

Comparative Study of Lithium-Ion and Solid-State Batteries for Electric Vehicles

Swapnil Chandrakant Kalyankar , Pratyush Santosh Bhalerao

Department of Mechanical Engineering, Savitribai Phule Pune University, India

ABSTRACT

This research paper presents a comparative study of lithium-ion (LIB) and solid-state batteries (SSB) for electric vehicles (EVs). As battery technology is crucial for the widespread adoption of EVs, understanding the differences in energy density, safety, cost, and sustainability is essential. The study analyzes both technologies' advantages, limitations, and future potential. Recent advancements and real-world industry developments are also explored to assess the feasibility of SSBs replacing LIBs in the coming years. This research aims to provide a clear understanding of how these battery technologies function, their applications in EVs, and the challenges that need to be overcome for future implementation.

Keywords— Lithium-ion battery, solid-state battery, electric vehicles, energy density, sustainability.

I. INTRODUCTION

The global shift toward sustainable energy solutions has increased interest in electric vehicles (EVs). A key component of EV technology is the battery, which determines range, performance, and safety. Currently, lithium-ion batteries dominate the market due to their reliability and well-established manufacturing process. However, they have several drawbacks, including limited energy density, degradation over time, and safety concerns such as overheating and fire hazards.

Solid-state batteries (SSBs) have emerged as a potential alternative with improved performance, higher energy density, and enhanced safety features. However, they also present certain challenges, such as high production costs and technical difficulties in scaling up for commercial use. This paper aims to compare these two technologies in terms of their efficiency, safety, cost-effectiveness, and environmental impact while also analyzing future developments in EV battery technology.

II. LITERATURE REVIEW

Battery technology for electric vehicles (EVs) has evolved significantly, with Lithium-Ion Batteries (LIBs) being the dominant energy storage solution for the past two decades. However, recent advancements in Solid-State Batteries (SSBs) promise higher energy efficiency, safety, and longevity.

2.1 Studies on Lithium-Ion Batteries (LIBs)

Lithium-ion batteries are widely used due to their high energy density (160-250 Wh/kg) and efficiency (Wang et al., 2022). However, they have limitations, including thermal runaway risks, limited cycle life (1000-3000 cycles), and reliance on scarce materials like cobalt and nickel (Chen et al., 2023).

Key LIB Limitations (According to Studies):

- Safety Risks – LIBs contain flammable liquid electrolytes, which cause overheating and explosion risks (Bates et al., 2022).
- Cycle Life & Degradation – LIBs degrade after repeated charging, reducing battery life (Li et al., 2023).
- Material Scarcity – LIBs rely on cobalt, nickel, and lithium, which are environmentally harmful to mine (Zhang et al., 2023).

2.2 Studies on Solid-State Batteries (SSBs)

Recent studies show that SSBs can revolutionize EV batteries by replacing the flammable liquid electrolyte with a solid electrolyte, significantly reducing safety risks (Kim et al., 2023). SSBs offer an energy density of 300-800 Wh/kg and promise up to 5000+ charge cycles (Toyota Research Institute, 2024).

Key SSB Advantages (According to Studies):

- Higher Energy Density – SSBs can store twice the energy of LIBs, increasing EV range (Wu et al., 2023).
- Enhanced Safety – The absence of liquid electrolytes eliminates fire hazards (Amer et al., 2024).
- Faster Charging – Due to better ion conductivity, SSBs can charge in 10-15 minutes (QuantumScape, 2024).

III. COMPARATIVE ANALYSIS

A. ENERGY DENSITY & PERFORMANCE

- **Lithium-Ion Batteries (LIBs):** Currently used in most EVs due to their energy density, which ranges from 160 to 250 Wh/kg depending on the battery chemistry. While effective, LIBs have reached their theoretical limits regarding performance improvements.
- **Solid-State Batteries (SSBs):** Expected to offer energy densities of 300-800 Wh/kg. This increase would significantly enhance EV range, allowing cars to travel longer distances on a single charge. The solid electrolyte structure enables better ion flow, improving efficiency.

B. SAFETY & RELIABILITY

- **LIBs:** Contain liquid electrolytes, which are flammable and pose risks of leakage, overheating, and explosions under extreme conditions. Thermal runaway remains a major concern in LIB-powered EVs, requiring complex battery management systems for safety.
- **SSBs:** Use solid electrolytes, which are non-flammable and more stable at high temperatures. They eliminate the risk of electrolyte leakage and significantly reduce the possibility of thermal runaway, making them inherently safer than LIBs.

C. Charging Speed & Cycle Life

- **LIBs:** Require 30-60 minutes for fast charging and degrade over time due to repeated charge cycles. Typically, LIBs last between 1000-2000 charge cycles before experiencing noticeable capacity loss.
- **SSBs:** They offer faster charging (10-15 minutes) due to higher ionic conductivity and better thermal management. They also have a longer lifespan, with some estimates suggesting up to 5000 charge cycles before degradation occurs. This extended cycle life reduces battery replacements and overall ownership costs.

D. COST & MARKET READINESS

- **LIBs:** Currently cost around \$100-\$150 per kWh, making them the most viable option for mass-market EVs. Production is optimized due to decades of research and investment.
- **SSBs:** Estimated to cost between \$200-\$300 per kWh, primarily due to expensive materials and complex manufacturing processes. However, costs are expected to decrease with advancements in production techniques.

Battery Cost Trends :

- Current LIB price: \$100-\$150/kWh (industry benchmark for affordability).
- Projected LIB price by 2030: \$50-\$80/kWh due to material optimizations.
- SSB price (2024): \$200-\$300/kWh, mainly due to expensive manufacturing.
- Expected SSB price by 2035: \$75-\$150/kWh (scaling & mass production).
- **Industry Adoption:** Leading companies such as Toyota, Honda, and Nissan are actively developing SSB technology, with commercial production expected by 2027-2030. Quantum Scape, a leading startup in SSB research, is working with Volkswagen to develop next-generation battery solutions.

E. Environmental Sustainability

- **LIBs:** Depend on lithium, cobalt, and nickel, which pose ethical and environmental challenges due to intensive mining practices. Recycling LIBs is also a challenge due to their complex chemical compositions.
- **SSBs:** Have a more environmentally friendly design with fewer toxic materials, making recycling and disposal easier. Their potential to last longer also reduces waste, contributing to sustainability.

IV. FUTURE SCOPE & CHALLENGES

For SSBs to become the dominant EV battery technology, several challenges must be addressed:

- **High Manufacturing Costs:** The production of solid-state electrolytes is expensive, and large-scale manufacturing requires advanced facilities.
- **Material Availability:** Some materials used in SSBs, such as lithium metal anodes, are scarce and difficult to source in large quantities.
- **Scalability Issues:** While small-scale prototypes have shown promising results, achieving consistent performance in large-scale automotive applications remains challenging.
- **Technological Breakthroughs Required:** Innovations in electrolyte design, electrode composition, and battery assembly
- **Cost Reduction:** Techniques are necessary for SSBs to become cost-competitive with LIBs.

Key Industry Developments to Mention

- Toyota's Sulfide-Based SSBs: Toyota claims to commercialize solid-state EVs by 2027, with a 1200 km range on a 10-minute charge.
- QuantumScape's Lithium-Metal SSBs: Volkswagen-backed QuantumScape aims for pilot production by 2025.
- MIT's AI-Optimized Battery Materials: Machine learning is being used to design new solid electrolytes with higher ionic conductivity.

V. AI & MACHINE LEARNING FOR BATTERY OPTIMIZATION

- The integration of Artificial Intelligence (AI) and Machine Learning (ML) is revolutionizing battery management systems (BMS), material discovery, and charging optimization in EVs. AI-driven algorithms are being utilized to predict battery health, extend cycle life, and optimize charging cycles, thereby increasing battery efficiency.
- One of the major applications of AI in battery research is accelerating material discovery. Instead of relying on traditional experimental methods, AI models can analyze vast datasets, simulate material behaviors, and identify optimal battery compositions at a much faster rate. This has significantly reduced research time and costs, leading to more efficient and innovative battery designs.
- Furthermore, AI-powered predictive maintenance helps manufacturers detect potential battery failures before they occur, enhancing safety and reducing costs associated with battery recalls or replacements. The use of AI in vehicle-to-grid (V2G) communication also ensures optimal energy distribution, enabling EVs to store and supply energy back to the grid during peak demand hours.
- As AI continues to evolve, its role in optimizing EV battery performance, reducing degradation, and improving overall vehicle efficiency is expected to expand significantly. Future developments in AI-based battery monitoring systems could lead to self-healing batteries, further increasing their longevity and reliability.
- Despite these challenges, continuous research and investment in battery technology indicate a promising future for SSBs.

VI. ONCLUSION

Both lithium-ion batteries (LIBs) and solid-state batteries (SSBs) play crucial roles in the advancement of electric vehicle (EV) technology, each with distinct advantages and limitations. LIBs currently dominate the market due to their cost-effectiveness, well-established manufacturing process, and proven reliability. However, they suffer from limited energy density, safety risks associated with liquid electrolytes, and gradual performance degradation over repeated charge cycles.

SSBs, on the other hand, represent a transformative step in battery innovation, offering higher energy density (300-800 Wh/kg), improved thermal stability, faster charging times, and extended cycle life. The replacement of liquid electrolytes with solid-state alternatives significantly reduces the risks of thermal runaway, leakage, and fire hazards, making SSBs a safer alternative. Furthermore, their potential for lower environmental impact, due to reduced reliance on critical materials like cobalt, makes them a more sustainable long-term solution.

Despite these advantages, SSBs still face considerable barriers to commercialization, including high production costs, material availability challenges, and difficulties in large-scale manufacturing. Industry leaders such as Toyota, QuantumScape, and Samsung SDI are making substantial progress toward commercializing SSB technology, with projections indicating mass adoption between 2027 and 2035. As manufacturing processes mature and economies of scale are achieved, the cost gap between LIBs and SSBs is expected to narrow, making solid-state technology a viable alternative for mainstream EV adoption.

The integration of Artificial Intelligence (AI) and Machine Learning (ML) in battery development and Battery Management Systems (BMS) further enhances the performance and longevity of both LIBs and SSBs. AI-driven optimization in charging cycles, material discovery, and predictive maintenance can accelerate innovation and improve the efficiency of next-generation battery technologies.

In conclusion, while LIBs remain the practical choice for EVs today, SSBs hold the potential to revolutionize the industry by addressing the critical limitations of current battery technologies. The transition toward SSBs will depend on technological breakthroughs, cost reductions, and large-scale adoption by automakers. If these challenges are overcome, solid-state batteries could redefine the future of electric mobility, enabling higher-performance, safer, and more sustainable transportation solutions.

REFERENCES

1. A. M. Bates, Y. Preger, L. Torres-Castro, K. L. Harrison, S. J. Harris, and J. Hewson, "Are solid-state batteries safer than lithium-ion batteries?" Joule, vol. 6, no. 4, pp. 742-755, Apr. 2022. DOI: 10.1016/j.joule.2022.02.007
2. M. Amer, J. Masri, A. Dababat, U. Sajjad, and K. Hamid, "Electric vehicles: Battery technologies, charging standards, AI communications, challenges, and future directions," Energy Conversion and Management: X, vol. 24, p. 100751, 2024. DOI: 10.1016/j.ecmx.2024.100751
3. W. Liu, T. Placke, and K. T. Chau, "Overview of batteries and battery management for electric vehicles," Energy Reports, vol. 8, pp. 4058-4084, 2022. DOI: 10.1016/j.egyr.2022.03.016
4. Laserax, "Solid-state vs. lithium-ion batteries," Battery Power Tips, Mar. 2025. [Online]. Available: <https://www.laserax.com/blog/solid-state-vs-lithium-ion-batteries>
5. Wiley, "Chemistry Europe: Solid-state vs. lithium-ion batteries," Mar. 2025. [Online]. Available: <https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202403247>
6. Battery Power Tips, "What are solid-state batteries, and how do they differ from current EV batteries?" Mar. 2025. [Online]. Available: <https://www.batterypowertips.com/what-are-solid-state-batteries-and-how-do-they-differ-from-current-ev-batteries/>