

Comparative Analysis of Different Graph

Databases

Pradeep. D. Jadhav

Dept. of CSE, JNEC

Dr. B.A.M. University

Aurangabad (M.S)

Ruhi Oberoi

Dept. of CSE, JNEC

Dr. B.A.M. University

Aurangabad (M.S)

Abstract:- The limitation of traditional databases, in

particular relational model, to cover the requirements of

current applications have leaded the development of new

database technologies. The graph databases are calling the

attention of the database community because in trendy

projects where the database is needed the extraction of

worthy information relies the processing of graph-like

structure of the data. In this paper we present the systematic

comparison of Neo4j and Dex graph database models. This

paper includes general features (for data storing and

querying), data modeling features (i.e. data structures, query

languages and integrity constraints) and the support for

graph essential queries with comparison of different graph

databases such as Neo4j and Dex graph database models.

Keywords: - DEX, Neo4j, NOSQL, Graph database, SQL

1. INTRODUCTION

The graph database queries are user-friendly domain-

specific and can be thought of as an "SQL for graphs"[1],

[3]. The similarity to SQL is intentional and makes the

transition much easier for developers/consultants. When an

SQL query on the RDBMS is as long as half a novel, the

Cypher Query equivalent is usually much shorter and much

more intuitive [3]. The traverser API in an RDBMS is

highly resource intensive, since each step to a neighboring

node has to be depicted with a JOIN. In contrast, the graph

database property hypergraph concept allows direct access

to neighboring nodes by eliminating the edge attribute.

Graph databases support a graph model which allows for a

direct persistent storing of the particular objects in the

database together with the relations between them. In

addition, a GDB should provide an access to query

methods that not only deal with the stored objects, but also

with the graph structure itself. The best known example of

such an operation is traversal, which in its most simple

form can be used to obtain the neighbors of a specified

object, that is, the objects that the specified object is

directly related to.

Figure 1. Evaluation of Graph Database Model

Fig.1 [1] shows evaluation of graph database model.

Rectangles denote database models, arrows indicate

influences, and circles denote theoretical developments. A

time-line in years is shown on the left.

1.1 Objective and Contribution

 Define an application domain for graph

database(Facebook Social Application)

 Select graph databases (Neo4j and Dex) and

identify the modeling concepts and API of these

systems.

 Evaluate existing graph database systems while

building benchmark which comprised of graph-

based tasks and a variety of graphs.

 An empirical study of the performance of graph

databases while dining an representative high

level queries mapping to system level.

1.2 Motivation

Graph database models can be characterized as those where

data structures for the schema and instances are modeled as

graphs or generalizations of them, and data manipulation is

expressed by graph-oriented operations and type

constructors.

One of the motivations towards this paper is to provide a

benchmarking mechanism to measure the effectiveness of

graph traversal operations. It also motivates us to measure

the capabilities of graph databases to perform query like

traversal where one searches for topologically related

vertices for a given vertex. It also searches the graph

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090721

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

820

analysis/mining operations that require the traversal of the

whole graph.

1.3 Applications of Graph Database

Several areas have witnessed the emergence of huge data

networks called complex networks. So graph databases are

the best database to implement such complex network of

relationships having million sof nodes and relationships.

The main application areas of graph databases are:

1.3.1 Social networks: In social networks, nodes are

people or groups, while links show relationships or flows

among nodes. Some examples are friendships, business

relationships, research networks (collaboration,

coauthorship), communication records (mail, telephone

calls, email), computer networks, and national security

There is growing activity in the area of social network

analysis and also in visualization and data processing

techniques for these networks.

1.3.2 Information networks: Information networks model

relations representing information flow, such as citations

among academic papers, World Wide Web (hypertext,

hypermedia), peer-to-peer networks, relations among word

classes in a thesaurus, and preference networks.

1.4 Advantages
The benefits of using a graph data model are given by: the

introduction of a level of abstraction which allows a more

natural modeling of graph data; query languages and

operators for querying directly the graph structure; and ad-

hoc structures and algorithms for storing and querying

graphs.

Graph databases are also somewhat similar to object

databases in case where objects and relationships between

them are all represented as objects with their own

respective sets of attributes.

Graph database consists of several advantages:

 It enables very fast queries when the value of the

data is the relationships between people/items.

 Use Graph Databases to identify relationships

between people/items, even when there are many

degrees of separation.

 Where the relationships represent costs, identify

the optimal combination of groups of

people/items.

2. LITERATURE SURVEY

The limitations of traditional databases, in particular the

relational model, to cover the requirements of current

application domains, has lead the development of new

technologies called NOSQL databases [1]. According to its

data model, these databases can be categorized as: Wide-

column stores, which follow the BigTable model of Google

(e.g., Cassandra); Document stores, which are oriented to

store semi-structured data (e.g., MongoDB); Key-value

stores, which implement a key to value persistent map for

data indexing and retrieval (e.g. BerkeleyDB); and Graph

Databases, which are oriented to store graph-like data.

Activity around graph databases flourished in the first half

of the nineties and then the topic almost disappeared [2].

Recently the area is gaining attention because in trendy

projects where a database is needed, the importance of the

information relies on the relations more or equal than on

the entities (a basic principle of every graph database).

Moreover, the continued emergence and increase of

massive and complex graph-like data makes a graph

database a crucial requirement. This renascence is showed

by the availability of several graph databases systems.

One of the most important elements conforming a database

is its database model (or simply data model). In the most

general sense a data model is a collection of conceptual

tools used to model representations of real-world entities

and the relations among these entities. From a database

point of view, a data model consists of three components: a

set of data structure types, a set of operators or inference

rules, and a set of integrity rules.

Graph database models can be defined as those in which

data structures for the schema and instances are modeled as

graphs or generalizations of them, and data manipulation is

expressed by graph-oriented operations and type

constructors. These models took off in the eighties and

early nineties alongside object oriented models. Their

influence gradually died out with the emergence of other

database models, in particular geographical, spatial, semi

structured, and XML. Recently, the need to manage

information with graph-like nature has reestablished the

relevance of this area. The main objective of this survey is

to present the work that has been conducted in the area of

graph database modeling, concentrating on data structures,

query languages, and integrity constraints.

Renzo Angles and Claudio Gutierrez [1] introduce Survey

of Graph Database Models. They give the information

about graph database models with evaluation of graph

database. They provide a historical data which provides

very broad and depth analysis of literature on the graph

data models and query languages graph. The authors

compare the proposals of notion of a graph database model

of available at the moment. Renzo Angles [2] describes

comparison of current graph database model. This paper

consists of current graph databases and their support for

querying graphs. Domingo De Abreu introducedgraph

databases and RDF engines for consuming and mining

linked data [6].

With respect to the recent developments in the area. Pere

Burton reviewed six graph databases (Neo4j, Hyper-

GraphDB, DEX, InfoGrid, Sones and VertexDB) and pub-

lished a comparison-matrix that included information like

software features (e.g., license), schema features (e.g.,

types of nodes and edges), query features (e.g., language

and traversals), general database features (e.g.,

transactions, indexing), database operation utilities (e.g.,

protocols), language bindings and operating systems. This

work summarizes the features but does not include major

discussion nor analysis.

3. PROPOSED SYSTEM

Proposed System consists of research and comparison of

two databases such as Neo4j and Dex graph databases. A

graph database stores data in a graph, the most generic of

data structures, capable of elegantly representing any kind

of data in a highly accessible way.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090721

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

821

3.1 Types of Graph Database Models

3.1.1 Neo4j Graph Database

As a robust, scalable and high-performance database,

Neo4j is suitable for full enterprise deployment or a subset

of the full server can be used in lightweight projects.

It features:

 true ACID transactions

 high availability

 scales to billions of nodes and relationships

 high speed querying through traversals

Proper ACID behavior is the foundation of data reliability.

Neo4j enforces that all operations that modify data occur

within a transaction, guaranteeing consistent data. This

robustness extends from single instance embedded graphs

to multi-server high availability installations.

Neo4j is a commercially supported open-source graph

database. It was designed and built from the ground-up to

be a reliable database, optimized for graph structures

instead of tables. Neo4j is based on the data model of a

directed multigraph with edge labels and optional node and

edge properties. Node and links can be changed but have

identity maintained by DBMS. Labels and property keys

are strings, property values can be primitive java data types

and strings or arrays of both.

The fundamental units that form a graph are nodes and

relationships. In Neo4j, both nodes and relationships can

contain properties. Nodes are often used to represent

entities, but depending on the domain relationships may be

used for that purpose as well.

Figure 2. Neo4j Graph Database Nodes and

relationships

Various Operations perform by Neo4j Graph Database:

i. Add Neo4j to the build path

 Get the Neo4j libraries from one of these sources:

1. Extract a Neo4j

download<http://neo4j.org/download/>zip/tarball,

and use the jarfiles found in the lib/directory.

2. Use the jarfiles available from Maven Central

Repository<http://search.maven.org/#search|ga|1|g

%3A%22org.neo4j%22>

 Add the jar files to your project:

JDK tools

Append to -classpath

Eclipse

1. Right-click on the project and then go Build Path

→ Configure Build Path. In the dialog, choose

Add External JARs, browse to the Neo4j

lib/directory and select all of the jar files.

2. Another option is to use User

Libraries<http://help.eclipse.org/indigo/index.jsp?

topic=/org.eclipse.jdt.doc.user/

reference/preferences/java/buildpath/ref-

preferences-userlibraries.htm>.

NetBeans

1. Right-click on the Librariesnode of the project,

choose Add JAR/Folder, browse to the Neo4j

lib/directory and select all of the jar files.

2. You can also handle libraries from the project

node, see Managing a Project’s

Classpath<http://netbeans.org/kb/docs/java/project

-setup.html#projects-classpath>.

ii. Add Neo4j as a dependency

Syntax:

<project>

...

<dependencies>

<dependency>

<groupId>org.neo4j</groupId>

<artifactId>neo4j</artifactId>

<version>1.9.M04</version>

</dependency>

...

Using Neo4j embedded in Java applications:

</dependencies>

...

</project>

iii. Starting and stopping

Syntax to create a new database or ópen an existing one:

graphDb = new

GraphDatabaseFactory().newEmbeddedDatabase(

DB_PATH);

3.1.2 Dex Graph Dtabase

Here, we evaluate DEX, a high performance graph

database querying system that allows for the integration of

multiple data sources. DEX makes graph querying possible

in different flavors, including link analysis, social network

analysis, and pattern recognition and keyword search.

DEX [2], [3] provides a Java library for management of

persistent and temporary graphs. Its implementation, based

on bitmaps and other secondary structures, is oriented to

ensure a good performance in the management of very

large graphs.

DEX queries are implemented as a combination of low

level graph-oriented operations, which are highly

optimized to get the maximum from the data structures.

DEX aims at maintaining the list of operations as small as

possible and to leave the implementation of more complex

algorithms to a higher level. Fig.3 shows Dex architecture.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090721

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

822

Figure 3. Dex Architecture

3.2 Graph Databases and Their Support for Querying

Graphs

3.2.1 Adjacency Queries: In this type of queries the

primary notion is node/edge adjacency. Two nodes are

adjacent when there is edge between them[2].

3.2.2 Reachability Queries: These queries are

characterized by path or traversal problem. The problem

causes in reachability test whenever two given nodes are

connected to path[2].

3.2.3 Pattern Matching Queries: Pattern matching

queries find all sub-graphs of data graph that are

isomorphic to pattern graph [2].

3.2.4 Summarization Queries: Summarized queries are

not related to consult the graph structure [2]. They are

based on special functions that allow summarizing or

operating on the query results, normally returning a

single value.

4. EXPERIMENTAL EVALUATION

4.1 Setup: Computer Configurations and Datasets

We used eclipse 3.7.2, running at 2.4GHz, core i3

processor, 3 GB of RAM and 320 GB hard-disk for

implementing Neo4j graph database and Dex database.

Here we used large synthetic datasets for comparison is

synthetic dataset which is generated by facebook

generator. A variety of synthetic graphs are analyzed

graph with different size and densities are generated

using facebook generator. To examine the impact on the

performance of graph systems under different glowing

scale and size using facebook graph generator is an

important aspect in this paper.

4.2 Data Loading

Here, we have configured transaction during the creation

of corresponding graph representations. We have

imported data and increased the scale for graph creation

in order to build benchmark in Neo4j and DEX graph for

comparing Neo4j and DEX graph databases. We have

considered datasets based up on SocNet data model 2.2.

The numbers of nodes created are users and numbers of

edges generated are posts, likes and comments,

respectively.

4.3 Query Workload and Evaluation

The workload of queries has been assembled by selecting

common and well-known graph algorithms as well as used

metrics from the domain of SocNet data model 2.2. We

perform a selection of domain specific queries for the

graph database benchmarks. Our approach is based on the

user interaction with SocNet data model that are mapped to

the queries of the benchmark. Such interaction includes

data analysis to identify friend-of-friend requests based on

mutual likes, posts and comments of users.

Our graph databases benchmark implementation is used to

evaluate the individual performance of atomic operations

(such as joins and aggregations), rather than more complex

queries. When considering graphs, we need several micro-

queries which may be atomic and we group them into

selection, adjacency and pattern matching.

The comparison of Neo4j graph database and Dex database

model shown in table 1 where it shows time require

executing query for one user and measuring results for

graph creation is shown fig.4. Same as a result of one user

in table 2 and table 3 shown comparison of database

models for 10 and 100 users respectively. Figure 5 and

figure 6 shows comparison of database models for 10 and

100 users respectively.

Table 1. Comparison of Neo4j

and Dex database for one user

Table 2.

Comparison of Neo4j

and Dex database for ten users

 For 10 User

No of

Nodes

N

DEX

8

672

163

16

696

135

32

635

139

64

687

247

128

691

288

256

717

347

512

702

361

1.024

768

374

2.048

945

392

4.096

984

412

8.192

1153

434

16.384

1248

464

32.768

1383

502

65.536

1506

593

131.072

1782

675

For 1 user
No of
Nodes

N DEX
8 686 155

16 680 121
32 682 126
64 696 232

128 669 276
256 715 286
512 723 325

1.024 789 354
2.048 858 366
4.096 991 389
8.192 1146 403
16.384 1329 421
32.768 1395 443
65.536 1509 459

131.072 1686 648

Figure 4. Comparison of

Neo4j and Dex database

for one user

Figure 5. Comparison of
Neo4j and Dex database

for ten users

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090721

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

823

5. CONCLUSIONS

In paper consists of comparison of two different graph

databases such as Neo4j and Dex graph database models.

This shows that some aspect of different graph database

models which deserve more development.

According to the result we can conclude that, Dex graph

database model required more time as compare to the

Neo4j graph database model. Therefore Neo4j graph

database is more suitable to use than Dex graph database

model.

6. ACKNOWLEDGMENT

We are thankful to the Department of Computer Science

and engineering for providing the PG Lab at Jawaharlal

Nehru Engineering college, Aurangabad (M.S.) India.

REFERENCES

[1] Renzo Angles And Claudio Gutierrez.” Survey Of Graph

Database Models”ACM Computing Surveys, Vol. 40, No. 1,

Article 1, Publication date: February 2008.

[2] Renzo Angles. “Comparison of Current Graph Database

Models”, Department of Computer Science, Talca..

[3] “NOSQL Databases”, http://nosql-database .org/

[4] “DEX,” http://www.sparsity-technologies.com/dex.

[5] “Neo4j,” http://neo4j.org/.

[6] Jena- RD F.Jena documentation.Internet:

http://jena.sourceforge.net/documentation.html , 2010.

[7] Sesame. Open RDF website, Internet:

http://www.openrdf.org, 2010.

[8] Neo4j B log, Internet: http://bl og.

neo4j.org/2009/04/current-database-debate-andgraph.html

,201 0.

[9] Neo4jmanual, Internet: http://docs. neo4j.org/chunked/stabl

e/graphdb- neo4jnodes. html ,2010

[10] J. Paredaens and B. Kuijpers, “Data Models and Query

Languages for Spatial Databases,” Data & Knowledge

Engineering (DKE), vol. 25, no. 1-2, pp. 29–53, 1998.

[11] P. Urb ´ on, “Nosql graph database matrix,”

http://nosql.mypopescu.com/post/619181345 /nosql-graph-

databasematrix, May 2010.

[12] “Short overview on the emerging world of graph

databases,”http://www.graph-database.org/overview.html.

[13] D. Dominguez-Sal, P. Urb ´ on-Bayes, A. Gim´ enez-Va ˜ n ´

o, S. G ´ omezVillamor, N. Mart´ ınez-Baz ´ an, and J. L.

Larriba-Pey, “Survey of graph database performance on the

hpc scalable graph analysis benchmark,” in Proc. of the 2010

international conference on Web-age information

management (WAIM). Springer-Verlag, 2010, pp. 37–48.

Table 3. Comparison of Neo4j

and Dex database for hundred

users

For 100 User

 No of
Nodes

N

DEX

8

675

167

 16

696

155

 32

702

154

 64

705

261

 128

728

294

 256

759

356

 512

795

375

 1.024

888

382

 2.048

1068

415

 4.096

1152

429

 8.192

1158

454

 16.384

1357

478

 32.768

1383

526

 65.536

1557

633

 1 31.072

1731

781

Figure 6.

Comparison of
Neo4j and Dex

database for 100

users

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090721

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

824

