

Comparision of Data Transfer Protocols over USB
Megha Dey

Abstract

 In the modern day, data transfer between a PC and a

mobile storage device over the USB interface

represents a very common user operation. The

popularity of USB compliant devices is an indication of

the modern user's need for a fast, large capacity and

easily accessible system for data storage. Until

recently, the USB Mass Storage Class(MSC) was the

underlying class protocol being used, but with many of

the intelligent storage devices shifting to media transfer

protocol (MTP), it is important that we study these

protocols, evaluate their main features and behaviour

through various metrics including architecture,

implementation, data transfer initialization, robustness,

throughput, user friendliness and market penetration.

1. Introduction

USB provides a standard, low cost option along with an

expandable hot pluggable mechanism for peripheral

devices. USB data transfers takes place between a host

(PC) and device (storage medium).Transfers takes

place every time data moves between the USB host

controller and a buffer on the device known as

endpoint. This happens via logical communication

channels known as pipes. Data transfers take place

through „Bulk‟ endpoints, which can send large amount

of data (max 512 bytes per transaction).A bulk transfer

consists of one or more IN (device to host) and OUT

(host to device) transactions. As USB is a host-centric

protocol, all transactions are initiated by the host.

 Figure1: Components in USB data transfer

USB MASS STORAGE CLASS (MSC) PROTOCOL

The MSC protocol was introduced in 1999 by the USB

implementers forum (IF).It first came in the form of

CBI (control/bulk/interrupt) protocol, but was soon

taken over by the BOT (Bulk Only Transfer) or BBB

(bulk/bulk/bulk) protocol. It is used by almost all flash

based devices like thumb drives, hard disks and until

now in mobile devices. This protocol provides a

recognizable interface to the storage device embedding

SCSI commands inside class structures CBW

(Command Block Wrapper) and CSW (Command

Status Wrapper).SCSI is a standard used by hard disks

etc. to define a I/O bus to interconnect computers and

peripherals. Hence, USB MSC devices appear as

external disks to the host.

MEDIA TRANSFER PROTOCOL (MTP)

MTP was initially introduced by Microsoft in 2007 and

was adopted by USB IF in 2011. This protocol enables

data exchanges between initiators (PC) and responders

(intelligent storage devices like MP3 players, tablets

and Smartphones), also enabling synchronization of

device content. MTP makes an effort to develop secure,

feature rich user interface on handheld devices. Unlike

MSC, storage devices appear as a portable device

instead of a drive. “Media” in Media Transfer Protocol

does not just mean audio/video; it encompasses all

binary data including text.

2. Comparative Analysis

2.1. Architecture

USB implements a layered architecture. Layers 1 to 3

are common for BOT and MTP.

LAYER 1 represents the USB hardware controllers.

LAYER 2 represents the USB Controller Driver which

is hardware specific. It is responsible for initializations,

register accesses and interrupt handling of the chosen

controller hardware.

LAYER 3: contains the generic USB functionality and

is responsible for the detection and enumeration of

connected devices. It also routes the packets to a

particular class driver. It is independent of the

underlying hardware controller used.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

In MSC BOT:

Layer 4 implements Mass Storage BOT Protocol and

SCSI Command handling.

Layer 5 consists of the file system driver on the host

and the user application on the device side.

HOST DEVICE

Figure 2: USB MSC BOT Architecture

In MTP:

Layer 4 is responsible for MTP class specific requests,

MTP command decoding, and responding.

Layer 5 has the user application on the host side and

the file system on the device side.

 INITIATOR RESPONDER

Figure 3: MTP Architecture

2.2. Device Implementation

MSC BOT

The commands coming from the USB host controller

(CBW) are unwrapped by the USB MSC protocol

decoder and SCSI decoder and transmitted to the

storage media . The storage response is then converted

into SCSI commands and then wrapped in a USB

specific format,and sent to the USB host controller.

Figure 4: USB MSC BOT Implementation

Each data transfer(read/write) follows a Command-

data-status pattern.A mass storage device contains:

 A bi-directional control endpoint for

enumeration.

 A bulk OUT endpoint, to transfer wrapped

SCSI commands (CBW) and data from host to

device.

 A bulk IN endpoint, to send wrapped SCSI

status through CSW and data from device to

host.

MTP

In addition to 1 control and 2 bulk endpoints, MTP

makes use of an interrupt endpoint to report device

initiated events.

The MTP commands, data and response are wrapped in

a specific container format. All Device content (songs,

images, videos) are represented by objects and object

handles are used in order to reference a logical object

on the device.

Figure 5: MTP Implementation

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Thus, MTP enables generic object transfer between

devices.

2.3. File System Handling

From both the architectures, we see that in the case of

MSC, the file system handling is a function of the host.

Once a MSC device is connected to the host, it appears

as any other block device and the host has unrestricted

access to it. For each file transfer, the host must decode

the FAT (File Allocation Table) to know the locations

from where read or write should happen.

On the other hand, in case of MTP, the file system

accesses are totally managed by the device CPU. The

processor manages the interpretation of the MTP

commands through the software stack as well as the

accessing of data from the attached storage device.

Hence with MSC, content storage is managed by the

PC and with MTP, the device CPU actively manages

content storage.

MSC gives a very low-level interface to the host,

allowing only a single entity (host or device) to

communicate with the storage at any given time, while

in MTP the host and the device can have simultaneous

access to the device, sharing the file system. Thus,

besides enabling data transfer, MTP intrinsically

enables some command and control of the connected

device.

2.4. Data Transfer Initialization

Once the device is connected, during enumeration,

USB descriptors are requested by the host, to determine

the capabilities and requirement of the device.

In case of MTP, on accessing the device after

enumeration, a new session is initiated and all the

associated metadata such as file creation time, modified

time, file size, folder size etc are passed on to the PC;

thereby the Initiator builds model of responder contents

(metadata based enumeration). Since all content are

represented as objects, all the object handles are also

passed onto the host. All this data must be stored

permanently on the device. An integrated database is

used for this and it should be optimized for easy

retrieval. Storing all object metadata in memory can

consume prohibitive amounts of device memory,

possibly destabilizing the device. The amount of

metadata depends on the number and the type of files.

This organization of objects with properties enables

easy enumeration of the objects, without having to

interpret the underlying file system. Once all the

metadata is shared to the host, object exchange starts.

In the case of MSC, there is no metadata transfer

involved. After enumeration, information about the

Master Boot Record (where the host learns about the

whole memory and the partitions) and Volume Boot

Record (where host gets the entry point to the FAT for

each partition) are sent from the device. Then to

read/write data, the respective LBA (logical block

address is sent to the host or device.

MSC MTP

Figure 6: Data transfer initialization

Thus, MTP has a more elaborate data transfer

initialization sequence compared to MSC.

2.5. Throughputs

Probably the most important parameter for any data

transfer protocol is the measurable throughput. Though

USB 2.0 has a maximum theoretical speed of 480Mbps,

only a fraction of this value is achieved. USB data

throughput depends on various factors:

On Host:

 Register and memory Cycle timing

 Maximum payload (512 for USB 2.0 bulk)

 CPU and USB host controller load

On Device:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Buffer size of the device

 Type of buffering(single/double)

 Storage media type (internal/external)

 NAK‟S on the bus

Other factors:

 Data transport protocol (MSC/MTP)

 Interrupt latency

 File system

 Operating system

USB protocol overheads (Refer [1]):

 Start and End of Frames (SOF‟s and EOF‟s)

 Fixed bandwidth for control transfers (20%)

 Bit stuffing

MSC follows a simple command, data and status state

machine. For every 64 KB data transfer in windows

and 120 KB transfer in Linux, extra 44(31+13) bytes

are also sent (CBW+CSW), along with an interrupt to

notify the upper layers that some data has been

read/written. Also, there is a delay between each of the

3 phases (around 500 µs).

MTP also uses the command data and status pattern,

but the object size is not limited; it can extend even

upto 4GB.Thus, the actual number of bytes which are

sent or received by the device will be relatively higher

than the actual file size in the case of MSC. Also, the

number of interrupts serviced in MSC will also be

significantly higher than MTP.

Thus, at the USB protocol level, it is expected that

MTP throughput will be higher than MSC. To validate

this assumption, the following experiment was

performed.

Experimental Setup

This experiment focuses on data transfer between a PC

and a mobile platform, using high speed USB (USB

2.0). On the PC side, both Windows7 and Ubuntu11

operating systems have been used. The mobile platform

used is ST Ericsson‟s “Snowball” development board

version of android and Samsung Galaxy nexus tablet,

both running the Jellybean flavour of Android. While

the Snowball platform supports both MTP and MSC,

the Nexus supports only MTP. The snowball board has

8GB internal memory and a SD card slot; the Nexus

has also has 8 GB internal storage with no SD card slot.

All the values reported are based on transfers involving

only the internal storage. All the USB transactions were

captured using an Ellisys Explorer 2.0. The time taken

for the transfer was measured from the first 512 bytes

transferred to the last 512 bytes captured [OUT

transaction during write and IN transaction during

read]. In Ubuntu, the MTP devices were mounted as a

directory using [7].Throughputs were calculated for

single file transfers as well as multiple file transfers for

2 file sizes (300MB, 1GB) and then averaged out to

obtain the final throughput.

The read (transfer from device to host) and write

(transfer from host to device) throughputs are as

indicated below in Mbps:

Table 1: SNOWBALL BOARD (MSC) THROUGHPUTS:

FILE

SIZE

WINDOWS 7 UBUNTU 11

READ WRITE READ WRITE

300MB 165.3 96.3 87.43 135.42

1 GB 158.2 104.2 105 85.24

Table 2: SNOWBALL BOARD (MTP) THROUGHPUTS:

FILE

SIZE

WINDOWS 7 UBUNTU 11

READ WRITE READ WRITE

300MB 166.7 80.1 151.7 70.4

1 GB 161.9 71.93 145.1 62.3

Table 3: SAMSUNG GALAXY NEXUS (MTP) THROUGHPUTS:

FILE

SIZE

WINDOWS 7 UBUNTU 11

READ WRITE READ WRITE

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

300MB 137.91 68.71 91.535 69.13

1 GB 144.49 59.88 103.265 55.21

0 50 100 150 200

Ubuntu

11

Win7
300MB,MSC,SB

1GB,MSC,SB

300MB,MTP,SB

1GB,MTP,SB

300MB,MTP,NX

1GB,MTP,NX

Figure 7: Read throughputs

0 50 100 150

Ubuntu

11

Win7

300MB,MSC,SB

1GB,MSC,SB

300MB,MTP,SB

1GB,MTP,SB

300MB,MTP,NS

1GB,MTP,NX

Figure 8: Write throughputs

SB:Snowball

NX:Nexus

Throughput Results:

Though it is theoretically expected that MTP must

giver higher throughputs compared to MSC, it is seen

that this is not always true. The key insights drawn

from this experiment are as follows:

1. MSC has higher write speeds than MTP on both

the platforms.

2. Although the read speeds are comparable on

windows7, MTP has higher read speeds on

Ubuntu than MSC.

3. Even though double buffering is enabled in

Nexus, both the read and write speeds are lesser

than Snowball:From the bus transactions, it is

seen that there is a lot of data corruption due to

CRC16 errors. This results in the re-

transmission of data every time data corruption

occurs.

2.6. Robustness

Any protocol is primarily measured by its robustness,

i.e. ability to recover or handle error conditions. In this

respect, MSC is less efficient compared to MTP. Since

MSC involves mounting and unmounting each time the

device is plugged in, there are chances of data

corruption if device is plugged out; especially when the

performance mode is used (i.e. caching is enabled.

Since MTP allows exclusive read/write access from the

computer, there are fewer chances of data loss and

corruption for those who do not unmount before

removing the USB cable. When a FAT file system is

attached to a host computer, the file system is "owned"

by the host and thus the device itself cannot for

example add, remove, play or rename files during this

time without risking corruption of the file system. MTP

does not necessitate such device lock-down.

2.7. User Friendliness

When a mobile device is in mass storage mode, you

cannot access the storage using the device until you

unmount it from the PC. With MTP, a handheld retains

access to storage even while plugged into a PC; users

can still make a phone call or play music and videos

while connected, instead of facing a frozen screen.

Also, unlike MSC, MTP enables monitoring of device

initiated events and changes in device properties. This

is done via the interrupt endpoint. Hence, the user can

take a picture while there is any data transfer going on

and the metadata associated with the image is directly

updated to the host.

Additionally, MTP Initiators have the ability to identify

the specific capabilities of device with respect to file

formats and functionality.

Lastly, MTP is also more secure than MSC, as it allows

digital rights management (DRM) protected content to

be transferred to a host.

Thus, MTP is more user-friendly than MSC.

2.8. Market Penetration

Since MSC BOT was introduced much earlier than

MTP, the number of mobile devices using MSC

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

currently clearly outnumbers MTP. But, with various

mobile players like Android switching to MTP, there is

likely to be a boom in MTP devices in the near future.

Also with MTP, for devices with lots of internal

memory, a manufacturer no longer needs to come up

with partitions between the USB storage and internal

storage. The storage is unified and can be used for

either applications or media, depending on what the

user wants to put on it. But there are some hurdles

which MTP needs to address. MSC drivers are by

default present in all flavours of Windows and Linux.

While MTP drivers are integrated in windows 7

onwards, one needs to have windows media player 10

or higher on windows XP. On Linux, one needs to

install external libraries like Libmtp etc. and 3
rd

 party

applications to access MTP. MTP was initially

designed for stand-alone, hard-drive based media

players. Unlike mobile devices, stand-alone players

don‟t typically have removable media, vulnerability to

malicious code or have to integrate seamlessly with

other tasks the user performs. As long as manufacturers

can overcome these challenges and optimize MTP for

large storages and multifunction devices, more and

more mobile devices will switch to MTP.

3. Conclusion and Summary

The results of the comparative study between USB

MSC and MTP can be summarized using the following

table (Table 4).

USB MSC and MTP represent two classes for efficient

data exchanges. While MSC has been the de-facto

standard being followed until the recent past, it fails to

address the needs posed by modern day intelligent

storage devices. In this study, we have found that even

though we expect MTP to have higher throughput, it is

not so as the MSC ecosystem is more stable and

mature. But MTP scores when it comes to robustness

and user friendliness. Though flash based devices will

continue to use MSC, it is expected that the freedom of

data management and the safe transfer of data will

enable more and more devices supporting MTP.

Property Table 4:Comparative Analysis Results

MSC MTP

Architecture Layered Layered

Implementation 1 Control,
 2 Bulk

 Endpoints

 1 control,
2 Bulk

and 1

Interrupt
endpoint

File System

Handling

 Host Device

Data Transfer

Initialization

 Less
 elaborate

 More

elaborate

Robustness Less More

Throughput

(theoritical)

 Less More

Throughput

(practical)

 More Less

User Friendliness Less More

Market

Penetration

 More Less

4. References

[1] USB 2.0 Specification, USB-IF 2005

[2] Mass Storage Bulk Only 1.0 spec 1999

[3] Media Transfer Protocol v.1.1 Spec 2011

[4] Steve Kolokowsky and Trevor Davis, “Introduction
to MTP:Media Transfer Protocol”,Cypress Semi-
Conductors

[5] Abhishek Bit, Dr. Martin Orehek, Waqar Zia,
“Comparative Analysis of Bluetooth 3.0 with UWB
and Certified Wireless-USB Protocols”,
Proceedings of 2010 IEEE International
Conference on Ultra-Wideband (ICUWB2010)

[6] Blake Manders, Donby Mathieu “Presentation on
Media Transfer Protocol Implementation
Details”,Microsoft Corporation

[7] “http://jnm-tech.blogspot.in/2012/05/how-to-
access-archos-g9-on-ubuntu.html”

[8] Mark McLemore, Harold Drews “MTP Responder
Development guide”,Microsoft Corporation

[9] Steve Kolokowsky and Trevor Davis “Mass
Storage Class vs. Media Transfer Protocol”,
Cypress Semi-Conductors

[10] “USB Mass Storage Device Implementation.pdf”,
Atmel Corporation

[11] Jan Axelson,”USB Mass Storage:Designing and
programming Devices and Embedded hosts.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

