

Comparison of Semantic Similarity Determination

using Machine Learning

Leena Giri G., Manjula S. H., Venugopal K R
Department of Computer Science and Engineering

University Visvesvaraya College of Engineering

Bangalore University, Bengaluru – 560 001

Karthik Karanth
Department of Computer Science and Engineering,

 Dr. Ambedkar Institute of Technology,

Bengaluru-560056

Abstract— Evaluating the semantic similarity of two terms is a

task central to automated understanding of natural languages.

The challenge of “semantic similarity” lies in determining if

two chunks of text have very similar meanings or totally

different meanings. The amount of research on semantic

similarity has increased greatly in the past 5 years, partially

driven by the annual SemEval competitions. In this work, to

compute the similarity between terms we consider the

WordSim and SimLex data set , compare the results obtained

between Neural network, Support Vector Machine and Linear

Regression machine learning techniques and evaluate the

results obtained against the M&C data set. For the data set

considered, the Neural Network Model gave the best results,

the Linear Regression method fared better than the Support

Vector Machine with Regression.

Keywords- Component; Semantic Similarity; Neural

Networks, Linear Regression; Support Vector Machines.

I. INTRODUCTION
The main challenge of natural language processing is to

understand the meaning of a piece of text. Judging whether a
computer program “understands” a piece of text is an
ambiguous task, as a piece of text could be interpreted in
different ways by humans too. The challenge of “semantic
similarity” lies in determining if two chunks of text have
very similar meanings or totally different meanings.
Although the problem of semantic similarity has a very
simple statement, it has broad applications.

Evaluating the semantic similarity of two terms is a task
central to automated understanding of natural languages.
Researchers consider neural networks as an effective method
for advancing computational understanding of semantic
similarity. Bollegala et. al., [1], describe a two-class SVM
they trained using those features extracted for synonymous
and non-synonymous word pairs selected from WordNet
synsets. Experimental results on three benchmark data sets
showed that their method outperforms various baselines as
well as previously proposed web-based semantic similarity
measures.

The amount of research on semantic similarity has
increased greatly in the past 5 years, partially driven by the
annual SemEval [2] competitions (Jurgens 2014). Results for
the 2015 SemEval tasks were published on June 5, 2015.
Results and models of SemEval 2015 Task 1 for semantic
similarity of twitter messages are described in (Xu et al.
2015). The highly successful ASOBEK [3] system for
semantic similarity (Eyecioglu and Keller, 2015) uses a SVM
classifier with simple lexical word overlap and character n-
grams features. The MITRE system (Zarrella et al., 2015)

uses a recurrent neural network augmented with string
matching features. Many other systems use a variety of
supervised models using features such as n-gram overlap,
word alignment, edit distance, cosine similarity of sentence
embeddings.

A. Motivation
Measuring the semantic similarity between named

entities is vital in many applications such as query expansion,
entity disambiguation (e.g., namesake disambiguation), and
community mining. Since most named entities are not
covered by WordNet, similarity measures that are based on
WordNet cannot be used directly in these tasks..

B. Contribution
In this work, to compute the similarity between terms we

have used the WordSim dataset and WordNet. WordSim
contains 353 pairs of words and their expected term
similarity. For the training set, we use 200 of the words in
WordSim. M&C (Miller-Charles), a benchmark data set and
a subset of WordSim, is used to evaluate the results.
Manually maintaining an up-to-date taxonomy of named
entities is costly, if not impossible. The proposed semantic
similarity measure is appealing for these applications
because it does not require precompiled taxonomies.

C. Paper Organization
Section 2 presents a discussion on research related work,

section 3 defines the problem and the evaluation of semantic
similarity between a pair of words and section 4 briefly
concludes the work.

II. RELATED WORK
Bollegala et. al.,[1] propose a novel pattern extraction

algorithm and a pattern clustering algorithm to identify the
numerous semantic relations that exist between two given
words.. The optimal combination of page counts-based co-
occurrence measures and lexical pattern clusters is learned
using support vector machines. The proposed method
outperforms various baselines and previously proposed web-
based semantic similarity measures on three benchmark data
sets showing a high correlation with human ratings.
Moreover, the proposed method significantly improves the
accuracy in a community mining task. Sahami and Heilman
[4] measured semantic similarity between two queries using
snippets returned for those queries by a search engine. For
each query, they collect snippets from a search engine and
represent each snippet as a TF-IDF-weighted term vector.
Each vector is L2 normalized and the centroid of the set of
vectors is computed. Semantic similarity between two
queries is then defined as the inner product between the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090150
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

273

corresponding centroid vectors. They did not compare their
similarity measure with taxonomy-based similarity measures.

In query expansion [5], a user query is modified using
synonymous words to improve the relevancy of the search.
One method to find appropriate words to include in a query
is to compare the previous user queries using semantic
similarity measures. If there exists a previous query that is
semantically related to the current query, then it can be either
suggested to the user, or internally used by the search engine
to modify the original query.

III. PROBLEM DEFINITION
Semantic similarity is computed between terms in the

M&C data set. This data set was used to train the Neural
Network model and compare it with supervised and
unsupervised machine learning techniques. For the data set
considered, the Neural Network Model gave the best results,
the Linear Regression method fared better than the Support
Vector Machine with Regression.

A. Implementation Details
In order to train the neural network, we used a

combination of two data sets, the WordSim data set with 353
word pairs and the SimLex data set with 999 word pairs.
These data sets include word pairs and their similarity as
judged by a human panel. The M&C data set is used to
validate the results.

Obtaining a vector between the words

The following procedure is employed to obtain a vector
to represent the word pair:

1) Let the words be word1 and word2

2) Find the list of synsets for both the words

3) synsets1 = synsets(word1)

4) synsets2 = synsets(word2)

5) Find the pair (syn1, syn2) where syn1∈synsets1 and
syn2∈synsets2 such that path_similarity(syn1, syn2)
is maximised.

6) Find the lch, the lower common hypernym between
the words.

7) Set lch1=path_similarity(syn1, lch) and
lch2=path_similarity(syn2, lch) if lch exists. Else,
lch1=lch2=0

8) Obtain the minimum and maximum depths for both
the synsets.

9) Find the shortest path distance between the synsets.

10) The final tuple is of the form (path_sim, lch1, lch2,
min_depth1, min_depth2, max_depth1,
max_depth2, shortest)

If no synset is found for the word, a similarity score of
0.0 is automatically assigned. For the training step, such
word pairs are discarded.

Table 1: Examples of vectors generated

Vectors Generated

Word Pairs Vectors Generated

(car, automobile) (1.0, 1.0, 1.0, 10, 10, 11, 11, 0.0)

(food, rooster)

(0.0625, 0.25, 0.07692, 4, 13, 4, 13, 15)

(glass, magician)

(0.125, 0.25, 0.2, 4, 5, 4, 8, 7)

(car, automobile) (1.0, 1.0, 1.0, 10, 10, 11, 11, 0.0)

B. Neural Network Approach

 In the first approach, we used a Neural

Network(Multilayer Perceptron Regressor) to train the

model to the data. The three parameters used are:

 Activation Function: Regularized Linear Unit a =

max(0, z)

 Middle Layer 1: 50 units

I. Middle Layer 2: 20 units

 Learning Rate: 0.008

The input to the first layer is set using the generated tuple.

The middle layer is obtained by multiplying the first layer

with a weight matrix.

Let

X = First layer, a Nx8 matrix, where N is the number of

samples in the current training batch

Y = Output from dataset, a vector of order N, where each

element is the similarity between the two words

M1 = First Middle Layer, a Nx50 matrix

M2 = Second Middle Layer, a Nx20 matrix

O = Output Layer, a vector of order N

W1 = Weight matrix between M1 and X, a 50x8 matrix

W2 = Weight matrix between M1 and M2, a 20x50 matrix

W3 = Weight matrix between M2 and O, a 20x1 matrix

B1 = Bias between X and M1, a vector of order 50

B2 = Bias between M1 and M2, a vector of order 20

B3 = Bias between M2 and O, a vector of order 1

The feed-forward phase is as follows:

 M1 = X×W1
T+B1___------------ (1)___

M2 = M1×W2
T+B2 ------------(2)

O = M2×W3
T+B3 -------------- (3)

The loss is determined using the squared loss error function:

L = (1/N) × Σ[(Y-O)2]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090150
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

274

The derivative of the loss with respect to the weights and

biases is calculated and the weights and biases are

appropriately changed before the next iteration. The above

equations are standard neural networks equations. In the

implementation, we have used a Python library ‘sklearn’ to

run the neural network.

The neural network is trained using the above hyper-

parameters. The training phase is run for 200 iterations.

Once it is done, it is tested on the M&C dataset by

computing the vectors for every pair of words. In our

results, we found that the network did well for word pairs

such as (car, automobile).

 Table 2: Comparison of Miller-Charles and Neural Network Results

Figure 1: Comparison of MC and Neural Network Results

 The neural network learnt features from the given

vector representation to fit the dataset to these values, but it

is not clear what exactly the neural network has learnt. Table

2 shows the comparison results between M&C

and

NN for

the same data set. Figure 1 is a scatter plot that illustrates the

same.

C.

Linear Regression

Next we used linear regression to fit a model to predict word

similarity between pairs of words. The same method is used

to generate the vectors of words as in the neural network.

Let

X = First layer, a Nx8 matrix, where N is the number of

samples in the current training batch

Y = Output from dataset, a vector of order N, where each

element is the similarity between the two words.

W = A vector of order 8. It is basically a vector where each

term is multiplied with the corresponding term in the input

vector X

B = A bias term

O = Output of the linear regression model

O = XW + B

Then, the loss is calculated. The squared loss error function

L = 1/N ×

Σ[(Y-O)2] is used.

word1

word2

M&C

NN

car

automobile

0.89

0.86

gem

jewel

0.90

0.74

journey

voyage

0.93

0.66

boy

lad

0.88

0.63

coast

shore

0.91

0.70

asylum

madhouse

0.89

0.66

magician

wizard

0.90

0.75

midday

noon

0.93

0.84

furnace

stove

0.88

0.43

food

fruit

0.75

0.32

bird

cock

0.71

0.66

bird

crane

0.74

0.58

tool

implement

0.65

0.66

brother

monk

0.63

0.57

crane

implement

0.27

0.44

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090150
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

275

Although the linear regression model did well for some pairs

of words, such as (lad, brother) and (coast, hill), it was

objectively worse than the neural network for most pairs of

words.

Table 3: Comparison of Miller-Charles and Linear Regression Results

Word 1 Word 2 M&C LR

lad brother 0.45 0.42

coast hill 0.44 0.45

food fruit 0.75 0.36

Linear regression tries to fit the given input data to the
required output by fitting a line to the trend. The linear
regression model did not fit the word-pair vector to the
similarities as well as the neural network. Word-similarity
measurement cannot be appropriately modeled used a linear
regression model. With the ‘sklearn’ implementation used for
linear regression, the results are unlikely to improve beyond
this as there are no tunable parameters for it. Table 3 shows
the comparison results between MC and Linear Regression
for a subset of the word pairs considered.

D. Support Vector Machines
Support Vector Machines are another popular supervised

learning method. They are often used in cases where there is
high dimensionality. Support Vector Regression is used to
solve regression problems using support vector machines.

In our study, we used a penalty parameter of C=100.0 and
the Radial Basis Function kernel. The Support Vector
Regression fared worse than linear regression for this
problem. Table 4 shows the comparison results between MC
and Linear Regression for a subset of the word pairs
considered.

Table 4: Comparison of Miller-Charles and Support Vector Machine Results

Word 1 Word 2 M&C SVR

lad brother 0.45 0.46

magician wizard 0.90 0.96

journey car 0.58 0.21

IV. CONCLUSION
Initially a vector (tuple) was created to represent the

words in the above outlined steps. The words were mapped
to their properties in the WordNet graph. Then, a matrix was
generated with the different word pairs from the training set,
using the tuple as the rows. This matrix was fed as training
data to the machine learning models. The model was then
trained on the matrix. In order to validate the model, the
M&C data set was used. The same process of generating the
vector was used for the M&C data set as well. The output
from the models were then tabulated. For the data set
considered, the Neural Network Model gave the best results.
The Linear Regression method fared better than the Support
Vector Machine with Regression.

ACKNOWLEDGMENT
I would like to single out and thank my guide Dr. S H

Manjula, and my student Karthik Karanth for their immense
contribution to executing this work. I thank my family for the
cooperation extended by them.

REFERENCES
[1] Danushka Bollegala, Yutaka Matsuo, Mitsuru, “A Web Search

Engine-Based Approach to Measure Semantic Similarity between
Words,” IEEE Transactions on Knowledge and Data Engineering,
vol. 23, no.7, July 2011.

[2] Eneko Agirrea , Carmen Baneab , Daniel Cerd , Mona Diabe,
“SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual
and Cross-Lingual Evaluation,” University of Michigan, Ann Arbor,
MI.

[3] Asli Eyecioglu, Bill Keller, “ASOBEK at SemEval-2016 Task 1:
Sentence Representation with Character N- gram Embeddings for
Semantic Textual Similarity,” University of Sussex, Department of
Informatics, Brighton, BN19QJ, UK.

[4] M. Sahami and T. Heilman, “A Web-Based Kernel Function for
Measuring the Similarity of Short Text Snippets,” Proceedings of the
15th International World Wide Web Conference, 2006.

[5] C. Buckley, G. Salton, J. Allan, and A. Singhal, “Automatic Query
Expansion Using Smart: Trec 3,” Proceedings of the Third Text
REtreival Conference, pp. 69-80, 1994.

[6] WordSim: alfonseca.org/eng/research/wordsim353.htm

[7] WordNet: https://wordnet.princeton.edu/

[8] Scikit-NeuralNetwork: scikit-
learn.org/dev/modules/neural_networks_supervised.htm

AUTHORS PROFILE

Leena Giri G is currently an Associate Professor in the Department of
Computer Science, Dr. Ambedkar Institute of Technology, Bangalore. She
obtained her Bachelor of Engineering from SJCE, Mysore. She received her
M.Tech Degree in Computer Science and Engineering from IIT Mumbai.
Her research interest is in the area of Semantic Web.

Karthik Karanth received his B.E. degree from the Department Computer
Science and Engineering, Dr. Ambedkar Institute of Technology, affiliated
to Visvesvaraya Technology University, Bangalore. He is currently a
Computer Vision Engineer at GreedyGame and designs systems that
automatically overlay and generate images, and build models that use deep
learning for image classification, among other taska.

 S H Manjula is currently an Associate Professor, Department of Computer
Science and Engineering, University Visvesvaraya College of Engineering,
Bangalore University, Bangalore. She obtained her Bachelor of
Engineering and Masters Degree in Computer Science and Engineering
from University Visvesvaraya College of Engineering. She was awarded
Ph.D in Computer Science from Dr. MGR University, Chennai. Her
research interests are in the field of Wireless Sensor Networks and Data
mining.

K R Venugopal is currently the Principal, University Visvesvaraya College
of Engineering, Bangalore University, Bangalore. He obtained his Bachelor
of Engineering from University Visvesvaraya College of Engineering. He
received his Masters degree in Computer Science and Automation from
Indian Institute of Science Bangalore. He was awarded Ph.D in Economics
from Bangalore University and Ph.D in Computer Science from Indian
Institute of Technology, Madras. He has a distinguished academic career
and has degrees in Electronics, Economics, Law, Business Finance, Public
Relations, Communications, Industrial Relations, Computer Science and
Journalism. He has authored 31 books on Computer Science and
Economics, which include Petrodollar and the World Economy, C

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090150
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

276

Aptitude, Mastering C, Microprocessor Programming, Mastering C++ and
Digital Circuits and Systems etc.. During his more than three decades of
service at UVCE he has over 300 research papers to his credit. His research
interests include Computer Networks, Wireless Sensor Networks, Parallel
and Distributed Systems, Digital Signal Processing and Data Mining.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090150
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

277

