
Comparative Study of CH Stone Benchmarks

 on Xilinx Vivado High Level Synthesis Tool

Anuj Dubey, Ashish Mishra, Shrikant Bhutada

 EEE Group, BITS - Pilani,

 Rajasthan, India.

.

Abstract— High level synthesis is the process of generating

hardware for an application written at specification level in

languages like C, C++, HDL. Many tools have been developed

in the last decade for this process to automates along with

numerous optimizations applied is the respective tools. Xilinx

also released Vivado, a commercial high level synthesis tool.

This paper presents an analysis of the high level synthesis

results of CHStone benchmarks using Xilinx Vivado HLS tool

and the effect on different optimization on the throughput and

area.

Keywords---High Level Synthesis (HLS), Xilinx, Vivado and

CHStone benchmarks.

I. INTRODUCTION

Accelerators are the applications which have been

migrated from software to hardware implementation for

increasing the performance [1]. In contemporary chips

examples of such accelerators are advance encryption

algorithm (AES), Cyclic redundancy check (CRC), image

processing etc. In such a migration the hardware description

(HDL) code is manually written to optimize it for

application specific development (ASIC). The performance

gain in this process is ten folds but the cost increases

because of ASIC based design. The other way around is the

automatic generation of HDL and implementation on

FPGAs. FPGAs will not deliver as much performance as

ASIC based design but chip fabrication is not required.

Since migrating a procedural specification to a concurrent

design requires efficient bridge for concurrency and timing,

the problem has been a popular platform for research in last

decade. Many academic and commercial tools have been

developed for achieving HLS efficiently. Academic tools

include SPARK, ROCCC, LegUp from University of

Toronto , GAUT From Universite de Bretagne Sud/Lab-

STICC, C-to-Verilog from C-to-Verilog.com and

xPilot from University of California, Los Angeles.

Commercial tools include BlueSpec Compiler

from Bluespec, HLS-QSP from CircuitSutra Technologies,

C-to-Silicon from Cadence Design Systems, Concurrent

Acceleration from Concurrent EDA, Synphony C Compiler

from Synopsys, PowerOpt from ChipVision, Cynthesizer

from Forte Design Systems, Catapult C from Calypto

Design Systems, eXCite from Y Explorations, Xilinx

Vivado (formerly AutoPilot from AutoESL)[2]. This paper

aims at bringing out the capability of Xilinx Vivado HLS

tool and synthesis results of a specific package of

benchmarks called CHStone specially designed for testing

the performance of different High Level Synthesis

compilers [3]. The tool also provides options for carrying

out different types of optimizations on the behavioral

description before synthesizing it which enables the user to

bring the design closer to the given throughput or area

specification. To understand the effect of these

optimizations some optimizations have been applied on

some benchmarks and the results of the optimized design

are compared to the previous design. Towards the end of the

paper, Vivado results have been compared with the

synthesis results of LegUp compiler [6]. Though they have

targeted the Altera Cyclone II FPGA which is different from

our target which is Xilinx Kintex7 FPGA, but still the

latency and frequency can be compared to some extent just

to have a fair idea of where idea about where Vivado stands

with respect to other compilers already in market.

II. HIGH LEVEL SYNTHESIS

High-level synthesis (HLS) is an automated process of

converting any abstract behavioral description to RTL level

so that it can be synthesized into digital hardware that

implements that behavior successfully. The given high level

specification can be in different forms varying from just an

algorithmic description to C/ C++/ SystemC (commonly

accepted). The high level description is a procedural

description completely free from any kind of clock

synchronization which is converted to a completely clocked

RTL description by the HLS tool. In a typical VLSI design

flow. In a typical VLSI design cycle it is the next step after

architectural design and logic synthesis follows after this

step.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

237

Fig-1 VLSI Design Flow

The tool creates a data flow diagram and control flow

graph of the given specification first and then tries

scheduling it into different states synchronized to a clock.

After this it selects and allocates different hardware

resources and functional units to perform the required

actions. Here it also attempts sharing wherever possible to

minimize resources. After performing all these operations

the RTL code is synthesized into digital hardware. The

sequence of steps followed in high-level-synthesis is as

follows [2]:

1. Preprocessing: this process basically refers to the

conversion of the algorithmic description into a

datapath and a controller. It creates the CDFG (control

and data flow graph) of the sequence of events that

need to take place to achieve the given functionality.

For e.g.: if the given operation is: y = a * x + b, then its

CDFG is:

Fig-2 Control and Data Flow Graph

2. Scheduling: this is one of the most important steps in

HLS where the entire design is synchronized with a

clock. It checks dependencies between the different

events and their sequence and then schedules them

accordingly into different states of a clock.

3. Allocation: this step basically deals with the calculation

of number of storage elements required for storing the

input, output and intermediate values. It also deals with

calculation of number of functional units required for

carrying out the operations.

4. Binding: Variables are mapped to registers, operation

to functional units and data transfers to the

interconnection units. This step also aims at minimizing

the hardware by attempting to share the resources

between different units to reduce cost and area.

5. Data path & Controller design: controller is designed

based on interconnections among the data path

elements, data transfer required in different control

steps.

III. OPTIMIZATION

There are two important parameters that the designer has to

keep in mind while developing any digital hardware viz.

area and throughput. The aim of every designer is to

minimize area utilization and increase the throughput of the

design or in other words optimize the design. These two

parameters are inversely proportional to each other and

hence both targets cannot be achieved simultaneously.

Hence after a particular limit the designer has to make a

choice as to what is his/her priority: area or throughput and

one have to be compromised in order to achieve the other.

There are different kinds of optimizations used by the

designer to achieve the functionality according to the

required specifications. Some of them are explained below

[4]:

1. Function Inlining: this basically removes the

functional hierarchy which saves the time spent in

executing the call and return statements from the

function every time it is called. This can be used at

places where the function is called just once or twice or

if there is some kind of dependency which is preventing

the top function to be pipelined.

2. Function Dataflow Pipelining: this is a very powerful

technique used to increase the throughput by a huge

margin. This basically breaks the sequential nature of

the algorithm and performs tasks in parallel as much as

possible so that one function doesn’t have to wait for

the previous one to be executed completely before it

can start. It checks for dependencies and overlaps the

operations as much as possible.

3. Loop unrolling: this technique tries to carry out a

certain number of iterations of the loop in one go unlike

the unrolled case where it executes iteration in each

clock. This increases the resources on chip but can

prove to be beneficial if the number of iterations is low.

4. Loop Dataflow Pipelining: operated in the similar

manner as the functions by allowing the parts of the

loop that are sequential in nature to occur concurrently

at RTL level.

5. Array Partitioning: Arrays can also be partitioned into

smaller arrays. Memories only have a limited amount of

read ports and write ports that can limit the throughput

of a load/store intensive algorithm. The bandwidth can

sometimes be improved by splitting up the original

array (a single memory resource) into multiple smaller

arrays (multiple memories), effectively increasing the

number of ports.

a

*

y

x

b

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

238

IV. XILINX VIVADO

The Xilinx® Vivado® High-Level Synthesis (HLS)

compiler interface is built very similar to eclipse interface

which provides for application development on different

types of processors. HLS shares key technology with

processor compilers for the interpretation, analysis, and

optimization of C/C++ program but the main difference

comes in the target execution platform which is an FPGA in

our case instead of a processor. This frees the programmer

the different constraints in the processor like sharing the

same memory source or limited computational resources.

We can code assuming that he can take as many resources

as possible and also there is no limit on the number of

functional units to be used. Also he can use this freedom to

guide the design through different kinds of optimizations

and bring the design closer to the required latency and area

utilization on the FPGA fabric. This becomes particularly

very useful for computationally intensive software

algorithms (like image processing) which would otherwise

take a huge amount of time to execute on a processor. It

gives you a proper design metrics of the synthesized design

like state table, resources and functional units used by each

instance, latency of individual loops etc. which enable the

designer to choose which optimization directives should be

given to make the design closer to the given specification

[5]. We have used Xilinx Vivado HLS version 2013.2 for

our purpose, chose the target product family as

kintex7_fpv6 and target device as xc7k70tfbg484-2.

V. RESULTS

The synthesis of all the ten CHStone benchmarks was tried

using the tool but it found the jpeg benchmark to be non-

synthesizable due to the use of dynamic memory allocation

in the code. The tool asks for two files viz. the source code

file which contains the top level function and a test bench

file which basically has the main function and calls the top

level function from main. We then check whether the

generated output matches with the correct output or not and

accordingly return 0 or 1. For example below is the test

bench file for adpcm benchmark:

#include "adpcm.h"

int main ()
{
FILE *fp;
fp=fopen("out.dat","w");
intretval=0,i;
adpcm_main();
for (i = 0; i< 100 / 2; i++)
 {
 fprintf(fp,"%d",compressed[i]);
 }
for(i=0;i<100;i++)
 {
 fprintf(fp,"%d",result[i]);
 }
fclose(fp);

retval=system("diff --brief -w out.dat out.golden.dat");
if(retval!=0){
printf("Test Failed\n");
retval=1;}
elseprintf("Test Passed\n");
returnretval;
}

Here the generated output file is checked with the file

containing the correct output and accordingly the return

value is decided.

The loop bounds in the C code to be synthesized can either

be constants or variable. For certain types of variable loop

bounds Vivado can calculate the upper loop bound and give

the latency of the design but for some it is unable to do so

and hence the results are undefined. Now the tool was not

able to give the latency and interval values for most of the

synthesized benchmarks because the loop limits were

variable and undeterminable. It is able to synthesize the

design and generates a state table as well which basically

shows the order in which each process will happen but it

doesn’t give how many cycles each process will last for.

Such cases have been mentioned as NA in the table.

The results of the synthesis are given below:

Table-1 Estimated Clock Period

Benchmark Estimated Clock Period(in ns)

Adpcm 8.64

Aes 8.15

Blowfish 8.51

Dfadd 8.65

Dfdiv 8.64

Dfmul 8.64

Dfsin 8.72

jpeg 8.68

mips 8.01

sha 7.19

Table-2 Latency and Interval

Benchmark
Latency(in clock cycles) Interval(in clock cycles)

min max min max

Adpcm 28254 35654 28255 35655

Aes NA NA NA NA

Blowfish 2 1442 3 1443

Dfadd 2 8 3 9

Dfdiv NA NA NA NA

Dfmul 1 14 2 15

Dfsin NA NA NA NA

jpeg NA NA NA NA

mips 75 867 76 868

sha 103587 151605 103588 151606

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

239

Table-3 Utilization Estimates

Benchmark BRAM(%) DSP48(%) FF(%) LUT(%)

Adpcm 9 48 5 17

Aes 4 2 12 41

Blowfish 1 ~0 1 5

Dfadd ~0 ~0 2 26

Dfdiv ~0 10 18 50

Dfmul ~0 6 1 12

Dfsin 1 18 23 93

jpeg 24 38 12 57

Mips 1 3 ~0 4

sha 3 ~0 1 6

Optimizations: Various optimizations were performed on

some of the benchmarks based on the performance and

resource profile of the synthesis provided by Vivado. The

benchmarks and the optimization directives are given

below. The reason why a particular optimization directive is

applied on the benchmark and where is it applied is also

explained below:

Table-4 list of benchmarks and the optimizations applied

Benchmark Optimization

adpcm Function pipelining

blowfish Array partitioning

dfmul Function pipelining

mips Loop unrolling, array partitioning

sha Function pipelining

 In the adpcm benchmark, pipeline directive was

applied on the encode function because it

contributed maximum latency. This led to a drop in

the latency and interval of the design by almost

80%. The time period of each clock cycle remained

same.

Table-5 Performance comparison of original and optimized adpcm

synthesis

Solution1 Solution2

Latency
min 28254 7154

max 35654 7154

Interval
min 28255 7155

max 35655 7155

Table-6 Resource usage comparison of original and optimized adpcm

synthesis

Solution1 Solution2

BRAM_18K 26 24

DSP48E 116 242

FF 4577 8500

LUT 7293 11483

 In the blowfish benchmark, the array partition

directive was applied on the ivec array because it

got synthesized into a dual port BRAM which was

constraining the number of reads and writes per

cycle to two. Hence, complete partitioning of the

array led to more number of reads and writes per

cycle thus decreasing the overall latency and

interval of the design. The time period of each

clock cycle remained same.

Fig-3 State Diagram before optimization

Fig-4 State Diagram after optimization

Table-7 Performance comparison of original and optimized blowfish

synthesis

 Solution1 Solution2

Latency
min 2 2

max 44002 1442

Interval
min 3 3

max 44003 1443

Table-8 Resource usage comparison of original and optimized

blowfish synthesis

Solution1 Solution2

BRAM_18K 3 3

DSP48E 0 0

FF 1090 1210

LUT 2173 1954

 In the dfmul benchmark, the pipeline directive was

given to the float64_mul function and it led to a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

240

decrease in interval from 14 to 2. The time period

of each clock cycle remained same.

Table-9 Performance comparison of original and optimized dfmul synthesis

Solution1 Solution2

Latency
min 1 14

max 14 14

Interval
min 2 2

max 15 2

Table-10 Resource usage comparison of original and optimized dfmul
synthesis

Solution1 Solution2

BRAM_18K 1 1

DSP48E 16 16

FF 1338 1879

LUT 5213 5393

 In mips benchmark, the loop unroll directive was

given to the three inner loops with constant bounds

inside the infinite while loop. This led to a decrease

of about 5% in latency and interval. Then further

the reg array was completely partitioned. This led

to a further decrease of 8% in the overall latency

and interval of the design. It also decreased the

time period of each clock cycle increasing the

frequency.
Table-11 Time period comparison of original and optimized mips synthesis

Clock(ns) solution1 solution2 solution3

default Target 10.00 10.00 10.00

Estimated 8.01 8.01 7.25

Table-12 Performance comparison of original and optimized mips
synthesis

solution1 solution2 solution3

Latency
min 75 27 8

max 867 819 800

Interval
min 76 28 9

max 868 820 801

Table-13 Resource usage comparison of original and optimized mips

synthesis

solution1 solution2 solution3

BRAM_18K 4 2 0

DSP48E 8 8 8

FF 437 386 7607

LUT 1900 2120 22748

 In the sha benchmark, pipeline directive was

applied on sha_transform function since it

contributed majorly to the latency. It led to a

drastic decrease of 60% in the latency and interval

of the design.
Table-14 Performance comparison of original and optimized sha synthesis

solution1 solution2

Latency
103587 11067

151605 59085

Interval
103588 11068

151606 59086

Table-15 Resource usage comparison of original and optimized sha

synthesis

solution1 solution2

BRAM_18K 10 9

DSP48E 0 0

FF 1315 10543

LUT 2619 26709

Table-16 Comparison with LegUP compiler synthesis results:

Benchmark
Latency Frequency(Mhz)

Vivado LegUp Vivado LegUp

Adpcm 7154 10585 115.74 53

Blowfish 1442 196774 117.51 60

DfAdd 8 788 115.61 102

DfDiv NA 2231 115.74 71

DfMul 14 266 115.74 93

DfSin NA 63560 114.68 46

JPEG NA 1362751 115.21 37

MIPS 800 5184 124.84 78

SHA 59085 201746 139.08 58

VI. CONCLUSION
Table-17 Change in latency and resources after optimization

Benchmarks
Decrease in Latency

or Interval (%)

Increase in

resources(times)

Flip-flops LUTs

Adpcm 80 ~2 ~1.5

Blowfish 96 Same ~0.9

Dfadd 11 ~2 Same

Dfmul 86 ~1.4 Same

MIPS 7.8 ~17 ~12

SHA 61 ~8 ~10

As we can see from the above table that the throughput can

be increased to a considerable extent using the optimizations

provided by Vivado, but this increase comes at the cost of

area utilization. Xilinx Vivado ensures minimum increase in

area as can be seen in the blowfish, dfadd and dfmul results.

VII. FUTURE WORK

The reconfigurable computing systems require the designer

to choose which part of the application should run on

hardware and which part on software. For that decision the

performance of the application on both software and

hardware must be calculated. The trade-off between area

and performance on chip becomes the quiescent point of the

application. This paper provides the performance results of

the applications on hardware. Similar results can be

calculated for software as well. These results can then be

used by the user to efficiently partition the application into

hardware and software components resulting in an

optimized and efficient performance.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

241

REFERENCES
[1] Christophe Bobda, Introduction to Reconfigurable Computing:

Architectures, Algorithms and Applications,Springer, 2007.

[2] http://en.wikipedia.org/wiki/High-level_synthesis last accessed on

November, 2013.
[3] Y. Hara, H. Tomiyama, S. Honda, H. Takada, K. Ishii, CHStone: A

benchmark program suite for practical C-based high-level synthesis,

IEEE International Symposium on Circuits and Systems, ISCAS
2008.

[4] Vivado Design Suite User Guide, UG902 (v2013.2) July 19, 2013.

[5] Vivado Design Suite Tutorial, UG871 (v2013.2) July 19, 2013.
[6] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi,

Stephen Brown, Jason Anderson, The Effect of Compiler

Optimizations on High-Level Synthesis for FPGAs, IEEE Int'l
Symposium on Field-Programmable Custom Computing Machines

(FCCM), Seattle, WA, May 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010345

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

242

