Comparison of Mathematical and Statistical Functionality of Machine Learning Tools for Data Analysis Research

Shamitha S. K Research Scholar, VTU, Belgaum Bangalore, India

B. Nithya Asst.Professor, New Horizon College of Engineering, Marathahalli

Abstract - Over the last three decades many generalpurpose machine learning frameworks and libraries have emerged from both academia and industry. The aim of this paper is to compare mathematical and statistical programming languages on a fair level by showing only facts about the tested programs and attempts have been made to avoid subjective remarks. This could be used as base information to make own decision. The paper takes a closer look on mathematical and statistical programming, data analysis and simulation functionality for huge and very huge data sets. The following machine learning tools have been tested: Mathematica from Wolfram Research Inc., MATHLAB from The Mathworks Inc. This type of functionality is of great interest for econometrics, the financial sector in general, biology, chemistry, physics and have immense usage in other areas as well, where the numerical analysis of data is very important.

Keywords: Machine Learning frameworks, Mathematica, Mat lab

I. INTRODUCTION

Given the enormous growth of collected and available data in companies, industry and science, techniques for analyzing such data are becoming ever more important. [1] Research in machine learning (ML) combines classical questions of computer science (efficient algorithms, software systems, databases) with elements from artificial intelligence and statistics up to user oriented issues (visualization, interactive mining, user assistance and smart recommendations).[2] Over the last three decades, many general purpose machine learning frameworks, as well as special purpose machine learning libraries, such as for phishing detection or speech processing [1], has emerged from both academia and industry. In this survey, we will only consider the general purpose frameworks. It is good to have a look around to see what languages and platforms are popular in Nikitha Pai Guest Lecturer, NMKRV College for Women, Jayanagar, Bangalore, India

Dr. V. Ilango Professor, New Horizon College of Engg Marathahalli

self-selected communities of data analysis and machine learning professionals.[3] The study consists of tables which lists the availability of functions for each program [6][7]. It is divided in functional sections of mathematical, graphical functionality and programming environment, a data import/export interface section, the availability for several operating systems, a speed comparison and finally a summary of the whole information. To rate all these information, a simple scoring system has been used and following machine learning tools have been tested: Mathematica from Wolfram Research Inc, MATHLAB from The Mathworks Inc. A recent poll is titled "What programming/statistics languages you used for an analytics work in 2013" [6]. The results suggest heavy use of R and Python and SQL for data access.

What programming/statistics languages you used for an analytics / data mining / data science work in 2013? [713 votes total]		
% users in 2013 % users in 2012		
R (434 voters in 2013)	60.9%	
	52.5%	
Python (277)	38.8%	
SQL (261)	36.6% 32.1%	
SAS (148)	20.8%	
Java (118)	16.5% 21.2%	
MATLAB (89)	12.5% 13.1%	

FIG 1: Popular Data Analytic Tools

II. COMPARISON OF THE MATHEMATICAL FUNCTIONALITY

Actually there are a lot of different mathematical and statistical programs in the market which are covering a huge amount of functions. The above figure(FIG 1) discusses the popular Analytical tools. The following tables should give an overview about the functionality for analyzing data in numerical ways and should mark out which functions are supported by which program and whether these functions are already implemented in the base program or whether you need an additional module. The functions are sorted by the categories: Standard mathematics, Linear algebra, Numerical mathematics, Stochastic, Statistics, Other mathematics.

A. Standard Mathematics

Standard mathematics functions are an essential part of any kind of mathematical work. Not necessary to mention that these type of functions should be available in all programs. Therefore the following results are not very surprising.[6].Comparison of Mathematica and MATHLAB on standard mathematics are discussed in the table below

Table1.1: Comparison of Mathematica and MATHLAB	with respect to
standard mathematics	

Functions	Mathematica	MATHLAB
(Version)	(6.0)	(2008a)
BesselI	\checkmark	\checkmark
Bessel J	\checkmark	\checkmark
BesselK	\checkmark	\checkmark
Bessel Y	\checkmark	\checkmark
Beta function	\checkmark	\checkmark
Binomial	\checkmark	\checkmark
Factorial	\checkmark	\checkmark
FresnelC	\checkmark	\checkmark
FresnelS	\checkmark	\checkmark
Gamma function	\checkmark	\checkmark
Hyperbolic trig. Function	\checkmark	\checkmark
Incomplete Gammafunc.	\checkmark	\checkmark
Log / Ln / Exp	✓ / ✓ / ✓	✓ , ✓ , ✓
Log-Gammafunc.	\checkmark	\checkmark
Poly gamma	\checkmark	\checkmark
Square root	\checkmark	\checkmark
Sum / Product	✓ _/ ✓	✓ _/ ✓
Trig. / arg trig. Functions	\checkmark / \checkmark	\checkmark / \checkmark

B. Algebra

Algebra and especially linear algebra offers a basic functionality for any kind of matrix oriented work. i.e. Optimization routines are widely used in the financial sector but also very useful for logistic problems (remember the traveling salesman problem).Most simulation and analyzing routines are relying on decomposition equations solving and other routines from algebra.Table 1.2 discusses the comparison between Mathematica and MATHLAB with respect to Algebra

Table 1.2: Comparison of Mathematica and MATHLAB tools	with
respect to Algebra	

Functions	Mathematica	MATHLAB
(Version)	(6.0)	(2008a
1	Eigenvalues	,
Eigenvalues	\checkmark	\checkmark
Eigenvectors	✓	~
	Matrix	
Characteristic polynom	✓	\checkmark
Determinant	✓	\checkmark
Hadamard matrix	М	\checkmark
Hankel matrix	✓	✓
Hilbert matrix	✓	\checkmark
Householder matrix	-	\checkmark
Inverse matrix	✓	\checkmark
Kronecker product	✓	✓
Pascal matrix	-	~
Toeplitz matrix	✓	~
Upper Hessenberg form	✓	✓
De	ecomposition	
Cholesky decomposition	\checkmark	✓
Crout decomposition	-	\checkmark
Dulmage-Mendelsohn decomposition	-	✓
LU decomposition	✓	~
QR decomposition	✓	~
Schur form of quadratic matrix	✓	~
Smith normal form	-	\checkmark

Singular value	\checkmark	\checkmark
decomposition		
C	ptimization	
Optimization - linear models (Unconstr. / Constr.)	✓ _/ ✓	✓ _/ ✓
Optimization - nonlinear models (Unconstr. / Constr.)	✓ _/ ✓	✓ _/ ✓
Optimization - quadratic models (QP) (Unconstr. / Constr.)	✓ _/ ✓	✓ _/ ✓
Eq	uation solver	
Linear equation solver	\checkmark	\checkmark
Non-linear equation solver	\checkmark	\checkmark
Ordinary Differential Equation solver	\checkmark	\checkmark
Partial Differential Equation solver	\checkmark	\checkmark
Miscellaneous		
Moore-Penrose pseudo- inverse	\checkmark	\checkmark
Sparse matrices handling	\checkmark	\checkmark

Most simulation and analyzing routines are relying on decompositions, equation solving and other routines from algebra.

C. Numerical Mathematics

Numerical mathematics offers fundamental algorithms for several appliances. It is marked out that especially any kind of interpolation algorithms are commonly used in technical and non-technical businesses. Without really recognizing, interpolation routines are used in nearly any kind of graphical representation. .[6][4]Table 1.3 explains the comparisons of Mathematica and MathLab tools with respect to Numerical functions.

Table 1.3: Comparison of Mathematica and MATHLAB tools	with
respect to Numerical mathematics	

Function	Mathematica	MATHLAB
(Version)	(6.0)	(2008)
Interpolation		
B-Spline interpolation	\checkmark	\checkmark
Classical interpolation (1D/2D/3D/n D)	✓	$\begin{array}{c} \checkmark \ \ \checkmark \ \land \ \land$
k-Spline interpolation	\checkmark	\checkmark

Pade interpolation	\checkmark	-
Piecewise cubic hermite polynomial interpolation	\checkmark	\checkmark
Piecewise polynomial interpolation	\checkmark	\checkmark
Other functions		
Bisection	√	\checkmark
Newton method for finding roots	√	\checkmark
Runge Kutta method for solving ODE	√	\checkmark

III. COMPARISON OF THE STATISTICAL FUNCTIONALITY

A. Descriptive statistic and Distribution functions

Very important to get familiar with data and to understand samples of data are stochastic and descriptive statistic routines. Distribution functions, their CDF-Cumulative Distribution Function and PDF- Probability Distribution Functions function are commonly used to figure out what are representative samples and what are outliers. A typical "simple" but common usage might be in a productive area to take samples of the manufactured product and to see whether the faulty parts in a sample are within a normal range. More complex usages might be in load balancing simulations of telecommunication hardware. However it might be possible to mention example usages for nearly all kind of business.[6].Comparison of Mathematica and MathLab tools to distribution function is explained in Table 2.1

Table 2.1 Comparison of Mathematica and MATHLAB tools with respect to distribution function

Functions	Mathematica	MATHLAB
(Version)	(6.0)	(2008a)
General Function		
Contingency tables	-	-
Correlation	\checkmark	\checkmark
Cross tabulation	\checkmark	\checkmark
Deviation	\checkmark	\checkmark
Kurtosis	\checkmark	\checkmark
Markov models	\checkmark	\checkmark
Mean /geometric Mean / Mode	\checkmark \checkmark \checkmark \checkmark	✓ / ✓ /-

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICRET - 2016 Conference Proceedings

Min / Max		
Will / Will A	✓ / ✓	✓ / ✓
Quantile / Percentile	✓ _/ ✓	✓ _/ ✓
Skewness	\checkmark	\checkmark
Variance	\checkmark	\checkmark
Variance-covariance	\checkmark	\checkmark
matrix		
	Distribution Functions	
(1	PDF / CDF / iCDF/ rana	lom number)
Bernoulli	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Beta	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Binomial	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Brownian motion	-/-/-/ V	-/-/
Cauchy	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$	-/-/-
Chi-squared	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Chi-squared (non- central)	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark$
Dirichlet		_/_/_/_
Different	\checkmark / \checkmark / \checkmark / \checkmark	, , , ,
Erlang	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	-/-/-
Exponential	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Extreme value	$\checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark$	$\checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark$
F	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
F (non-central)	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Gamma	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Geometric	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Gumbel	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$	-/-/-
Half-normal	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	-/-/-
Hotelling T2	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$	-/-/-
Hyper-exponential	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$	-/-/-
Hypergeometric	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark$
Kernel	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	-/-/-
Laplace	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	_/_/_
Logarithmic	$\checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark$	_/_/_
Logistic	$\overbrace{\checkmark},\checkmark,\checkmark,\checkmark,\checkmark$	_/_/_

Log-normal	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Log-normal	\checkmark \checkmark \checkmark \checkmark \checkmark	-/-/-
(multivariate)	, , ,	
Negative binomial	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$
Normal	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$
Normal (bivariate)	-/-/-	-/-/-
Normal (multivariate)	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$
Pareto	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	-/-/-
Poisson	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Rayleigh	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
S	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	-/-/-
Student's t	$\checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark / \checkmark / \checkmark / \checkmark$
Student's t (non-	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark
central)		
Student's t	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$
(multivariate)		
Uniform	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark \ \ \checkmark$
Von Mises	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ $	-/-/-
Weibull	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	$\checkmark \land \checkmark \land \checkmark \land \checkmark \land \checkmark$
Wishart	$\checkmark \ \checkmark \ \checkmark \ \checkmark \ \checkmark$	_/_/

A. Statistics

Statistical functions are fundamental for any kind of data analysis. Routines like regression or time series are commonly used to find out trends or to predict future values i.e. for stock market courses. Filter routines are used to smooth or filter effects in data acquisition. Multivariate statistics are used to find patterns or common characteristics in data i.e. for market basket analysis by clustering routines.[9].Comparison of Mathematica and MAthLab tools with respect to statistical functions are explained in the table 2.2.

Table 2.2 Comparison of Mathematica and MATHLAB tools with respect to statistical functions

Functions	Mathematica	MATHL AB	
(Version)	(6.0)	(2008a)	
Regression models			
Linear	\checkmark	\checkmark	
Loess	\checkmark	\checkmark	

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICRET - 2016 Conference Proceedings

Logistic Regression	\checkmark	\checkmark
LOGIT / PROBIT	m- / m	✓ _/ ✓
Nonlinear /	\checkmark \checkmark	\checkmark \checkmark
Polynomial	/	/
PSN	-	-
Tobit models	-	-
	Test statistics	
Ansari Bradley test	[
Ansari-Dradicy test	_	\checkmark
Bartlett multiple-	-	\checkmark
sample test		
Besley test	-	-
Breusch-Pagan test	-	-
for homoscedasticity		
Chow Test for	-	-
stability		
CUSUM test for	-	-
stability		
Davidson-MacKinnon	-	-
J-Test		
Dickey Fuller test	-	-
Durbin-Watson test	\checkmark	\checkmark
Engle's LM test	-	\checkmark
Friedman's test	-	\checkmark
F-Test	\checkmark	\checkmark
Goodness of fit test	-	✓
Goldfeld-Quandt test	-	-
for homoscedasticity		
Granger's causality	-	-
test		
Hausman's	-	-
specification test		
Kolmogorov-Smirnov	_	\checkmark
Kruskal Wallis tast		
Niuskai- wanis test	-	√
Kuh test	-	-
Lagrange multiplier	-	-
test		
Lilliefors test	-	\checkmark
Ljung-Box Q-Test	-	\checkmark
Mann-Whitney U test	-	-

Sign test	-	\checkmark	
T-Test	\checkmark	\checkmark	
Wald test	-	-	
Walsh test	-	-	
Wilcoxon rank sum /	- / -	✓ _/ ✓	
sign test			
Z-Test	\checkmark	\checkmark	
Fil	ter / smoothing models		
Bandpass / Lowpass /	\checkmark \checkmark \checkmark \checkmark \checkmark	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	
Highpass / Multiband	/ / /-/		
/ Bandstop		\checkmark / \checkmark	
Battle-Lemarie	\checkmark	-	
Bessel	\checkmark	\checkmark	
Butterworth	\checkmark	\checkmark	
Chebyshev	\checkmark	\checkmark	
Coiflet	\checkmark	-	
Daubechies	\checkmark	\checkmark	
Elliptic	\checkmark	\checkmark	
Haar	\checkmark	\checkmark	
Hodrick-Prescott	-	-	
IIR / FIR	✓ _/ ✓	✓ _/ ✓	
Kernel	-	\checkmark	
Linear	\checkmark	\checkmark	
Meyer	\checkmark	\checkmark	
Pollen	-	-	
Riccati	\checkmark	\checkmark	
Shannon	\checkmark	-	
Savitzky-Golay	-	\checkmark	
Time series models			
ARMA / ARIMA /	/	✓ /-/	
ARFIMA / ARMAX	1	1	
	¥ /_/_	v √	
GARCH / ARCH /	/ ✓ /_/_/_/	✓ //-/	
AGARCH /	/ /-/-/-/-	✓ ;	
EGARCH /	/-		
FIGARCH / IGARCH		-/-/-/-	

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICRET - 2016 Conference Proceedings

/			
MGARCH /			
PGARCH /			
TGARCH models			
Holt's Winter	- / -	- / -	
additive /			
multiplicative			
Multivariate GARCH	-/-/-	-/-/-	
models			
(Diagonal VEC /			
BEKK / Matrix			
Diagonal / Vector			
Diagonal)			
Partial autocorrelation	\checkmark	\checkmark	
Spectral analysis	\checkmark	\checkmark	
State space models	\checkmark	\checkmark	
Time series analysis	\checkmark / \checkmark	\checkmark / \checkmark	
(Stationary / Non-	·	·	
stat.)			
Wavelets	\checkmark	\checkmark	
Ν	Multivariate statistics		
ANOVA / MANOVA	✓ /_	\checkmark / \checkmark	
Cluster analysis	\checkmark / \checkmark	\checkmark	
(hierarchical/k-means)	,	,	
Discriminant analysis	-	\checkmark	
Factor analysis	-	\checkmark	
Fuzzy clustering	-	\checkmark	
Procrustes analysis	-	\checkmark	
Principal component	-	\checkmark	
analysis			
Principal coordinate	-	\checkmark	
analysis			
Survival analysis	-	-	
Design of Experiments			
Box-Behnken design	-	\checkmark	
~	-		
Central composite		v	
Central composite design		v	
Central composite design D-Optimal design	-	✓ ✓	
Central composite design D-Optimal design Full / Fractional	- / -	✓ ✓ ✓ √	
Central composite design D-Optimal design Full / Fractional factorial design	- / -	✓ ✓ ✓ / ✓	

Response surface	-	\checkmark
design		
Other st	tatistical functions & mode	ls
Bootstrapping	\checkmark	\checkmark
Duration models	-	-
Entropy models	-	\checkmark
Event count models	-	-
Heckman two step	-	-
estimation		
Heteroscedasticity	-	-
Jacknife estimation	-	\checkmark
Lagrange multiplier	-	-
test		
Markowitz efficient	\checkmark	\checkmark
frontier		
Maximum Likelihood	\checkmark \checkmark	✓ /-
(Unconstr. / Constr.)	,	
Monte Carlo	\checkmark	\checkmark
simulation		

IV. OTHER MACHINE LEARNING TOOLS

Table 3: Machine Learning tools and Libraries

Name	HLD	OS	Language
Aleph	No	Win/Unix	Yap Prolog
C4.5/C5/See5	Yes	Win/Unix	C/C++
Encog	Yes	Win/Unix	Java/.NET
FuzzyML	Yes	Win/Unix	ADA
IBM Cognos	Yes	Web	PowerHouse
IBM SPSS	Yes	Win/Unix/OSX	Java
Modeler			
JavaML	Yes	Win/Unix	Java
JHepWork	Yes	Win/Unix	Java/Jython/Jru
			by/BeanShell
Joone	No	Win/Unix	Java
KNIME	Yes	Win/Unix	Java/Python/Per
			1
LIONsolver	Yes	Win/Unix	C/C++
MLC++	No	Win/Unix	C++

Mlpy	No	Win/Unix	Python
MS SQL Server	Yes	Win	.NET
Neuroph	No	Win/Unix	Java
Oracle Data	Yes	Win/Unix	Java
Miner			
Orange	No	Win/Unix	C++/Python
РСР	Yes	Win/Unix	C/C++/Fortran
Pyml	No	Win/Unix	Python
R	Yes	Win/Unix	C/Fortran/R
RapidMiner	Yes	Win/Unix/OSX	Java/Groovy
Salford Systems	Yes	Win	C/C++/.NET?
SAS Enterprise	Yes	Win/Unix	С
Miner			
scikit-learn	Yes	Win/Unix/OSX	C/C++/Python/
			Cython
Shogun	Yes	Win/Unix	C/C++/Python/
			R/MATHLAB
Statistica	Yes	Win	.NET/R

All the tools and libraries referred in table 3 are commercial, close-source products, while the others are licensed under various open-source licenses (GNU (L) GPL, Apache or MIT) with a strong preference towards GPL and LGPL. In terms of operating system (column OS), as most of them rely on virtual machines (Java, Python), they are running cross-platform (Windows, Unix, Mac OS X).[9][10]The few exceptions are large commercial applications developed for Windows operating system. The ability to handle large data sets (column HLD) is largely impacted by two factors: the programming language and environment used to develop the tool and the supported machine learning methods. [7] One can observe that most of the products originating in Python world, such as Mlpy, Pyml and YAPLF, have problems in handling large data sets, may be due to the lack of mature Python libraries for large data processing at the time tool development was started. [5] Machine learning methods also impact this criteria, some of them, such as neural networks, being not well suited candidates for large data sets handling. Programming language support and interfacing (column Language) is an important criterion when it comes to integrate a library in your own application.[8] All of the surveyed products are supporting at least one external interface, which usually are its native language / platform. Many of them offer support for additional programming languages as well. The most popular languages are Java [10], C/C++ [9] and Python [6], followed by .NET, FORTRAN, R etc.

CONCLUSION

Shortly after we started this survey, we have been overwhelmed by the large number of libraries, tools, projects addressing machine learning, showing huge interest in this topic among research teams in academia and industry, equally. Applying popular machine learning algorithms to large amounts of data raised new challenges for ML practitioners. Traditional ML libraries does not support well processing of huge data so that new approaches are needed based on sets, parallelization of time-consuming tasks using modern parallel computing frameworks, such as MPI, Map A sequel survey will investigate machine Reduce. learning solutions designed for distributed computing environments, such as grids or cloud computing.

Our future plan aims at building a smart platform for problem solving applied in the field of Machine Learning, which will be able to smartly support end- users in their activities by selecting the most appropriate method for a given data set, or tweaking algorithms parameters.

REFERENCES:

- [1] Daniel Pop, Gabriel Iuhasz , Overview of Machine Learning Tools and Libraries.
- [2] Saeed Abu-Nimeh1, Dario Nappa2, Xinlei Wang2, and Suku Nair, A Comparison of Machine Learning Techniques for Phishing Detection.
- [3] http://www.scientificweb.com/ (website).
- [4] http://www.ml.cmu.edu/research/dap- papers/dapguang-xiang.pdf (website).
- [5] http://www.cs.nyu.edu/~mohri/pub/hbkb.pdf (website).
- [6] http://www.kdnuggets.com/polls/2013/languages-analyticsdata-mining-data-science.html(website).
- [7] Harshad Mehandale , Machine Learning On cloud Harnessing The Big Data Juggernaut (article) ,Business world.
- [8] http://machinelearningmastery.com/best-programming-languagefor-machine-learning/ (website).
- [9] Threaling K, Some Thoughts on the Current State of Data Mining Software Applications http://www.thearling.com/text/dsstar/top10.htm, 1998.
- [10] Zheng Zhu, Data Mining Survey, ver 1.1009, 2010, http://www.dcs.bbk.ac.uk/~zheng/doc/datamining.pdf.