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Abstract  
 

A methodology for obtaining the confidence limits 

for the two populations extreme value type I 

distribution is presented. The methodology is based 

on the application of the maximum likelihood 

method for estimating the parameters of the 

distribution and the confidence limits of the design 

events. The confidence limits are obtained by using 

of the variance-covariance matrix of the 

parameters and assuming a normality of the design 

events to compute them. Given the complexity of 

the likelihood function, its logarithmic form is used 

and a non-linear multivariable constrained 

optimization method is applied to maximize such 

function to produce the maximum likelihood 

estimators of the parameters and its confidence 

limits of the distribution. An example of application 

of the proposed methodology is contained in the 

paper. The results showed an improvement in the 

standard error of fit and confidence limits 

narrower than those produced by the one 

population procedure. 

 

 

1. Introduction  
The method of maximum likelihood has been 

recognized like one of the best methods of 

estimation of parameters of functions of probability 

distribution, the properties of its estimators like 

asymptotic unbiasness and sufficiency, as well as 

the consistency and efficiency, have been briefed 

frequently in technical literature, [1], [2], etc. This 

method also has the virtue of being able to handle 

very complex likelihood functions with an amazing 

flexibility. The use of mixed functions of 

probability to fit samples coming from two or more 

populations has been proposed from time back, [1]. 

In the particular case of the functions of 

distribution of extreme values, TCEV, [3], [4], [5] 

and [6], the mixed Gumbel, [7],  [8], [9], and the 

mixed general of extreme value, [10] and [11]. [12] 

used different mixtures of normal, gamma and 

Gumbel distributions to test the relevance of using 

mixture models, by computing the marginal 

likelihoods of single distribution models, and to 

verify the presence of a persistence in the time 

series by comparing independent and identically 

distributed and Markovian mixture models. 

 

 

2. The Extreme Value Type I Distribution 

Function 
The extreme value type I distribution function, 

for the maxima, is[13]: 
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where  and x01 are the scale and location 

parameters, respectively. 

The probability density function is given by, 

[13]: 
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where: -  x    and    0  

 

 

3. Two Populations Extreme Value Type I 

Distribution Function  
Based in the general form for distribution 

function for two populations, [1] proposed: 
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 where p is the proportion of the second population 

in the sample. 

The two populations extreme value type I 

distribution function can be expressed as: 
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and the corresponding probability density function 

is: 

 

   

 





















 









 





1

01

1

01

1

expexp

exp
1

)(





xx

xxp
xf mix

                                     

















 








 


2

02

2

02

2

expexpexp


xxxxp

                                         
                                                                     (5)      

 

4. The Method of Maximum Likelihood 
The likelihood function for N independent and 

identically distributed X1, X2,..., Xn can be 

obtained as the joint probability density function, 

that is, [1]: 
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where   is the parameter vector and f (.) is the 

probability density function. 

The logarithmic version of the former equation is: 
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Based in the statements of the previous section, the 

logarithmic likelihood function of the two 

populations extreme value type I distribution is: 
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In the proposed procedure, eq. (8) has been 

maximized directly by using the well-known non-

linear mutlivariable constrained Rosenbrock 

optimization method, [14]. 

 

 

5. Estimation of the Confidence Limits for 

the Two Populations Extreme Value Type 

I Distribution 
The variance-covariance matrix for the two 

populations extreme value type I distributions, may 

be expressed as: 
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and its elements are: 
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The second partial derivatives, which expected 

values must be obtained to evaluate the variance-

covariance matrix for the two populations extreme 

value type I distribution, are: 

 

1894

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90702



 


























































 









 







 N

i DEN

xx

xx
xF

p

x

LnL

1

1

01

1

01

1

2

101

exp1

exp;

1 






                                                                            (11)                                   

                                                                           

 

 
































































 











 







 N

i DEN

xx

xx

xx
xF

pLnL

1

1

01

01

1

01
1

2

11

1exp

exp;

1 






                                                                            (12) 

                                                                                   

 


























































 









 







 N

i DEN

xx

xx
xF

p

x

LnL

1

2

02

2

02

2

2

202

exp1

exp;

1 






                                                                         (13)                                                 

 

 

 
































































 











 







 N

i DEN

xx

xx

xx
xF

pLnL

1

2

02

02

2

02
2

2

22

1exp

exp;

1 






                                                                            (14) 

                                                                                   

   

 






 




 N

i DEN

xfxf

p

LnL

1

21 ;; 

           (15)  

 

where: 

 

DEN = f(x)mix                                                 (16)                                    
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6. Results and Discussion 
The gauging station Jaina in the state of Sinaloa, 

located in Northwestern Mexico, with period of 

record (1941-1991), has been chosen to show the 

procedure for obtaining the values of the 

confidence limits based in the two populations 

extreme value type I distribution. The initial values 

required by the procedure were estimated by using 

the computer code FLODRO 4.0 in [15]. The 

design values and their confidence limits for the 

one and two populations’ approaches are shown in 

Tables 1 and 2, respectively, and were obtained by 

using the computer code contained in [16].  

 

Table 1. One population design values and their 

confidence limits for gauging station Jaina, Sin  

(SE = 371.42) 

(1) (2) (3) (4) (5) 

5 821 1002 1184 363 

10 1044 1277 1509 465 

20 1256 1541 1825 569 

50 1528 1881 2235 707 

100 1731 2137 2543 812 

(1) Return Period (years) 
(2) Lower Limit (m

3
/s) 

(3) Design Value (m
3
/s) 

(4) Upper Limit  (m3/s) 

(5) Interval Width between Confidence Limits 

(m3/s) 

 

Table 2. Two populations design values and their 

confidence limits for gauging station Jaina, Sin  

(SE = 276.15) 

(1) (2) (3) (4) (5) 

5 886 1007 1129 243 

10 1345 1498 1651 306 

20 1756 1938 2120 364 

50 2261 2479 2698 437 

100 2631 2876 3121 490 

(1) Return Period (years) 
(2) Lower Limit (m

3
/s) 

(3) Design Value (m
3
/s) 

(4) Upper Limit  (m3/s) 

(5) Interval Width between Confidence Limits 

(m3/s) 

 

A graphical representation of these results can 

be observed in figures 1 and 2, for the one 

population approach and for the two populations 

model, respectively.  

 

 

 
 

Figure 1. Empirical and One Population 

Theoretical Probability Distribution Function 

and Confidence Limits for Gauging Station Jaina, 

Mexico 

 

The standard error of fitting (SE) has been 

computed as, [17]: 
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Figure 2. Empirical and Two Populations 

Theoretical Probability Distribution Function  

and Confidence Limits for Gauging Station Jaina, 

Mexico 

                             

 The Gumbel’s reduced variate, required to 

produce the abscissa axis in graphical displays of 

flood data, models applied and its confidence 

limits, is obtained as follows: 

 

y = - Ln(-Ln(1-1/Tr))                                     (22) 

 

where Tr is the return period in years. 

It is observed that the two populations model fits 

the flood sample much better (SE = 276.15) 

compared with the one population model (SE= 

371.42). The two populations model produced a 

narrower confidence limits, too. 

The application of the proposed approach is 

restricted to the fact that the computer code for the 

Rosenbrock’s constrained multivariable method 
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must be available, given that performing the 

required computations for such method without a 

computer code is just out of the question. 

 

7. Conclusions  
A procedure for the obtaining of the confidence 

limits for the two populations extreme value type I 

distribution has been described here, based on the 

method of maximum likelihood. The procedure has 

given good results so far with the samples of data 

analyzed until now, one of which was used as an 

example of application of the proposed 

methodology. It can be observed that in this 

example of application, the standard error of fitting 

has been reduced significantly and the width of the 

confidence limits was reduced, too. Based on this 

arguments, the authors recommend the procedure 

here shown as an effective tool for annual flood 

frequency analysis when two populations are 

detected within a sample of flood data.  
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