
Compilation Of Virtualization Methods

Shivapooja Patil
dept. of Electronics and

Telecommunication

Vishwakarma Inst of InformationTechnology

Pune, Maharashtra, India, 411048

Abstract: Currently, virtualization serves to distribute a

physical computer's capabilities among multiple operating

systems. The concept of Virtual Machines (VMs) originated in

1964 through an IBM project known as CP/CMS system.

There exist various virtualization techniques supporting the

execution of complete operating systems. These techniques are

categorized based on their handling of modified and

unmodified guest OSs. For modified guest OSs, we explore

operating system-level virtualization and para-virtualization.

On the other hand, techniques like binary translation and

hardware-assisted virtualization enable the execution of

unmodified guest OSs. Additionally, a summary of resource

management facilities is presented to aid in the capacity

planning and consolidation of server applications without

delving into specific points or details.

Keywords— virtualization, CPU Protection, Capacity

Management, Hypervisor

 INTRODUCTION

Over the past decade, virtualization has become a widely

utilized technology that allows the shared use of physical

computer capabilities by distributing resources among various

operating systems (OSs). Its origins date back to IBM's 1964

project, which pioneered the concept of Virtual Machines

(VM) through the CP/CMS system and later evolved into the

Virtual Machine Facility/370. This system enabled a single

computing machine to function as multiple copies of itself,

each governed by its own OS (the CMS component).

The groundwork laid by IBM, along with subsequent research

efforts by Goldberg and Popek in the 1970s, provided a

comprehensive understanding of the principles and advantages

inherent in low-level virtualization technologies. Interest in

virtualization waned until 1999, when VMware Inc. introduced

the VMware Virtual Platform tailored for the x86-32

architecture.

 Literature Review
The survey will explore the journey of virtualization, starting

from its inception in the 1960s with IBM's groundbreaking

projects and subsequent advancements made by researchers

like Goldberg and Popek in the 1970s. It will delve into the

different facets of virtualization, covering hardware, software,

network, and storage virtualization, spotlighting their unique

traits and applications.

Venkatesh Tiwari
dept. of Electronics and

Telecommunication

Vishwakarma Inst of Information Technology

Pune, Maharashtra, India, 411048

Furthermore, the survey will focus on hypervisor

technologies, distinguishing between Type 1 and Type 2

hypervisors and their roles in managing virtual

environments. It will also highlight containerization tools

such as Docker and Kubernetes, showcasing their

significance in lightweight virtualization and modern

software development.

Examining the impact of virtualization on performance and

strategies for enhancing efficiency will be a key aspect.

Security concerns specific to virtual setups and potential

remedies will also be discussed.

Moreover, the survey will emphasize real-world applications

across various industries like cloud computing, data centres,

and edge computing. It will touch upon emerging trends like

serverless computing and virtualization's role in handling

AI/ML workloads, while also spotlighting recent

advancements and future possibilities in virtualization

technology.

A. OS-level virtualization:

his approach allows the host OS to run multiple isolated

Containers, also known as Virtual Private Servers (VPS), jails,

or virtualized servers, each sharing the same kernel as the host

OS. Examples of this technique include Linux-V Server,

Solaris Zones, and Open VZ. While it offers low overhead and

wide implementation, it doesn't support multiple kernels.

On the other hand, "Para-virtualization" is a different technique

involving the addition of specialized instructions (Hypercalls)

that replace the instructions of the actual machine's instruction

set architecture. Examples of Para-virtualization solutions

include Denali, Xen, and Hyper-V. In the x86 architecture, the

Virtual Machine Monitor (VMM) or Hypervisor operates just

above the physical hardware (Ring 0), allowing guest OSs to

function at higher levels. Although Para-virtualization supports

multiple kernels, modifying the kernel of guest OSs to utilize

Hypercalls fully is a drawback.

B. Hardware Virtualization: Binary translation is a technique

used to emulate one computer's processor architecture on

another. It allows running unmodified operating systems by

translating one instruction set into another. An example is

QEMU, a processor emulator supporting various architectures

like x86, ARM, SPARC, and more. QEMU lets you run OSs

developed for these processors on different hardware. While

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

this emulation offers multi-platform flexibility, it also causes

overhead due to translating the complete instruction set,

impacting performance.

 Fig: 1 CPU Protection Mode

Binary translation, often used in virtualization, combines

translation with direct execution. It's used to create copies

(VMs) of physical machines by translating only a small set of

processor instructions, like those needing privileged execution.

Examples include VMware solutions and QEMU Accelerator.

This method performs better than full emulation, with lower

overhead, but it's limited in supporting unmodified guest OSs

to those compatible with the host CPU.

Hardware-assisted virtualization, on the other hand, leverages

processor extensions introduced by companies like AMD and

Intel. This hardware enhancement creates a higher privileged

mode (Ring -1) in the processor architecture, enabling

unmodified guest OSs to run in Ring 0 while the VMM or

Hypervisor operates in Ring -1. It improves virtualization

performance by offloading tasks from software to hardware.

Virtualization technologies like KVM, VirtualBox, Xen,

Hyper-V, and VMware products use this hardware support for

efficient virtualization.

D. Hypervisors: A Hypervisor, also known as a Virtual

Machine Monitor (VMM), is a software layer that virtualizes

all the resources of a physical machine, allowing the execution

of multiple virtual machines (VMs). There are two main types

of Hypervisors: Type I and Type II.

Type I Hypervisors, also called native Hypervisors, operate

directly above the hardware in the Ring of highest privilege.

They control all VMs and support Classic system VMs.

Examples include VMware ESX, Hyper-V, and Xen.

On the other hand, Type II Hypervisors, known as hosted

Hypervisors, run within an operating system, sharing the Ring

of the Host OS. They support Hosted VMs and examples

include VMware Server and VirtualBox.

Type I Hypervisors have dedicated resource management

components for memory, CPU, and I/O, including a VM

scheduler for CPU resource management. In contrast, Type II

Hypervisors rely on the host OS's process scheduler, treating

each running VM as another OS process.

E. Capacity Management and Optimization: Choosing between

different virtualization solutions ultimately depends on how

well they meet infrastructure needs compared to their provided

features, like portability, migration, snapshots, and

administration capabilities.

Platforms like Xen and VMware ESX offer similar CPU

resource management features, such as SMP support,

proportional resource allocation through shares, processor

affinity, and max CPU limits. VMware ESX adds features like

resource pools and minCPU limits. Dynamic memory

management, supported by Xen, VMware ESX, and KVM, is

currently facilitated through memory ballooning.

These solutions enable workload consolidation on physical

nodes using specific VM schedulers for CPU resource

management. Initially, administrators define resource

assignments during VM creation based on infrastructure

policies. However, achieving optimal performance requires

deep knowledge of running VMs, their needs, and workload

types. Dynamic changes in resource allocation pose challenges

in dynamic environments for administrators.

Clustering VM-based resource providers is possible due to

features offered by virtualization platforms. Yet, each

application exhibits unique behaviours and requires varying

hardware and software resources. Managing these dynamic

features within a cluster becomes complex, making manual

management impractical for administrators.

Although virtualization management tools assist in setting

physical resource proportions, proper configuration demands

expertise and adherence to suggested guidelines to match each

VM's required resources effectively, including memory, CPU,

disk, and more.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

CONCLUSION

Different virtualization solutions offer varying CPU

management features, like weighted shares and limits.

Planning for each VM in large setups is tricky, requiring

expertise to configure for different workloads. The VMM

manages hardware without needing workload specifics, letting

upper layers create app-aware resource managers. We're

building a cloud management layer to abstract virtualization

for high-level app needs on physical machines.

ACKNOWLEDGMENTS

We're deeply grateful for the unwavering support and guidance

provided by the faculty and resources at Vishwakarma Institute

of Information Technology, Pune, India. A special

acknowledgment goes to our department of Electronics and

Telecommunication for their invaluable assistance throughout

the research and writing process. Their encouragement and

resources were pivotal in making this work possible.

Part II: Skill Competency Exam Operating System

1. Implementation of job scheduling algorithm

a. FCFS :

Code :

// Venkatesh Tiwari Roll No: 312050

// Shivapooja Patil Roll No: 312062

package fcfs;

import java.util.Scanner;

public class fcfs

{

REFERENCES

1. Creasy, R. J. (1981). "The origin of the VM/370 time-sharing

system." BM Journal of Research and Development, 25(5), 483–

490.

2. Goldberg, R. P., & Popek, G. J. (1973, 1974). "Architecture of

virtual machines" and "Formal requirements for virtualizable third

generation architectures." ACM Workshop on Virtual Computer

Systems.

3. VMWare Inc. (1999). "Introducing VMware virtual platform."

Technical white paper.

4. Lawton, K. P. (1999). "Running multiple operating systems

concurrently on an ia32 pc using virtualization techniques."

Unpublished.

5. Barham, P., et al. (2003). "Xen and the art of virtualization."

Proceedings of SOSP '03.

6. Uhlig, R., et al. (2005). "Intel virtualization technology." Computer,

38(5), 48–56.

7. Smith, J. E., & Nair, R. (2005). "The architecture of virtual

machines." Computer, 38(5), 32–38.

8. Whitaker, A., Shaw, M., & Gribble, S. D. (2002). "Denali:

Lightweight virtual machines for distributed and networked

applications." Technical report.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

public static void main (String args[])

{

Scanner sc = new Scanner (System.in);

System.out.println("Enter number of processes:");

int n = sc.nextInt();

int pid [] = new int[n];

int ar [] = new int[n];

int bt [] = new int[n];

int ct [] = new int[n];

int ta [] = new int[n];

int wt [] = new int[n];

int temp;

float avgwt=0;

float avgta=0;

for(int i=0;i<n;i++){

System.out.println("Enter process"+ (i+1)+"arrival time:");

ar[i]=sc.nextInt();

System.out.println("Enter process"+ (i+1)+"burst time:");

bt[i]=sc.nextInt();

pid[i]=i+1;

for(int k=0;k<n;k++){

for(int j=0;j< n-(k+1);k++){

if(ar[j]>ar[j+1]){

temp=ar[j];

ar[j]=ar[j+1];

ar[j+1]=temp;

temp =bt[j];

bt[j]= bt[j+1];

bt[j+1]= temp;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

temp= pid[i];

pid[j]=pid[j+1];

pid[j+1]=temp;

}

}

}

for(int m=0;m<n;m++){

if(m==0){

ct[m]= ar[m]+bt[m];

}

else{

if(ar[m]>ct[m-1]){

ct[m]= ar[m]+bt[m];

}

else{

ct[m]= ct[m-1]+bt[m];

}

}

}

ta[i]=ct[i]-ar[i];

wt[i]=ta[i]-bt[i];

avgwt= avgwt+ wt[i];

avgta= avgta+ ta[i];

}

System.out.println("\npid arrival burst complete turn waiting ");

for(int i=0;i<n;i++){

System.out.println(pid[i]+"\t"+ar[i]+"\t"+bt[i]+"\t"+ct[i]+"\t"+ta[i]+"\t"+

wt[i]);

}

sc.close();

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

System.out.println("\naverage waiting time"+(avgwt/n));

System.out.println("average turnaround time"+(avgta/n));

}

}

Output

b) SJF

Source Code:

class Process

 { int pid; int bt; int

art;

 public Process(int pid, int bt, int art)

 { this.pid = pid; this.bt = bt;

this.art = art;

 }

}

public class Main

{

 static void findWaitingTime(Process proc[], int n, int wt[]) {

 int rt[] = new int[n]; for (int i = 0; i < n; i++) rt[i] =

proc[i].bt;

 int complete = 0, t = 0, minm = Integer.MAX_VALUE; int shortest = 0, finish_time; boolean check

= false;

 while (complete != n) {

 for (int j = 0; j < n; j++)

 {

 if ((proc[j].art <= t) &&

 (rt[j] < minm) && rt[j] > 0) { minm = rt[j]; shortest = j;

check = true;

 }

 }

 if (check == false) { t++; continue;

 }

 rt[shortest]--;

 minm = rt[shortest]; if (minm == 0) minm =

Integer.MAX_VALUE;

 if (rt[shortest] == 0) {

 complete++; check = false;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

 finish_time = t + 1;

 wt[shortest] = finish_time - proc[shortest].bt -

proc[shortest].art;

 if (wt[shortest] < 0) wt[shortest] = 0;

 } t++; }

 }

 static void findTurnAroundTime(Process proc[], int n, int wt[], int tat[])

 {

 for (int i = 0; i < n; i++) tat[i] = proc[i].bt + wt[i];

 }

 static void findavgTime(Process proc[], int n)

 {

 int wt[] = new int[n], tat[] = new int[n]; int total_wt = 0, total_tat = 0; findWaitingTime(proc,

n, wt); findTurnAroundTime(proc, n, wt, tat);

 System.out.println("Processes " +

 " Burst time " +

 " Waiting time " + " Turn around time"); for (int i = 0; i < n;

i++) { total_wt = total_wt + wt[i]; total_tat = total_tat + tat[i];

 System.out.println(" " + proc[i].pid + "\t\t"

 + proc[i].bt + "\t\t " + wt[i]

 + "\t\t" + tat[i]);

 }

 System.out.println("Average waiting time = " +

 (float)total_wt / (float)n);

 System.out.println("Average turn around time = " +

 (float)total_tat / (float)n);

 }

 public static void main(String[] args)

 {

 Process proc[] = { new Process(2, 6, 1), new Process(2, 8, 5), new Process(7, 7,

3), new Process(4, 5, 9)};

 findavgTime(proc, proc.length);

 }

}

Output:

2) Implementation of Page replacement algorithm (Anyone) LRU

Source Code:

import java.util.ArrayList;

import java.util.Scanner;

public class LRU {

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter the capacity : ");

int capacity = scanner.nextInt();

System.out.print("Enter the number of page references: ");

int numReferences = scanner.nextInt();

int[] arr = new int[numReferences];

System.out.println("Enter the page reference sequence: ");

for (int i = 0; i < numReferences; i++) {

arr[i] = scanner.nextInt();

}

ArrayList<Integer> s = new ArrayList<>(capacity);

int page_faults = 0;

for (int i : arr) {

if (!s.contains(i)) {

if (s.size() == capacity) {

s.remove(0);

s.add(capacity - 1, i);

} else {

s.add(i);

}

page_faults++;

} else {

s.remove((Object) i);

s.add(i);

}

System.out.println("Number of page faults: " + page_faults);

}

}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

Output:

3) Bankers algorithm for deadlock detection and avoidance Source Code:

package bankers;

import java.util.Scanner;

public class bankers {

static int[][] arrmax;

static int[][] alloc;

static int[][] need;

static int[] avail;

static int n, r;

public static void input() {

Scanner sc = new Scanner(System.in);

System.out.print("Enter the no of Processes\t");

n = sc.nextInt();

System.out.print("Enter the no of resource instances\t");

r = sc.nextInt();

arrmax = new int[n][r];

alloc = new int[n][r];

need = new int[n][r];

avail = new int[r];

System.out.println("Enter the Max Matrix");

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

for (int i = 0; i < n; i++) {

for (int j = 0; j < r; j++) {

arrmax[i][j] = sc.nextInt();

}

}

System.out.println("Enter the Allocation Matrix");

for (int i = 0; i < n; i++) {

for (int j = 0; j < r; j++) {

alloc[i][j] = sc.nextInt();

}

}

System.out.println("Enter the available Resources");

for (int j = 0; j < r; j++) {

avail[j] = sc.nextInt();

}

}

public static void show() {

System.out.println("Process\t Allocation\t Max\t Available\t");

for (int i = 0; i < n; i++) {

System.out.print("\nP" + (i + 1) + "\t ");

for (int j = 0; j < r; j++) {

System.out.print(alloc[i][j] + " ");

}

System.out.print("\t\t");

for (int j = 0; j < r; j++) {

System.out.print(arrmax[i][j] + " ");

}

System.out.print("\t ");

if (i == 0) {

for (int j = 0; j < r; j++) {

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

System.out.print(avail[j] + " ");

}

}

}

}

public static void cal() {

int[] finish = new int[n];

int[][] need = new int[n][r];

int[] dead = new int[n];

int[] safe = new int[n];

int i, j;

for (i = 0; i < n; i++) {

finish[i] = 0;

}

// find need matrix

for (i = 0; i < n; i++) {

for (j = 0; j < r; j++) {

need[i][j] = arrmax[i][j] - alloc[i][j];

}

}

int flag = 1;

while (flag != 0) {

flag = 0;

for (i = 0; i < n; i++) {

int c = 0;

for (j = 0; j < r; j++) {

if (finish[i] == 0 && need[i][j] <= avail[j]) {

c++;

if (c == r) {

for (int k = 0; k < r; k++) {

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

avail[k] += alloc[i][j];

finish[i] = 1;

flag = 1;

}

if (finish[i] == 1) {

i = n;

}

}

}

}

}

}

j = 0;

flag = 0;

for (i = 0; i < n; i++) {

if (finish[i] == 0) {

dead[j] = i;

j++;

flag = 1;

}

}

if (flag == 1) {

System.out.println("\n\nSystem is in Deadlock and the Deadlockprocess are");

for (i = 0; i < n; i++) {

System.out.print("P" + dead[i] + "\t");

}

} else {

System.out.println("\nNo Deadlock Occur");

}

}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

System.out.println(" Deadlock Detection Algorithm ");

input();

show();

cal();

}}

Output:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110093
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

