the optical vibrations, the centre 

of mass of the cell remains at rest, and the atoms of the cell oscillate in antiphase. 

Here we have made the approximation that the displacements uns   (where 

elementary crystal cell is numbered by the integer vector n and the index s is the 

number of atoms in the cell) from the equilibrium position of the ions, do not 

depend on n, and the vibrations are described by the two variables u+ and u- 

corresponding to the two ions having atomic masses m+ and m- and effective 

charges +e
  
and –e

  
respectively.  Now as the centre of mass of the cell remains at 

rest, and the atoms of the cell oscillate in antiphase    m+ u+ + m- u- = 0 therefore 

both u+ and u-  may be expressed in terms of the relative ionic displacement u = u+ 

- u-  so there is only one independent variable u . In such vibrations each 

elementary cell will have a dipole moment  e.u , and a significant contribution to 

the interatomic forces comes from the long range dipole-dipole interaction. The 

short-range part of the force is proportional to the relative shift u ,  and the long-

range part is given by   e
.
E.  The longitudinal field E induces the polarization 

(N/V)αE, where α is the polarizability of the cell and N/V is the number of cells 

per unit volume. Therefore total polarization is P = (N/V)[ e.u + αE]   .  

when the polarization induced by longitudinal modes is expressed in terms of the 

effective dielectric constant ε
*
 we get  

                                   P =  
ωLO   

2

4πε ∗
.𝐖                                       ………..(i) 
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The potential energy of interaction of electrons with the field induced by long 

wavelength optical phonons is obtained from the poisson equation 

                                                 ∇  
U

e
 = 𝟒𝛑𝐏 .                                        ……...(ii)      

 Only longitudinal optical(LO) phonons produce the long range electric field. The 

mechanical energy of the long wavelength longitudinal optical vibration in an ionic 

biatomic crystal is given by the expression[3]        

                                    ELO  =   d𝐫
(v)

 (ωLO   
2 .𝐖 + 𝐖 2)                 ……….(iii) 

Where    𝐖 =  (Nm/V)
1/2

 u,  and  m  is the reduced mass given by the expression   

m = (m+ m-)/ ( m+ + m- ).  

Therefore  using (ii), (iii) and (iv)     we can write, 

  

                                  ELO = 2π d𝐫
(v)

 ε∗(𝐏 2ωLO   
−2 + 𝐏2)                ………(iv)    

  

                                  ELO= 
1

8πe2  d𝐫
(v)

 ε∗[(∇U )2ωLO   
−2 + (∇U)2]    ……….(v) 

In case of inhomogeneous medium the dielectric constant  ε∗=ε∗(r)  and  the 

longitudinal optical phonon frequency   ωLO  = ωLO  (r).  

 

 3.Calculation of retarded Green’s function  

 Using the equation  (v), we can write the equation for Green’s function[4] 

corresponding to the Lagrange equation of motion for U  as follows, 

             [ (ω− i0)2 ∇
ε∗

ωLO   
2 ∇ - ∇ε∗∇]  𝑔𝜔

𝐴 (𝐫, 𝐫′) =4πe
2 
δ (𝐫 − 𝐫′)          ..…….(vi)  

The  equation for the retarded Green’s function differs from this equation by the 

factor (ω + i0) in place of  (ω− i0). These  functions are expressed through each 

other as[3]      𝑔𝜔
𝑅  𝐫, 𝐫′ = 𝑔𝜔

𝐴∗(𝐫, 𝐫′). 
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We are going to define the spatial  in-homogeneity  in such a way that the spatial 

in-homogeneity is along the  z-axis only and the medium is homogeneous along x-

axis and y-axis.  i.e.  the total mechanical energy for the long wavelength 

longitudinal optical phonon  ELO will depend on the z- coordinate only.  Now to 

simplify the problem we define     

  
ε∗(𝐫)  
ωLO  (𝐫) 

  =  
ε∗(z)  
ωLO  (z) 

  =   
ε1
∗  

ωLO 1 
     for    z  > 0                             ……….(vii) 

  
ε∗(𝐫)  
ωLO  (𝐫) 

  =  
ε∗(z)  
ωLO  (z) 

  =   
ε2
∗  

ωLO 2 
     for    z  < 0                            ……….(viii) 

and      
ε∗(𝐫)  
ωLO  (𝐫) 

      changes abruptly at   z  = 0. 

Where    ε1
∗   ,  ε2

∗   ,   ωLO 1 and  ωLO 2     are   constants. 

Equation  (vi)  can be solved  using the boundary conditions  (vii)  and  (viii). 

To find the transition probability  Kω(q ∣ z, z′)  , first of all  we  shall evaluate the 

advanced  Green’s function and hence the retarded Green’s function using the 

equations  (vi) ,  (vii)  and  (viii). 

The advanced Green’s function can be written in the (q,z) representation as 

𝑔𝜔
𝐴 (q ∣ z, z′)  .  After simplifying the equation (vi) we get 

                      [
𝜕2

𝜕z2
−  q2]  𝑔𝜔

𝐴 (q ∣ z, z′) = 
4πe2ωLO 1 

2 δ (𝐫−𝐫′)

ε1
∗ [ ω−i0 2−ωLO 1 

2 ]        
    for   z  > 0                               

                                                                                                   ………..(ix) 

                      [
𝜕2

𝜕z2
−  q2]  𝑔𝜔

𝐴 (q ∣ z, z′) =  
4πe2ωLO 2 

2 δ (𝐫−𝐫′)

ε2
∗ [ ω−i0 2−ωLO 2 

2 ]        
    for   z  < 0      

                                                                                                              ..……..(x)                

Now we solve the equation (ix) and (x) under the circumstances that              

(a)      lim𝑧→±∞   𝑔
𝜔
𝐴(q ∣ z, z′)   = finite. 

(b)      𝑔𝜔
𝐴 (q ∣ z, z′)   is continuous at   z = 0. 
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(c)        ε∗[
 ω−i0 2

ωLO   
2 − 1] . 

𝜕

𝜕𝑧
𝑔
𝜔
𝐴 (q ∣ z, z′)    is continuous at z = 0.  

 

After solving the equation (ix) we get  

𝑔𝜔
𝐴 (q ∣ z, z′) =  

2πe2ωLO1 
2

qε1
∗[ ω−i0 

2
−ωLO1 

2 ]  
( 𝑒−q∣z−z ,∣  +

𝜉+− 𝜉− 

𝜉+ + 𝜉−
    𝑒−q∣z∣−∣z ,∣  )                       

 for   z  > 0         ……(xi) 

 and  after solving the equation (x) we get  

𝑔𝜔
𝐴 (q ∣ z, z′) =  

2πe2ωLO2 
2

qε2
∗[ ω−i0 

2
−ωLO2 

2 ]  
 ( 𝑒−q∣z−z ,∣ −

𝜉+− 𝜉− 

𝜉+ + 𝜉−
    𝑒−q∣z∣−∣z ,∣  )               

                                                                          for   z  < 0    .……(xii) 

Where we have defined the parameters 𝜉+  and 𝜉−   as  

𝜉+  =   ε1
∗[

 ω−i0 2

ωLO 1  
2 − 1]     and   𝜉−  =   ε2

∗ [
 ω−i0 2

ωLO 2  
2 − 1] 

  

Therefore  from equations (xi)  and (xii)  we can find    𝑔𝜔
𝑅 (q ∣ z, z′)   using the 

relation       𝑔𝜔
𝑅 (q ∣ z, z′)   =    𝑔𝜔

𝐴∗(q ∣ z, z′)     

 

  

4. Transition probability  

The transition probability[5],[6] from the electron state  Ψz  for the electron 

with momentum p to the state Ψz′     with momentum 𝐩′ due to the interaction of an 

electron with long wavelength LO phonon is given by  

(i) For the emission process      

W(𝐩,𝐩′) =   
1

L2
  dω Kω[(p − p′ ) / ħ]. [N(ω) +1]. δ(𝜀𝑝 − 𝜀𝑝 ′ − ħω)      .…(xiii) 
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(ii) For the absorption process     

W(𝐩′ ,𝐩) =   
1

L2
  dω Kω[(p − p′ ) / ħ].  N(ω) . δ(𝜀𝑝 − 𝜀𝑝 ′ − ħω)        …….(xiv) 

 

Where N(ω) = [exp(ħω/kT) - 1]
-1

  is planck distribution function.  k is 

Boltzmann’s constant,  and  L2  is the normalized area in the x-y plane. 

and      Kω(q)  =    dz   d z′ ∣ Ψz ∣2 
.
 ∣ Ψz′  ∣

2 
.
  Kω(q ∣ z, z′)   .               ...…(xv)      

 

 

To find   Kω(q)  in the above integral, we consider a rectangular potential well in 

the hard-wall model[6] , with       Ψz =  2/d cos [π(z − z0 )/d], where  z0  is the 

distance of the centre of the well from the surface.  

And the function     Kω(q ∣ z, z′)   is given by the equation[3] 

Kω(q ∣ z, z′)  =  i[𝑔𝜔
𝑅 (q ∣ z, z′) - 𝑔𝜔

𝐴 (q ∣ z, z′)]   

                    =  -2. Imaginary part of   𝑔𝜔
𝑅 (q ∣ z, z′)                             ….…(xvi)   

Hence we can write from equation (xv)  and  (xvi)  

 Kω(q)  =    dz   d z′ ∣ Ψz ∣2 
.
 ∣ Ψz′  ∣

2 
.
  Kω(q ∣ z, z′)                       

             =    -2.  dz   d z′ . ∣  2/d cos [π(z − z0 )/d] ∣2 
.
  

                                                               ∣  2/d cos [π(z′ − z0 )/d] ∣2.Im𝑔𝜔
𝑅 (q ∣ z, z′)     

            =  - 
8

d2
     dz   d z′ . ∣ cos [π(z − z0 )/d] ∣2 

.
  

                                                                ∣ cos [π(z′ − z0 )/d] ∣2.Im𝑔𝜔
𝑅 (q ∣ z, z′)         ..….(xvii) 

From (xiii), (xiv)  and (xvii)  we can write 

 W(𝐩,𝐩′)  =   W(𝐩′ ,𝐩).  exp[(𝜀𝑝 − 𝜀𝑝 ′ )/kT]                                       ...….(xviii)      
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Finally we get the collision integral[6]  corresponding to the kinetic equation for 

the electrons interacting with long wavelength LO phonons in spatially 

inhomogeneous medium as follows 

 

Je, LO phonon  =     [W(𝐩′ ,𝐩)𝐩 . fr𝐩
′ t  (1- frpt)  -   W(𝐩,𝐩′). frpt(1 - fr𝐩

′ t)]       

                                                                                                         ……….(xix) 

Where  frpt  is  Wigner distribution function of electrons for the case of weakly 

inhomogeneous  system. 

 

 

5. Conclusion    

 From the equation (xix) for the collision integral it is obvious that, 

as a special case if we assume Fermi distribution function in place of  

Wigner distribution function  we will get the zero value (as it should be) 

for the collision integral. The equation  (xix)  may also be used to find 

the quantum kinetic equation[7] for the electrons interacting with long 

wavelength LO phonons in a spatially non-homogeneous medium. 
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