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Abstract— Synthetic Aperture Radar (SAR) Imaging 

techniques now form an important field in remote sensing; the 

high-resolution images from aircraft and satellites are now used 

for terrain mapping and target identification, and many other 

applications. Targeting based missions which represented in the 

military surveillance and reconnaissance usually results in a 

very high dynamic range SAR images caused by a few very 

bright objects (manmade objects) and many low scattering 

coefficients (background).The proposed algorithm used the 

Compressive Sensing CS framework for exploiting this image 

data nature (represented in the redundancy in the data modeled 

as sparsity) in compressing SAR Images based on L1-

regularized Least Square algorithm for reconstructing 

compressed data which enhance the overall system performance 

such as reduction of the onboard memory requirements and 

improvement of the downloadtransmission link capabilities for 

downloading the large amount of data produced by the high 

resolution SAR images.  

Keywords—SAR image compression; Compressive Sensing 

I.INTRODUCTION  

Synthetic-Aperture  Radar  (SAR)  has  seen  wide 

applications  in  remote  sensing  and  mapping.  Synthetic  

aperture radar  technology  has  provided  terrain  structural  

information  to  geologists  for  mineral  exploration,  oil  spill 

boundaries on water to environmentalists, sea state and  ice  

hazard  maps  to  navigators,  and  reconnaissance  and 

targeting information to military operations. 

Synthetic aperture radar (SAR) is a radar imaging 

technology that is capable of producing high-resolution 

images of the stationary surface targets and terrain.The high 

resolution in the range direction is achieved by using large 

bandwidth signals while the high resolution in the azimuth 

direction is achieved by synthesizing a large aperture using 

platform motion [2]. The SAR data collection geometry 

requires that the received data has to be focused before 

obtaining an image comprehensible to the human eye. The 

generated data had to be stored on-board or transmitted to a 

ground station via a dedicated data link. Therefore, some form 

of compression on the raw data provides an attractive option 

for SAR systems design. SAR systems in practice mostly use 

the simplest methods because of their low computational 

requirements; recently an attractive idea is to apply results of 

the rapidly developing field of compressed sensing in 

compressing SAR data. Unlike traditional 

compression/decompression methods, compressed sensing 

allows very simple non-adaptive compression schemes at the 

expense of a significantly increased complexity for the 

decompression [1], [5], [7].  

The key idea is to exploit redundancy in the data modeled 

as sparsity in an appropriate dictionary. The novel theory of 

compressive sensing (CS) — also known under the 

terminology of compressed sensing, compressive sampling or 

sparse recovery. 

In this paper we introduce a proposed compressive sensing 

(CS) compression scheme for compressing a high dynamic 

rang SAR images based on L1-Least Square algorithm for 

reconstructing compressed data. The quality of images 

produced by proposed algorithm is evaluated using image 

quality parameters measurements such as Mean Square Error 

(MSE), Peak Signal to Noise Ratio (PSNR) and Relative Error 

(RE). This Project is implemented in MATLAB and a few 

visualization enhancement features, which facilitates 

processing data and producing desired output.   

II.SAR IMAGE DATA NATURE AND BASIC PROPERTIES 

A. SAR Image data nature 

SAR data is acquired from a moving platform by emitting 

at close intervals a band pass microwave radar signal in 

direction of a specific area, or scene as illustrated in Fig.1, and 

sampling the signal backscattered by the ground objects. 

When the size of the scene is small compared to its distance to 

the radar platform, the curvature of the wave front of the radar 

signal over the scene can be neglected. This approximation 

results in a simple interpretation of SAR data in the Fourier 

domain (2D Fourier transform of the scene) and is the basis of 

a SAR processing technique referred to as ―polar format 

algorithm‖. In this approximation, each received signal only 

contains information averaged over the scene in a direction 

orthogonal to the direction of propagation of the emitted radar 

signal [9].  

In the Fourier domain, each received signal thus contains 

information included in a radial line orthogonal to the 

averaging direction, i.e. in the direction of propagation. 

Consequently, the whole SAR data approximately correspond 

to a polar grid in the Fourier domain, a natural consequence of 

this bandpass property is that SAR images are complex-

valued. In order to form the SAR image, the polar grid data 
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are interpolated to a rectangular grid from which the image is 

computed by means of an inverse DFT. 

 In practice, the angular range of the polar grid is often 

very small, in which case the polar grid can already be well 

approximated by a rectangular grid. For this reason, we will 

simply assume in this paper that the raw data correspond to 

the 2D Fourier transform of the SAR image. 

 

 

 

 

 

 

 

 

 

 

 

B. SAR Image properties 

There are three main properties of SAR images; the first 

one is the noise-like characteristics of SAR images. The 

second one is their often very high dynamic range caused by a 

few very bright objects and finally the compressibility of SAR 

Images. 

 Noise-Like Characteristics:As the output of a coherent 
imaging system, SAR images are extremely noisy. This 
feature comprises two aspects. First, the magnitude of the 
SAR image contains what is referred to as speckle noise 
which can be efficiently modeled as multiplicative 
exponential white noise. Second, the phase of the image 
can also be modeled as uniform white noise in [0,2π]. 

 Dynamic Range: In General, the radiation emitted by the 
radar antenna is scattered when hitting the ground and only 
a very small proportion of the energy is reflected in the 
direction of the antenna. This typically happens in natural 
areas without any man-made objects. However, in some 
cases, a much larger proportion of the energy is reflected 
towards the antenna. A well-known cause for this 
phenomenon is the presence of corner shapes which are 
very common in man-made objects, building or vehicles. 
As a consequence, SAR images containing man-made 
objects typically have very bright pixels located on those 
objects while the background of the image is much darker. 
Moreover, these bright pixels are usually highly localized. 
For a building, only a few edges and corners appear as 
very bright in the SAR image. In practice, the brightest 
pixels of a SAR image can typically be (103) times larger 
than the background pixels. 

 Compressibility of SAR images:Due to their noise-like 
properties, complex-valued SAR images are very difficult 
to compress efficiently, unlike images without noise that 
have the same good compression properties as in most 
natural images. However the multiplicative noise provides 

the whole image with high entropy, thus significantly 
reducing its compressibility in any dictionary. For this 
reason, typical sparsifying transforms used in image 
processing such as wavelet transforms do not result in 
good sparse approximations for SAR images. 

 

III.COMPRESSED SENSING BASED ACQUISITION FOR SAR 

According to compressed sensing theory, a discrete signal 

or image expressed as a vector ƒ ∈ RNcan be exactly 

reconstructed with a reduced number of samples compared to 

the Nyquist rate provided that it is sparse in some basis: 

ƒ= Ψxwhere Ψ ∈ RN×N  is a matrix whose columns are the 

basis vectors, and𝑥 ∈ RN  is a vector with a small number of 

non-zero components K<< N [14]. 

In a compressed sensing framework [9], the signal/image 

is acquired through linear projections: y = Φƒ, where y ∈ RM is 

the measurement vector and Φ ∈ RM×N is referred to as the 

measurement matrix, considering the k-sparse representation x 

which results in the measurement equation. 

                                                  𝑦
= Φ𝛹𝑥.                                       (1) 

In order to recover a k-sparse vector x, the number of 

measurements M must be at least greater than k but can be 

significantly smaller than the signal/image dimension 

K<M<<N. While this cannot be achieved with any 

combination of measurement matrix and basis, it has been 

shown that several classes of random measurement matrices 

allow it for any basis with high probability.Given the 

measurements y, the reconstruction of the sparse vector x can 

beachieved by searching for the sparsest vector x  compatible 

with the measurements [11].  

This is usually referred to as the ℓ0 optimization problem 

where x = argminx  x  0 subject toy = ΦΨx , where the 

pseudo-norm  .  0corresponds to the number of non-zero 

elements. As it is well known, this is a combinational problem 

which cannot be solved directly in practice. The two most 

common approaches are therefore to replace it with 

an ℓPoptimization problem with0< p ≤1or to use a greedy 

algorithm such as Orthogonal Matching Pursuit. 

In order to define a compressed sensing based acquisition 

scheme for SAR images, three elements must be specified: a 

basis where the data are assumed sparse (or close to sparse), a 

measurement operator and a reconstruction algorithm, these 

aspects shall be discussed below. 

A. Sparse representation of SAR Images 

According to the statistics properties of SAR images 

which indicate that there is no basis or dictionary where the 

data can be assumed sparse. For this reason, it seems a priori 

impossible to acquire with a decent quality a whole SAR 

image in a compressed sensing framework. But, the very 

bright objects often related to man-made structures or vehicles 

are typically sparse in the space domain and slightly sparser in 

a wavelet domain. The image ƒ ∈ RN  can thus be decomposed 

into two components f =𝑓𝑠 + 𝑓𝑛 , where 𝑓𝑠 corresponds to the 

sparse bright objects and fn  to the remaining non-sparse areas. 

Fig.1. shows the SAR data acquisition system. 
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In this decomposition, the sparse component 𝑓𝑠 is typically 

larger than the other component because the bright objects are 

often several orders of magnitude brighter than the 

background of the image, thus compensating for their limited 

spatial support. If the image is represented in an orthonormal 

wavelet basis Ψ this property is preserved, leading to a 

decomposition 

 ƒ = Ψxs + Ψxn  where xs  is sparse and larger than xn . Thus, 

when bright objects are present, the whole SAR image can be 

assumed close to sparse in a wavelet basis. 

Fig.2. shows an example of SAR images data sparsity 

property. This is because the bright objects in each SAR 

image often related to man-made structures or vehicles are 

typically sparse in the space domain, the number of resolution 

cells of bright objects man-made objects (useful targets) in the 

received SAR image is typically much smaller than the 

number of resolution cells of natural areas without any man-

made objects (background scattering coefficients) in the 

illuminated scene by the SAR system [10]. 

 

 

Fig.2. (a), (b) Shows SAR images of a ground forces, 

many ground targets (tanks) can be seen as bright spots in this 

images due to corner reflections with low background 

scattering coefficients .in (c), (d) Shows another SAR images 

of an area of the sea near a busy port, many sea targets (ships) 

can be seen as bright spots in this images due to corner 

reflections. 

B. Designing Sensing Matrix (Measurement Operator) 

As previously mentioned, SAR raw data can be 

assimilated to samples of the Fourier transform of the SAR 

image. Among the classes of generic measurement matrices 

used for compressed sensing, this naturally calls for the partial 

Fourier matrix [4], [6], [8] class where the measurements y 

correspond to uniformly randomly selected Fourier 

coefficients of the SAR image. If F ∈ RN×N is the matrix 

representing the 2D DFT operator, we define the measurement 

matrix ΦM×Nas a random subset of M lines of F. 

The incoherence property of the matrix, Φ, is used to 

ensure that the matrix, Φ, is sparse matrix by determining the 

number of measurements, M, by: 

M ≥ const k log
N

k
   

Where, M, is the number of measurements, N, is the 

number of Nyquist rate samples (length of the SAR image 

data), k, is the number of the highest scattering coefficients, 

and (Const) is considered as the under sampling factor, its 

value is determined according to desired reduction ratio in the 

SAR image data length. 

C. Reconstruction algorithms 

There are different types of algorithms which are used for 

sparse reconstruction such as convex optimization algorithms 

which require very few measurements but are computationally 

more complex. On the other extreme are combinatorial 

algorithms, which are very fast, but require many 

measurements that are sometimes difficult to obtain. Greedy 

algorithms are in some sense a good compromise between 

those extremes concerning computational complexity and the 

required number of measurements; in this paper we introduce 

one of the most powerful convex optimization algorithm in 

sparse reconstruction of SAR data which so called L1-

regularized Least Square algorithm.We will illustrate this 

method on a simulated and real SAR imaging data in the next 

section IV. 

IV. L1- REGULARIZED LEAST SQUARE ALGORITHM 

 

We consider a linear model of the form  

𝑦 = 𝐴𝑥 +  𝜈, 

Where x∈ R𝑛  is the vector of unknowns (original 

signal/Image), y∈ R𝑚  is the vector of observations, ν∈ R𝑚  is 

the noise, and A∈ R𝑚×𝑛  is the data matrix [12]. 

When m ≥ nand the columns of Aare linearly independent, 

we can determine xby solving the least square problem of 

minimizing the quadratic loss 𝐴𝑥 − 𝑦 2
2, where  𝑥 2= 

( 𝑥𝑖
2

𝑖 )1/2 denotes the ℓ2-norm of x. 

Whenm, the number of observations, is not large enough 

compared to n, simple least-squares reversion leads to over-fit, 

so a standard technique to prevent over-fitting is ℓ2-

regularization [ ], which can be written as   

                              𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑥 − 𝑦 2
2 + 𝜆 𝑥 2

2                   

(2) 

 

Where λ > 0 is the regularization parameter. 

ℓ1-Regularized Least Squares. Substitute a sum of 

absolute values for the sum of squares used in ℓ2-

regularization (2), to obtain 

                               𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑥 − 𝑦 2
2 + 𝜆 𝑥 1                  

(3) 

 
 

  

(a) 

Ground targets 

Unuseful  

back ground  

Fig.2. Examples of SAR images data sparsity property. 

 

(b) 

Ground targets 

Unuseful back 

ground  

(c) (d) 

Sea targets Sea targets 

Unuseful back 

ground  
Unuseful back 

ground  
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Where  𝑥 1 =   𝑥𝑖 
𝑛
𝑖  denotes the ℓ1  norm of x and 

 λ > 0 is the regularization parameter, equation (3) stand 
for ℓ1-regularized LSP. This problem always has a solution, 
but it need not be unique. We list some basic properties of 

ℓ1-regularized LS, shows the differences with the ℓ2-

regularized LS. 

 Nonlinearity. From (2) shows the ℓ2-regularization 

produces a vector x, which is a linear function of the 

observation vector y. by contrast ℓ1-regularized LS, 

which is not linear in y. 

 Limiting behavior as λ→0. Unlike ℓ2-regularized LS 

as λ→0. ℓ1-regularized LS, the limiting point has the 

minimum ℓ1-norm among all points that satisfy 

𝐴𝑇 𝐴𝑥 − 𝑦 = 0. 
 Finite convergence to zero as λ→ ∞. For ℓ2-

regularized LS, the optimal solution tends to zero, as 

λ→ ∞. For ℓ1-regularized LS, however the 

convergence occurs for a finite value of λ: 

                              𝜆 ≥ 𝜆𝑚𝑎𝑥

=  2𝐴𝑇𝑦 ∞                    (4) 
 

Where  𝑥 ∞= 𝑚𝑎𝑥𝑖  𝑥𝑖   denotes theℓ∞ -norm of the 

vector x. For 𝜆 ≥ 𝜆𝑚𝑎𝑥 , the optimal solution of the ℓ1-

regularized LSP (3) is 0. In contrast, the optimal 

solution to the ℓ2-regularized LSP is zero only in the 

limit as λ→ ∞. 

 

Recently, the idea of ℓ1-regularization has been receiving 

alot of interest in signal processing and statistics. In signal 

processing, the idea of ℓ1-regularization comes up in several 

contexts including basis pursuit denoising [13] and a signal 

recovery method from incomplete measurements. Some of 

these problems do not have the standard form (3) but have a 

more general form 

                         𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑥 − 𝑦 2
2 +  𝜆𝑖

𝑛
𝑖=1  𝑥𝑖                 

(5) 

 

Where 𝜆𝑖 ≥ 0 are regularization parameters (The variables 𝑥𝑖  

that correspond to 𝜆𝑖 = 0 are not regularized). This general 

problem can be reformulated as a problem of the form (3). 

 

V.PROPOSED ALGORITHM OFSAR SPARSE SIGNAL 

RECONSTRUCTION USINGL1-REGULARIZED LS 

Letbe an unknown vector inR𝑛 . Suppose that we have 

mlinear measurements of an unknown signal/image∈ 𝑅𝑛
 

                𝑦𝑖 =  𝜙𝑖
  , + 𝜈𝑖  ,                  𝑖 = 1, … , 𝑚 

 

Where  ·,  ·  denotes the usual inner product, ν ∈ Rm  is the 

noise, and ϕi ∈ Rn  are known signals. Traditional 

reconstruction methods require at least n samples. Suppose we 

know a prior knowledge that  is compressible or has a sparse 

representation in a transform domain, descried by W ∈ Rn×n  

(after expanding the real and imaginary parts of the SAR 

image coefficients). In this case, if ϕi are well chosen, then 

the number of measurements m is intensely smaller than the 

size n which is necessary [13]. 

Compressed sensing or compressive sampling [11] 

attempts to exploit the sparsity or compressibility of the true 

(signal/SAR image) in the transform domain by solving a 

problem of the form  

                          𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  Φ − 𝑦 2
2 + 𝜆 𝑊 1                 (6) 

 

Where the variable is  ∈ Rn , Φ = [ ϕ1 , … , ϕm ]T ∈ Rm×n  is 

called the compressed sensing matrix, λ> 0 is the 

regularization parameter, and Wis called the sparsifying 

transform.  

When Wis invertible, we can reformulate the compressed 

sensing problem (6) as the ℓ1-regularized LSP 

 

                               𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐴𝑥 − 𝑦 2
2 + 𝜆 𝑥 1                  

(7) 

 

Where the variable is x∈ Rn  and the measurement matrix 

A = Φ𝑊−1 ∈ R𝑚×𝑛  and y∈ R𝑚 . 

We will illustrate this method on a simulated and real SAR 

imaging data set.After the SAR images is passes through the 

image formation process steps it goes through the 

compression module for storing and or download to the 

ground station. The reconstruction algorithm based on ℓ1-

regularized LS is used for reconstructing the original 

signal/Image data. 

In order to assess the performance of the proposed method 

many measuresof image quality such as (MSE, NMSE, PSNR 

and RE) is performed for performance evaluation of the 

proposed algorithm [8].  

 Mean Square Error MSE.The mean square error is 

one of the most commonly used performance 

measures in image and signal processing. For an 

image of size N × M it can be defined as follow, 

𝑀𝑆𝐸 =
1

𝑁𝑀
   𝑥 𝑛, 𝑚 − 𝑥 [𝑛, 𝑚] 2

𝑀−1

𝑚=0

𝑁−1

𝑛=0

 

Where x n, m the original image and x [n, m] is the 

decompressed image.  

 Normalized Mean Square Error MSE. MSE is 

normalized with the variance of the original signal to 

give NMSE, 

𝑵𝑴𝑺𝑬 =
   𝒙 𝒏, 𝒎 − 𝒙 [𝒏, 𝒎] 𝟐𝑴−𝟏

𝒎=𝟎
𝑵−𝟏
𝒏=𝟎

   𝒙 𝒏, 𝒎  𝟐𝑴−𝟏
𝒎=𝟎

𝑵−𝟏
𝒏=𝟎

 

 Signal to Noise Ratio SNR. SNR can be defined as, 

          𝑺𝑵𝑹 = 𝟏𝟎 𝒍𝒐𝒈𝟏𝟎

𝟏

𝑵𝑴𝑺𝑬
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 Peak Signal to Noise Ratio PSNR. PSNR is the most 

commonly used performance measure for image 

processing applications. It can be defined as, 

     𝑃𝑆𝑁𝑅

= 10 𝑙𝑜𝑔10

𝑝𝑒𝑎𝑘 𝑡𝑜 𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒   𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 2

𝑀𝑆𝐸
 

 Relative Error RE. RE of reconstruction image is 

defined as follow, 

                𝑅𝐸 =  
   I 𝑥, 𝑦 − I  𝑥, 𝑦  

2𝑁
𝑦=1

𝑀
𝑥=1

   I 𝑥, 𝑦  2𝑁
𝑦=1

𝑀
𝑥=1

 

1/2

 

Where 𝐈 𝒙, 𝒚  denotes the original image of scattering 

coefficients for illuminated scene, and 𝐈  𝒙, 𝒚  is the 

reconstructed one. Apparently, the lower the value of 

RE is, the better the reconstructed performance will 

be. 

 

 

 

VI.SIMULATION AND RESULTS 

 

In order to assess the performance of the proposed 

algorithms using the compressive sensing framework, we 

consider two case studies (Fig. 3, Fig 5). First case ; Simulated 

SAR image of bouing 727 airplane with very bright objects, 

second case; two real SAR images of sea targets at two 

different territories from two different sensors. Typical results 

of the proposed method are shown in (Fig.5). 

A. Case 1: Simulated SAR Image 

 

 

 

 

Fig.3 shows a simulated SAR image of bouing 727 aircraft 

at the left side with data files are written as a complex 2-D 

matrix, at the right side the 3-D amplitude plot describe the 

data value of each cell. Each row of the matrix corresponds to 

a range cell, and each column corresponds to a pulse in a 

burst,for each pulse, 64 complex range samples were saved. 

The file contains 256 successive pulses. Motion compensation 

and range processing have been applied to the data.The 

proposed algorithm is checked for the simulated image using 

different subsampling ratios (missing samples). 

 

 

Fig.4 shows examples of test image after reconstructionusing 

the proposed method at different subsampling ratios, 

Sub-
sampling 

ratio 
Reconstructed image 3-D Magnitude plot 

15 % 

  

30 % 

  

50 % 

  

75 % 

  

85 % 

  

 

 

The first column corresponds to the subsampling ratio 

(Compression Ratio), the second column corresponds to the 

reconstructed images, and the last column corresponds to the  

3-D amplitude plot of the reconstructed image. 

Table.1. shows the Mean Square Error MSE, Peak Signal 

to Noise Ratio PSNR and the Relative Error RE respectively 

Range 

Azi

mut

h 

Fig.4. Example of the simulated Image after the reconstruction with the proposed 

algorithm at different sub-sampling ratios. 

 

Range 
Azimuth 

A

m

p 

Range 

Azi

mut

h 

Fig.3 Simulated SAR Image with the 3-D Magnitude plot. 
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Range 

Range 

Range 

Range 

Range 

Range 

Range 

Range 

Azi

mut

h 

Azi

mut

h 

Azi

mut

h 

Azimuth 

Am

p 

Azi

mut

h 

Azimuth 

Azimuth 

Azimuth 

Azimuth 

Am

p 

Am

p 

Am

p 

Am

p 
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between the original and the reconstructed images using the 

proposed methods for different subsampling ratio.  

Sub-sampling 
ratio 

Mean square 
error (MSE) 

Peak signal to noise 
ratio (PSNR)/ dB 

Relative error 
RE 

15 % 0.0885 72.483 0.0066 

30 % 0.7783 63.041 0.0197 

40 % 1.777 59.455 0.0297 

50 % 4.296 55.621 0.0462 

60 % 10.938 51.563 0.0737 

75 % 62.904 43.966 0.1767 

85 % 124.17 41.012 0.2482 

 

The values show that as the subsampling ratio 

(compression ratio) increases the (MSE) and relative error 

(RE) increases on the other hand the (PSNR)decreases and 

vise-versa. 

 Here the proposed method gives a perfect performance in 

reconstructing the original signal/image in case of lower 

subsampling (Between 15 % and 50 % missing samples), and 

an acceptable performance in case of moderate subsampling 

(Between 50 % and 75 % missing samples), and a poor 

quality in recovery of the original signal/image in case of 

higher subsampling (More than 75 % missing samples). 

B. Case 2: Real SAR Images 

 

 

 

 

Fig.5.a),b) shows real SAR images of sea targets (ships), 

which looks like very bright spots due to corner reflections 

with low background scattering coefficient describing the flat 

areas sea/ground. In order to make it simpler we take subset 

images (256 × 256) pixels as in (fig.6) to use it with the 

proposed method of compressing and reconstructing the 

original image data with lower computational time. 

 

 

 

 

 

Fig.6.a),b)shows a subset SAR imagesfrom (fig.5) of two 

different Sea targetswith size (256 x 256) at the left side 

andwith data files are written as a complex 2-D matrix, at the 

right side the 3-D amplitude plot describe the absolute data 

value of each cell. 

Next (fig.7) are examples of real SAR imagesafter 

reconstructionusing the proposed method at different 

subsampling ratio (missing samples). 

 

Sub-

sampling 

ratio 

Image (a) Image (b) 

15 % 

  

30 % 

  

50 % 

  

75 % 

  

Fig.5.Real SAR Images in different locations acquired by two different sensors. 

 

Range 

A

zi

m

ut

h 

a) b) 

Am

p 

Range 

Azi

mut

h 

Azimuth 

Azimuth 

Azi

mut

h 

Range 

Am

p 

Range Range 

Azi

mut

h 

Range 

Table.1. MSE, PSNR and RE of the test image at different sub-sampling ratios. 

 

a) 

b) 

Fig.6. Real SAR Images of two different sea targets. 
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85 % 

  

 

The first column corresponds to the subsampling ratio 

(Compression Ratio), the second column corresponds to the 

reconstruction of image (a), and the last column corresponds 

to the reconstruction of image (b). 

In case of lower subsampling (Between15 % and30 % 

missing samples), we observe that theℓ1-regularized LS 

allows a perfect recovery of the main objects (targets), as well 

as the flat background area has the same performance of 

recovering the original signal. 

In case of moderate subsampling (Between50 % and75 % 

missing samples), we observe that the ℓ1-regularized LS 

allows the recovery of the main objects (targets), However the 

flat areas where the statistics of the images are similar to 

stationary white noise are almost recovered with little 

distortion.  

In case of higher subsampling (More than 75 % missing 

samples), we observe that the ℓ1-regularized LS allows an 

approximated recovery of the main objects (targets) with 

lower quality, and an apparent distortion in the flat 

background areas.  

Table.2. shows the Mean Square Error MSE, Peak Signal 

to Noise Ratio PSNR and the Relative Error RE respectively 

between the original and the reconstructed images using the 

proposed methods for different subsampling ratio, using the 

real SAR images. 

Sub-

sampling 
ratio 

 (MSE)  (PSNR) / dB Relative error RE 

Image 

(a)  

Image 

(b)  

Image 

(a)  

Image 

(b)  

Image 

(a)  

Image 

(b)  

15 % 105.252 68.797 59.9002 60.5307 0.0276 0.0319 

30 % 238.39 137.461 56.3496 57.5246 0.0416 0.045 

40 % 347.209 183.009 54.7166 56.2817 0.0502 0.0519 

50 % 572.427 256.738 52.5453 54.8115 0.0645 0.0615 

60 % 956.89 342.897 50.3139 53.5548 0.0833 0.0711 

75 % 2675 742.103 45.8492 50.2018 0.1393 0.1046 

85 % 17725 7357.5 37.636 40.239 0.3587 0.3294 

 

 

Table.2. shows that by increasing the subsampling ratio 

(compression ratio) results inincreasing the (MSE) and 

relative error (RE) on the other hand the (PSNR)decreases.  

By analyzing these results (fig.8) shows the graph of the 

NMSE analysis curve and (fig.9) shows the graph of the 

PSNR analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From  the  Fig.8, it  can  be  seen  that as  the  

compression  ratio increases over (CR> 0.3 0r missing 

samples < 70 %) the Normalized Mean  Square  Error NMSE  

decreases,  which means that the images are perfectly 

recovered with very high quality, and for the lower 

compression ratio ( CR< 0.3 or missing samples > 70 % )  the 

NMSE increases, which means that the images are poorly 

recovered with low quality, the apparent changes in NMSE at 

lower CR between image (a) and image (b) is due to the 

variation of the dynamic range of each image 

Also the Peak Signal to Noise Ratio PSNR graph (Fig.9) 

can used in evaluating the proposed algorithm, by get a 

relation between compression ratio and the value of the 

PSNR, it can be seen that, as the compression ratio increases 

over (CR > 0.3 0r missing samples < 70 %) the value of the 

PSNR is greater than (45 dB) which considered the recovered 

image as an excellent image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. Real SAR Images after reconstruction with the proposed method. 

 

Table.2. MSE, PSNR and RE of the real images at different sub-sampling 
ratios. 

 

Compression ratio CR 
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SE 

Fig.8. Graph for NMSE analysis at different compression ratios.  
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Fig.9. Graph for PSNR analysis at different compression ratios. 
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VII.CONCLUSION  

This paper presents a sparse reconstruction method for 

SAR imaging based on CS theory, which aims to sparse 

targets reconstruction using less samples than Nyquist 

samples by solvingℓ1-regularized Least Square problem LSP. 

The presented method greatly improves the imaging 

performance of SAR, when the target space is sparsein a very 

high dynamic range SAR images caused by a few very bright 

objects (manmade objects) and many low scattering 

coefficients (background). Simulated results show a superior 

performance of the presented method which significantly 

suppresses the distortions of the main objects (targets) at 

higher subsampling ratios.This can enhance the overall 

system performance such as reduction of the onboard 

memory requirements and improvement of the download 

transmission link capabilities for downloading the large 

amount of data produced by the high resolution SAR images. 
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