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Abstract— Increased use of Electro-mechanical actuators 

(EMA) in high-power, flight-critical applications where 

hydraulics have traditionally been employed has increased the 

need for reliability assessment. The Bayesian network (BN) 

model is a proved powerful tool for the reliability estimation of 

EMA systems and provides significant advantages over 

traditional techniques like reliability block diagrams and fault 

trees in reliability estimation as they are not flexible enough to 

detect the uncertainties in the dependencies among system, 

subsystem and components. When Bayesian network model is 

combined with statistical Bayesian inference there is an 

advantage of combining information from multiple sources at 

multiple levels for finding the system reliability. In this work, it 

is proposed for developing the methodology to estimate the 

conditional probabilities in a Bayesian Network model of EMA 

system using Bayesian inference. Various component and 

system qualification and acceptance data of EMA system is to be 

collected and combined to estimate the system reliability. Three 

scenarios will be considered. a) In the first scenario the complete 

historical data set of states of the system/ subsystem and its 

components are available, b) failure summary is available, c) 

incomplete system/component level data. Assessing the posterior 

distribution of conditional probabilities is difficult to the 

understanding the structure of an EMA system. Hence 

computational Bayesian method, Markov chain Monte Carlo 

(MCMC) is used for quantifying system reliability structure 

with incomplete data. MATLAB and OpenBugs code will be 

developed to perform calculations and MCMC simulation. 
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I. INTRODUCTION 

With the rapid development of the modem power 

electronics, Electro-Mechanical Actuator (EMA) is used 

more and more. Before, the control of missile system was 

mainly done by using the mechanical device like hydraulic 

actuator which is large, heavy and complex to realize exact 

position control. Also it is inflexible when there is any 

necessary sudden change. Also, the hydraulic drive system is 

complex and difficult for maintenance. Therefore, the 

Electro-Mechanical Actuator is substituted for mechanical 

device as a more effective actuator in missile system. 

The demand for product functionality is becoming more 

and more complex over time. Hence the engineered products 

like EMA being discussed in this project are becoming more 

and more complex. For the EMA system used in the missile 

system, to estimate more consistent failure probability there 

is a need to consider that all the components, subsystems and 

system are dependent. Now here comes the real problem in 

assessing the system reliability. 

Hence the traditional reliability assessment techniques 

like reliability block diagrams and fault trees analysis which 

are used for small systems are not consistent in analysing 

these complex systems. In this situation we have to develop 

new reliability model to integrate all the available information 

to precise prediction of system reliability. 

While working for reliability estimation for a system we 

face many situations, some in which complete information 

may not be available about how a complex system fails in its 

operating conditions and environment. So there is a necessity 

to understand the relationship between the components, 

subsystems, and system. To do this we use Bayesian network 

for representing the probabilistic relation among the system, 

sub system and the component reliability. This is an extension 

of the relationship that is modelled typically by fault trees or 

block diagrams if the failure structure is clear and well 

understood. 

II. LITERATURE SURVEY 

A system consists of subsystems and components or on 

functional wise, sub-functions and elementary functions, 

which are represented by node in the reliability topology of 

system. Na Wang et al. [1] presented a novel hybrid Three-

Redundant Electro-Mechanical Actuator system which 

mainly consist of one manual BLDCM driver and two 

automatic brushless DC motor drivers.  He gave a clear idea 

of system structure with block diagrams and also reliability 

prediction of each part of the system by adopting the failure 

models and reliability models, but this method is the primary 

method to any system that can estimate the reliabilities of the 
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components, subsystems and also the system using the 

reliability block diagrams considering the components are 

independent to each other. But this method failed in 

calculating the dependencies among the component, sub-

system and system. The Fault tree analysis is another method 

to consider the dependencies and calculate the reliability of 

the system using the probabilities of the components or sub-

systems. Sohag Kabir [2] explained an overview of fault tree 

and its applications in the analysis of model based 

dependability. Karim Bourouni compared the reliability 

block diagram and fault tree for a reverse Osmosis plant. But 

this method uses deterministic relations like AND, OR 

relations. This method fails when the components, subsystem 

and system have non-deterministic relationship. 

A. Bobbio et, al. [3] gives a brief description of mapping 

fault trees into Bayesian networks and establishing the 

conditional probability tables to the nodes having the parent 

nodes with pre-determined probabilistic relations like AND, 

OR relations. The methodology to combine multistate 

variables using Bayesian approach is modelled. Hamada M et 

al. [4] applied the same approach as Johnson et al. on the non-

overlapping which is continuous failure time data extracted 

from basic and higher-level failure events in a fault tree. 

Graves Todd L et al. [5] further extended the research by 

using the fault trees for multistate. They used Dirchlet 

distribution for prior probabilities of multistate system. He 

also proposed a Bayesian approach to combine simultaneous 

multilevel data. 

Martz and Waller [6] addressed the problem of combining 

the multilevel data from different levels of the system and 

also from the expert guesses about the parameters of the 

distribution and reliability of system components. These 

papers focused on series and parallel systems, where 

component failure data were modelled using binomial 

distributions and whereas beta distributions are used for the 

prior information at components, subsystems and system 

levels. Martz et al. also explained native prior and induced 

prior. Any one of the priors are used to find the posterior in 

the unavailability of one another. Both the priors can also be 

used in the case of availability. 

Yontay et al. [7] discussed the situations that we do not 

have complete information about how a complex system 

would fail in its operating environment and also more about 

the interactions between the system and its components and 

how they work together. They used Bayesian network to 

represent the probabilistic relationship between the system 

and components, which is a natural extension of deterministic 

relationship typically modelled by block diagrams of fault 

trees when the failure structure is clear and well understood. 

We used Bayesian networks to model the EMA system in 

three different scenarios of data availability. We divided the 

system based on the data availability and calculate the 

posterior probabilities separately to each part and then we 

have combined them using induced prior method. We have 

also found the system probability in case of limited data 

availability by using both the Bayesian and fault tree analysis. 

We found MCMC (Markov Chain Monte Carlo) is the best 

suited algorithm to find the posterior probabilities. The 

OpenBugs software found to be the best one to perform 

MCMC which uses Metropolis-Hastings algorithm to sample 

from the distribution. 

III. BAYESIAN NETWORKS AND FAILURE MODES 

OF EMA 

A. Bayesian networks 

 The Bayesian network model is an advanced tool that can 

provide many methodological advantages over traditional 

techniques in dependency assessment. Because the traditional 

methods like reliability block diagrams and fault trees are still 

not flexible enough to predict the uncertainties in the 

dependencies among system, subsystem and components. 

Bayesian networks allows components, systems and 

subsystems to be related with conditional probabilities. 

Where as in reliability block diagrams and fault trees are 

related with pre deterministic relations like AND, OR 

relations. One of the big advantages of Bayesian network 

analysis over traditional methods is it can combine the 

information from multiple levels and multiple sources when 

it is coupled with statistical Bayesian inference techniques.  

Hence it is helpful when we combine the both Bayesian 

networks and Bayesian inference techniques. The 

requirement for the Bayesian network model is conditional 

probabilities. These conditional probabilities represents the 

complex failure relations in multilevel systems. 

 Now the conditional probabilities for a Bayesian 

networks has the ability to combine information from 

different sources like, objective information sources, such as 

older generation’s failure records products, life tested data of 

components and available field data. This data comes with 

different structures and different types, therefore we may face 

difficulty in calculating the conditional probabilities from the 

data. 

Fig.1: Bayesian network representation 

Bayesian inference is statistical inference method through 

which we can estimate the model parameters by combining 

the prior and likelihood. That is we can combine the prior 

information and the information coming from different 

sources to obtain more precise estimation of Bayesian 

network model parameters. The Bayesian network 

representation as follows in fig.1. 
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As the C1 (component 1) and C2 (component 2) are 

conditionally independent they have marginal probability 

distributions as follows. 

Table1: Marginal Probabilities 

Component Failure probability Success probability 

C1 P1(C1) P0(C1) 

C2 P1(C2) P0(C2) 

 

Where suffix ‘1’ represents the failure and suffix ‘0’ 

represents the success. The system has the conditional 

probabilities as in the table2. 

Table2: Conditional Probabilities 

Component combinations System failure System success 

C1=0, C2=0 𝑃1(00) 𝑃0(00) 

C1=0, C2=1 𝑃1(01) 𝑃0(01) 

C1=1, C2=0 𝑃1(10) 𝑃0(10) 

C1=1, C2=1 𝑃1(11) 𝑃0(11) 

 

To get the marginal failure probability of the system S we 

should find the joint probabilities of the four conditions given 

that system is failed and add the joint probabilities. The 

mathematical expression is as follows. 

𝑃(𝑆 = 1) = ∑ ∑ 𝑃1(𝑖, 𝑗) ∗ 𝑃𝑖(𝐶1) ∗ 𝑃𝑗(𝐶2)

𝑛

𝑗=1

𝑛

𝑖=1

 

                                      …………….. (1) 

From the equation 1 we can find the marginal probability 

of the system [8]. 

 The Bayesian equation to find the posterior as follows. 

𝑃(𝑆|𝐶1, 𝐶2 ) =
𝑃(𝐶1, 𝐶2|𝑆) × 𝑃(𝑆)

𝑃(𝐶1, 𝐶2)
… … . (2) 

In the above equation (2) 

𝑃(𝑆|𝐶1, 𝐶2 ) = 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 

𝑃(𝐶1, 𝐶2|𝑆) = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

𝑃(𝑆) = 𝑃𝑟𝑖𝑜𝑟 

𝑃(𝐶1, 𝐶2) = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Most of the times the normalizing constant becomes 

analytically difficult to calculate hence we use MCMC (Mote 

Carlo Markov Chain) to find the posterior of the system as we 

do not need normalizing constant in this algorithm to 

calculate the posterior of the system. 

Both the prior and posterior data looks in similar format 

but the probabilities will be updated based on the likelihood. 

Where likelihood is in the form of test data in our project. 

B. Electro-Mechanical Actuator And Its Failure Modes 
 The fault tree diagram of the available system is as 

follows in fig2. The available EMA system consists of 

following subsystems and components which are 

considered as potential sources of failure. 

The following subsystems and their components are 

the sources of failure of the system. 

1. Servo control (SC) unit failure 

a. Control PCB (CP) failure 

b. Power PCB (PP) failure 

2. BLDCM (Brushless DC Motor) assembly failure 

a. Hall Sensor PCB (HP) failure 

b. Stator failure (S) 

c. Rotor failure (R) 

3. Gear train assembly (G) failure 

4. Resolver (RE) failure 

Fig.2: Fault tree diagram for EMA system. 

 

1. servo control (SC) unit failure 

The servo controller is the main part of the whole system. 

The servo control unit automates the process. The failure of 

servo control unit is due to the following failures.   

a. Control PCB (CP) failure: The control PCB consists of 

advanced digital signal processor and resolver to digital 

circuits. This is a micro-electronics system. 

b. Power PCB (PP) failure: The power circuit is based on 

switched mode power devices. This is a power 

electronic circuit. 

Both the PCB failure occur due to environmental stress 

like dirt and high environmental temperatures and also 

manufacture problems like poor soldering and shorting out of 

closely placed traces accidentally. 

2. BLDCM Assembly Failure 

Brushless DC motor has many advantages over 

commutator-type dc and ac motors due to brush removal. The 

electromagnetic interference and its associated sparking is 

eliminated. The BLDCM failures are mainly due to  

a. Hall sensor PCB (HP) failure: Hall sensor PCB can be 

used to measure the intensity of magnetic fields for 

measuring applications. Furthermore, the Hall sensors 

can distinguish the polarity of the magnetic field and the 

main advantage of hall sensor is there is no need to strip 

the cable. The failure in Hall sensor may be due to the 
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manufacturing problems in the amplifiers and Integrated 

circuits used in it and also due to the poor health of the 

PCB.  

b. Stator failure (S): The stator is the static part of the 

motor. The stator failure will be mainly due to problems 

in winding. 

c. Rotor failure (R): The rotor is the rotating part of the 

motor that is connected to the load and the failures in the 

rotor are mainly due to the moisture, overloading and 

thermal stress. 

3. Gear Train Assembly (G) Failure 

Gear train is a combinations of gears of different specified 

dimensions for controlling the speed and motion of the 

electro-mechanical actuator. The failure of Gear train 

assembly is due to gear teeth faults while 

manufacturing. 

 

4. Resolver (RE) Failure 

Resolver is a feedback device with high precision and 

resolution. This resolver is a position sensor of the rotor. It 

sends the signals to the controller in order to calculate the 

accurate position. The failure in resolver may occur due to the 

breakage of circuit connections. 

Keeping all these failure modes aside there are many 

undermined failure modes and causes which cannot be found 

normally. We have considered these unknown causes also 

while finding the failure probability of the system. These 

causes are non-deterministic and we can only find through 

Bayesian analysis.  

IV. METHODOLOGY 

 The goal of this research is to develop the methodology 

to estimate failure probabilities using Bayesian networks and 

inference for an Electro-Mechanical actuator system used in 

missile system in all the three possible cases of available data 

that we have faced. The Servo control unit, brushless DC 

motor assembly, gear train assembly and rotary potentiometer 

assembly are the components of the EMA system which are 

connected using BN and inferences are made by estimating 

the parameters of the distributions. Here we used conjugate 

priors to estimate the posterior of the components, 

subsystems and system and also non-conjugate priors to 

estimate the probabilities when incomplete data is available. 

We used Markov Chain Monte Carlo (MCMC) for simulation 

and also to sample from the posterior distribution. When the 

data is incomplete the model becomes complex to understand 

but it gives accurate results, the use of informative priors 

make the results more accurate.  

For the servo control unit subsystem in the actuator complete 

data is available. Hence we model the subsystem with 

Bayesian networks and infer the posterior by taking beta 

distribution as prior and binomial as likelihood function. 

In the second case failure summary is available which is 

used as likelihood. The mean and standard deviation of 

BLDCM subsystem are available which are used to find the 

prior to the BLDCM subsystem. The prior probabilities of the 

gear train assembly failure and resolver failure are not 

available hence we took Jeffrey’s prior and we took pass-fail 

data as likelihood to find the posterior and then using the 

posteriors of the four subsystems we found the induced prior 

to the system. Where at the end the whole system is subjected 

to ground test and flight test and total test results are taken as 

likelihood and posterior of the system is found. 

In the third case the series system of EMA and B are 

unchanged. Due to the redesign the series system of SC 

became uncertain. We are interested in finding the relation 

between the subsystem SC and components CP and PP.  

 
Fig.3: Bayesian network representation of EMA system. 

Scenario 1: Complete data is available 

In scenario 1 we find the failure probability of SC 

subsystem as all the data set of SC is available that is all the 

nodes of SC, CP and PP are monitored with the help of 

sensors. We tabulated the prior data of the SC subsystem 

based on the expert opinion. Each probability in the table1 

follows beta distribution as shown. In all the tables the suffix 

of P denoted the state of the node, 1 is for failure state and 0 

is for success state.  

Here the data and the system structure has undergone 

changes so as to preserve the confidentiality of the 

organization. 
 

Table3: prior  marginal probabilities 

Component Failure probability Success 

probability 

CP 𝑃1(𝐶𝑃)~𝑑𝑏𝑒𝑡𝑎(2,10) 1 − 𝑃1(𝐶𝑃) 

PP 𝑃1(𝐶𝑃)~𝑑𝑏𝑒𝑡𝑎(1,10) 1 − 𝑃1(𝑃𝑃) 

 

Table4: prior conditional probabilities 

Component 
combinations 

System failure System 
success 

CP=0, PP=0 𝑃1(00)~𝑑𝑏𝑒𝑡𝑎(2,10) 1 − 𝑃1(00) 

CP=0, PP=1 𝑃1(01)~𝑑𝑏𝑒𝑡𝑎(2,10) 1 − 𝑃1(01) 

CP=1, PP=0 𝑃1(10)~𝑑𝑏𝑒𝑡𝑎(2,10) 1 − 𝑃1(10) 

CP=1, PP=1 𝑃1(11)~𝑑𝑏𝑒𝑡𝑎(2,10) 1 − 𝑃1(11) 
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Now we take likelihood follows Binomial distribution i.e, 

𝐹(𝑛𝑜𝑑𝑒)~𝑑𝑏𝑖𝑛(𝑃, 𝑁) 

Where, P is the prior probability and N is the total no of 

trials and F is the failure count or evidence. 

 
   Fig.4: Bayesian network for subsystem SC 

The evidence is in the form of test data as in the below table 

5. 
Table5: test data 

Components and their 

combinations 

No. Of 

failures 

Total no. Of 

tests 

CP 4 24 

PP 5 30 

SC|CP=0,PP=0 2 35 

SC|CP=0,PP=1 16 28 

SC|CP=1,PP=0 16 25 

SC|CP=1,PP=1 18 20 
 

We have written an openbugs code to find the posterior 

using the available prior and evidence. After simulating for 

1000 iterations we have got the below results in table6. 

  
Table6: Posterior Probabilities Of SC 

  Mean SD Median 

𝑃1(𝐶𝑃) 0.1623 0.05915 0.1564 

𝑃1(𝑃𝑃) 0.1447 0.05235 0.1403 

𝑃1(00) 0.08441 0.04081 0.07703 

𝑃1(01) 0.4516 0.07764 0.4487 

𝑃1(10) 0.4871 0.07898 0.4888 

𝑃1(11) 0.6236 0.08503 0.6277 

Here the suffix of P that is ‘1’ represents the failure and 

0 for success. Where, 

𝑃0( ) = 1 − 𝑃1( ) 

Now if we observe the above table6 there are four 

conditional probabilities for the system node depending on 

the parent nodes but we should have a single marginal 

probability for the system to go further with our methodology 

so we find the marginal posterior probability for subsystem 

SC with the help of equation (1).  

In this case equation (1) becomes, 

𝑃(𝑆𝐶) = ∑ ∑ 𝑃1(𝑖, 𝑗) × 𝑃𝑖(𝐶𝑃) × 𝑃𝑗(𝐶𝑃)

1

𝑗=0

1

𝑖=0

… . . (3) 

To calculate the above equation we developed a Matlab 

program. The result we have got is the failure probability of 

the subsystem SC. 

𝑃1(𝑆𝐶) = 0.197 

Scenario2: failure summary is available 

 In this scenario as the data of subsystem B is available in 

the form of summarized failure data. Hence we developed a 

method to extract the summarized failure data into the 

required likelihood form and use a common prior given by 

the expert to calculate the posterior failure probability of the 

system. 

Fig.5: Bayesian network for B subsystem 

We can see the available limited data format in table7. 

Table7: summarized subsystem (b) failure data 

BLDCM failures HP S R 

Failure event 1 X   

Failure event 2   X 

Failure event 3 X X  

Failure event 4   X 

Failure event 5 X  X 

Failure event 6  X  

Failure event 7    

Failure event 8  X  

Failure event 9   X 

Failure event 10  X  

Failure event 11 X X X 

Failure event 12  X X 

Failure event 13 X X X 

Failure event 14 X X X 

Failure event 15 X   

Failure event 16  X X 
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Failure event 17 X   

Failure event 18 X  X 

Failure event 19 X  X 

Failure event 20 X X  

Failure event 21 X X  

Failure event 22 X X X 

Failure event 23 X X X 

Failure event 24 X X X 

Failure event 25 X X X 

Failure event 26 X X X 

Failure event 27 X X X 
 

The prior of the subsystem B is given by the expert in the 

form and mean and standard deviation of the failure 

probability distribution. I.e, Mean=0.1923 and standard 

deviation=0.088.  

Now we fit a beta distribution to the subsystem prior 

failure probabilities with the help of methods of moment 

estimators, 

If M is the mean and S is the standard deviation of the 

probability distribution then the methods of moment 

estimators says,  

𝑎 = 𝑀 ((
(1 − 𝑀)

𝑆2
) − 1) … . (4) 

𝑏 = (1 − 𝑀) ((
(1 − 𝑀)

𝑆2
) − 1) … (5) 

Where ‘a’ and ‘b’ are the parameters of the beta prior 

distribution, M is the mean and S is the standard deviation. 

We generated a Matlab code for equation 4 and 5 and we 

got 𝑎 = 19.8646  and 𝑏 = 83.4355. 

That is the failure prior of the subsystem B follows Beta 

(19.86, 83.4355). 

Now we extract the counts of the combination from the 

table7 and we construct table8 as below. 

 
Table8: Counts of combinations from table7 

Parent combinations BLDCM Failure Counts 

HP=0, S=0, R=0 1 

HP=0, S=0, R=1 3 

HP=0, S=1, R=0 3 

HP=0, S=1, R=1 2 

HP=1, S=0, R=0 3 

HP=1, S=0, R=1 3 

HP=1, S=1, R=0 3 

HP=1, S=1, R=1 5 

 

The marginal probabilities of the components of the 

subsystem are available from the records as shown in the 

below table9. 

Table9: Marginal failure probabilities of components of 

the subsystem B  

Component Marginal failure probabilities 

𝑃1(𝐻𝑃) 0.22 

𝑃1(𝑆) 0.32 

𝑃1(𝑅) 0.25 

 

Now we have a prior distribution 

𝐵~𝑑𝑏𝑒𝑡𝑎(19.8646, 83.4355) and evidence for the 

likelihood is in the form of table8. We use binomial 

distribution as likelihood 

i.e, 

𝑃1(𝐻𝑃, 𝑆, 𝑅|𝐵)~𝑑𝑏𝑖𝑛(𝑃, 𝑁) 

Where N=total no. of observations = 27 from the table7. 

We simulated probabilities with the help on Open Bugs 

statistical software for 1000 iterations and we got the results 

in the table10. 

Table10: posterior failure probabilities of subsystem B. 

Conditional 
probabilities 

for B 

Mean Standard 

deviation 

Median 

𝑃1(000) 

 

0.1631 0.0222 0.08387 

𝑃1(001) 0.1766 0.02403 0.09578 

𝑃1(010) 0.1791 0.023 0.09425 

𝑃1(011) 0.166 0.02304 0.0892 

𝑃1(100) 0.1728 0.02309 0.09613 

𝑃1(101) 0.1767 0.0219 0.09593 

𝑃1(110) 0.1753 0.02279 0.09505 

𝑃1(111) 0.1922 0.02624 0.1331 
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Now we have eight conditional probabilities of subsystem 

B depending on their components. We find the marginal 

posterior distribution of the node B using the below equation. 

𝑃1(𝐵) = ∑ ∑ ∑ 𝑃1(𝑖, 𝑗, 𝑘) × 𝑃𝑖(𝐻𝑃) × 𝑃𝑗(𝑆)

1

𝑘=0

1

𝑗=0

1

𝑖=0

× 𝑃𝑘(𝑅) … … … … … … (6) 

We generated a Matlab program for equation6 and we have 

got the posterior failure probability of the subsystem B is 

0.1609. 

Then we find the posterior for the remaining two subsystems 

G and RE. The prior information for the nodes G and RE are 

not available hence we use non-informative Jeffrey’s prior 

that is Beta (0.5, 0.5). 

The test data of G and RE are available in the table11.  

Table11: Test data for G and RE 

Subsystems No. of failures Total no. of 

tests 

Gear train assembly 

(G) 

2 42 

Resolver (RE) 7 30 

 

Using Jeffrey’s prior and the test data in the table11 we have 

simulated the results for 1000 iterations in openbugs. We got 

the results in the table12. 

Table12: Posterior failure probabilities of G and RE 

 Mean SD Median 

𝑃1(𝐺) 0.01151 0.01524 0.006138 

𝑃1(𝑅𝐸) 0.1063 0.05175 0.09884 

 

We have found the marginal posterior probabilities of all the 

subsystems considering the dependencies. As our aim is to 

find the failure probability of the EMA system depending on 

the subsystems and components. That is by considering the 

multilevel data we had found the prior to the EMA system 

depending on the subsystem test and prior data using ‘induced 

prior’ method proposed by HF. Martz et.al.(1988) [6] and we 

find the beta parameters as follows, 

𝑎 =
[𝑀2(1 − 𝑀) − 𝑉𝑀]

𝑉
… … … (7) 

𝑏 =
[𝑀2(1 − 𝑀)2 − 𝑉(1 − 𝑀)]

𝑉
… … … (8) 

Where M=moment, V=variance 

𝑀 = ∏
𝐹𝑖

0 + 𝐹𝑖 + 1

𝑁𝑖
0 + 𝑁𝑖 + 2

7

𝑖=1

… . . (9) 

And  

𝑉 = ∏
(𝐹𝑖

0 + 𝐹𝑖 + 1)(𝐹𝑖
0 + 𝐹𝑖 + 2)

(𝑁𝑖
0 + 𝑁𝑖 + 2)(𝑁𝑖

0 + 𝑁𝑖 + 3)

7

𝑖=1

… . (10) 

Where  

𝐹𝑖
0 = 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑏𝑒𝑡𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝐹𝑖 = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑢𝑛𝑡 𝑓𝑟𝑜𝑚 𝑝𝑎𝑠𝑠 𝑓𝑎𝑖𝑙 𝑑𝑎𝑡𝑎 

𝑁𝑖
0 = 𝑎 + 𝑏 

𝑁𝑖 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑛 𝑝𝑎𝑠𝑠 𝑓𝑎𝑖𝑙 𝑡𝑒𝑠𝑡 

For subsystem SC: To get the pass- fail data we add all the 

failures of the SC conditioned on the components, then, we 

get, 

𝐹1 = 63 𝑎𝑛𝑑 𝑁1 = 162 

𝐹1
0 = 11 𝑎𝑛𝑑 𝑁𝑖

0 = 60 

For subsystem B: There are only system failure records 

observed but there are no N values (total no. of trials) hence 

we take the pass fail data as zero in this case 

𝐹2 = 27 𝑎𝑛𝑑 𝑁2 = 27 

𝐹2
0 = 19.86 𝑎𝑛𝑑 𝑁2

0 = 83.43 

For subsystem G: 

𝐹3 = 2 𝑎𝑛𝑑 𝑁3 = 42 

𝐹3
0 = 0.5 𝑎𝑛𝑑 𝑁3

0 = 1 

For subsystem RE: 

𝐹4 = 7 𝑎𝑛𝑑 𝑁4 = 30 

𝐹4
0 = 0.5 𝑎𝑛𝑑 𝑁4

0 = 1 

By substituting the values in the above equations we got the 

induced prior to the system Beta (0.67, 1494.70). The test data 

of the system is available in table13. 

Table13: Test data of EMA system 

System No. of failures Total no. of tests 

EMA 10 100 
 

Fitting a beta distribution to the test data and using the 

obtained beta induced prior to the system we calculated the 

posterior failure probability of the system by simulating the 

results for 1000 iterations. 

The obtained posterior failure probability of the EMA system 

is 0.03774 from table14. 
Table14: The posterior results of the EMA 

 Mean SD Median 

𝑃1(𝐸𝑀𝐴) 0.02351 0.007059 0.02464 

We can calculate the reliability of the system by 

complimenting𝑃1(𝐸𝑀𝐴). i.e,  
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 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐸𝑀𝐴 = 1 − 𝑃1(𝐸𝑀𝐴). 

 
       Fig.6: Posterior failure probability distribution of EMA 

Scenario3: Incomplete data is available 

In scenario3 we have a special case in which we have a very 

limited data here we use Bayesian networks for finding the 

failure probability of the required uncertain subsystem and 

then we apply fault tree analysis to rest of the system to find 

the failure probability of the system if needed but here we 

stop with inferring the reason for failure. 

As shown in the fault tree in fig.6 the sensors are placed on 

the system, control PCB, Power PCB, Hall sensor PCB and 

rotor and stator. The experts claim that the servo control unit 

is not following the probabilistic relation of fault tree. Due to 

some unknown cause there is change in failure probability of 

SC and due to that there will be change in failure probability 

of whole system. We have calculated the change in failure 

probability of EMA system with the help of the available 

evidence, “among a series of 10 observed failure events there 

are 2 failures at sensor2 and 3 failures at sensor4 and no 

failures at sensors 3 and 5”. 

 

Fig.7: Fault tree of EMA with sensors 

According to the claim there is uncertainty in the subsystem 

SC. The nodes CP, PP, H, S, and R are always stochastic 

nodes now as there is an uncertainty claim on SC, the node 

SC also becomes a stochastic node. Now we consider only 

stochastic nodes to find the failure probability of SC and the 

system. 

  

Fig.8: Bayesian network representation for EMA system 

with sensors 

There are several steps to find the likelihood function to the 

subsystem SC. The steps are as follows [8]. 

Step1: Select the stochastic nodes and write the state 

combinations. 

Step2: Treat each state combination as state vector and the n 

denote with 𝑥1, 𝑥2, … … 𝑥𝑛. 

Step3: Find the joint probabilities for all the state vectors and 

denote with 𝐽𝑃(1), 𝐽𝑃(2), … … … 𝐽𝑃(𝑛) . 

Step3: We generate count vectors from the given evidence. 

Step4: The likelihood is the sum of count vectors following 

multinomial distribution with count vector as counts for the 

joint probabilities. 

The step1, step2 and step3 are tabulated in table15. Now we 

should generate the count vector as per the step4. The count 

vector is the counts of the state vectors over a period of 

system use. For example if the state vector x1 has occurred 

twice and x2 occurred thrice we denote the counts as y1=2 

and y2=3 similarly we write the counts for all the state vectors 

and combine them to form a count vector. We have generated 

count vectors from the evidence. The evidence says that 

among a series of 10 observed failure events there are 2 

failures at sensor2 and 1 failures at sensor4 and no failures at 

sensors 3 and 5 and 6. Hence we write for both the states like 

this,  

1) two {0,1,0,0,0,0} and two {1,1,0,0,0,0} 

2) one {0,0,0,1,0,0} and one {1,0,0,1,0,0} 

3) Seven {0,0,0,0,0,0} and five {1,0,0,0,0,0} 
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i.e, 

1) two times x33 or x49 

2) One x5 or x37 

3) Seven x1 or x33 

 

We have to keep in mind that all the state vectors that we 

had extracted from the evidence are system failure 

combinations so total failure counts in all the possible count 

vectors should be equal to the total observed failures i.e, 10 

failure from our available evidence. 

 

From the above extraction of counts from the evidence, we 

have written the count vector as follows. Let the count vectors 

be denoted by Y and counts be y. 

  

Then we have denoted the count vector as   Y =
{y1, y2, y3, … …  yn}. Therefore the count vector from our 

evidence can be written as. 

Y1= {7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0} 

There will be many combinations among the counts 

depending on the evidence. One more combination can be 

written as 𝑌2 = 

{6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }. 

 

Similarly we got 48 combinations of the counts forming 48 

count vectors [7]. We have generated the likelihood 

analytically as in equation 11. 

 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = ∑ 𝑁! ∏
1

𝑦𝑖!

𝐽𝑃(𝑖)𝑦𝑖 … . (11)

64

𝑖=1

𝑌48

𝑌1

 

Using the above likelihood function in equation 11 and non-

informative uniform priors we found the posterior 

probabilities of the stochastic nodes we have selected. 

The results are in table16. 

 

Table16: Posterior probabilities of stochastic nodes. 

 Mean SD Median 

P00 0.5023 0.2895 0.5148 

P01 0.4935 0.285 0.4952 

P10 0.4969 0.2874 0.4897 

P11 0.4758 0.2869 0.4686 

P6 0.2485 0.1255 0.2365 

P7 0.07807 0.06805 0.05812 

P8 0.1649 0.1003 0.1457 

P9 0.0853 0.07923 0.06165 

P10 0.09055 0.07837 0.07023 

 

 

Table15: The state vectors and joint probabilities 

State 

vectors 

SC 

(2) 

CP 

(6) 

PP 

(7) 

HP 

(8) 

S 

(9) 

R 

(10) 

Joint Probabilities 

 

Joint 

Probability 

Denotation 

x1 0 0 0 0 0 0 (1-P2(00000)) (1-P6)(1-P7)(1-P8)(1-P9)(1-P10) JP(1) 

x2 0 0 0 0 0 1 (1-P2(00001)) (1-P6)(1-P7)(1-P8)(1-P9)P10 JP(2) 

x3 0 0 0 0 1 0 (1-P2(00010)) (1-P6)(1-P7)(1-P8)P9(1-P10) JP(3) 

x4 0 0 0 0 1 1 (1-P2(00011)) (1-P6)(1-P7)(1-P8)P9P10 JP(4) 

x5 0 0 0 1 0 0 (1-P2(00100)) (1-P6)(1-P7)P8(1-P9)(1-P10) JP(5) 

x6 0 0 0 1 0 1 (1-P2(00101)) (1-P6)(1-P7)P8(1-P9)P10 JP(6) 

x7 0 0 0 1 1 0 (1-P2(00110)) (1-P6)(1-P7)P8P9(1-P10) JP(7) 

x8 0 0 0 1 1 1 (1-P2(00111)) (1-P6)(1-P7)P8P9P10 JP(8) 

x9 0 0 1 0 0 0 (1-P2(01000)) (1-P6)P7(1-P8)(1-P9)(1-P10) JP(9) 

x10 0 0 1 0 0 1 (1-P2(01001)) (1-P6)P7(1-P8)(1-P9)P10 JP(10) 

………. …. …. …. …. …. …. ............. ……………. ………. 

x64 1 1 1 1 1 1 P2(11111) P6P7P8P9P10 JP(64) 
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V. DISCUSSION 

In first two cases of the project we updated the prior 

information depending present available test data. We have 

also considered Jeffrey’s non-informative prior when the 

prior is unavailable. The probability of system after second 

case says that the system is highly reliable. Coming to the 

third scenario it is a special case in which no prior data is 

available. In this case we found the failure probabilities which 

totally because of likelihood or present available incomplete 

data. So that we can find the failure probabilities of the 

subsystem or system which has a claim of declining the 

deterministic relation of fault tree or which undergone 

changes. The third case gave us consistent probability values 

even when we have incomplete data. The results in the third 

case mainly depend on the likelihood function. OpenBugs 

software is used to find the posterior probabilities using 

Metropolis-Hastings algorithm. The use of Matlab made us 

easy to deal with mathematical equations and calculations. 

Matlab is used to write the joint probability statements in the 

Openbugs software to reduce the time for typing.  

The state vectors and count vectors are generated as in [7]. In 

the future research we like to d-separate the subsystems and 

components depending on the evidence to find the likelihood 

so that process becomes easy for finding the likelihood. 
 

Fig.9: Density plot for P6 
 

 
Fig.10: Density plot for P00 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

From the failure probability of the system after the 

scenario 2 we infer that the EMA system is highly reliable 

even in the case of partial failures among the components and 

subsystems. But failure probability of system is more when at 

least one component or subsystem is failed. In the third 

scenario the failure probability of the subsystem SC when 

both of its components are working is more that is the 

subsystem after replacement with a new design it is 

undergoing some unknown assembly or compatibility 

failures. We have reinvestigate the causes of the failures of 

the subsystem. The component CP also has the failure 

probability around 0.2 which is not negligible but from the 

results we can say that the component CP’s failure is not 

effecting more on the subsystem SC. 
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