

 Concurrent Programming and Parallel distributed O.S
Mr. Talari Asish kumar

CMR TECHINAL CAMPUS, kandlakoya, Hyderabad-501401.

Abstract

This paper consists of two topics, one is Concurrent

Programming & Parallel distributed O.S . In a

concurrent program, several streams of operations may

execute concurrently, each stream of operations

executes as it would in a sequential program. While

coming to parallel distributed O.S, A distributed

operating system is the logical aggregation of

operating system software over a collection of

independent, networked, communicating, and

physically separate computational nodes.

1. Introduction
The introduction of multi-core processors has

renewed interest in parallel functional programming

and there are now several interesting projects that

explore the advantages of a functional language for

writing parallel code or implicitly paralellizing code

written in a pure functional language. These lecture

notes present a variety of techniques for writing

concurrent parallel programs which include existing

techniques based on semi-implicit parallelism and

explicit thread-based parallelism as well as more recent

developments in the areas of software transactional

memory and nested data parallelism.

In traditional sequential programming, the object-

oriented model has gained wide acceptance. Concurrent

and distributed programming remains, however, one of

the last areas of software engineering where no single

direction has been generally recognised as the preferred

approach. In general, writing concurrent programs is

extremely difficult because the multiplicity of possible

inter leavings of operations among threads means that

program execution is non-deterministic. For this

reason, program bugs may be difficult to reproduce.

Furthermore, the complexity introduced by multiple

threads and their potential interactions makes programs

much more difficult to analyze and reason about.

Fortunately, many concurrent programs including most

GUI applications follow stylized design patterns that

control the underlying complexity.

 We also use the terms parallel and concurrent with

quite specific meanings. For a parallel program we

have the expectation of some genuinely simultaneous

execution. Concurrency is a software structuring

technique that allows us to model computations as

hypothetical independent activities (e.g. with their own

program counters) that can communicate and

synchronize.

The connection between programming languages and

operating systems is especially close in the area of

concurrent programming. First, threads are sometimes

supported by the underlying operating system, so the

language implementation needs to make use of those

facilities, and the language designer may choose to

present or to omit features, depending on the operating

system and what it can do. For example, a thread can be

modeled by a Unix process. Generally, Unix processes

cannot share memory. However, some

versions of Unix, such as Solaris, offer threads within a

single address space; these threads do share memory.

Second, operating systems themselves are

often multithreaded.

2. Concurrent Programming
Architectural advances of recent years, coupled with

the growing availability of networked computers, have

led to a new style of computing, called concurrent

programming, that allows multiple computations to

occur simultaneously in cooperation with each other.

Many people distinguish two classes of concurrent

programming: Distributed programming refers to

computations that do not share a common memory, and

parallel programming refers to computations that share

a common memory. This distinction is not always

helpful, since it is possible to implement a distributed

computation on a shared-memory computer, and to

implement a parallel computation on a distributed-

memory computer. It is up to the compiler and

operating system to implement on the underlying

architecture whatever concurrency style the

programming language promotes. Terminology is less

standard in the area of concurrent programming than

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

elsewhere, so I will be somewhat arbitrary, but

consistent, in my nomenclature. A parallel program is

one which is written for performance reasons to exploit

the potential of a real parallel computing resource like a

multi-core processor. Concurrent programming has

become a required component of ever more types of

application, including some that were traditionally

thought of as sequential in nature. It offers a

comprehensive approach to building high-quality

concurrent and distributed systems. The idea is to take

object-oriented programming as given, in a simple and

pure form based on the concepts of Design by Contract

, which have proved highly successful in improving the

quality of sequential programs, and extend them in a

minimal way to cover concurrency and distribution.

The extension indeed consists of just one keyword

separate; the rest of the mechanism largely derives

from examining the consequences of the notion of

contract in a non-sequential setting. The model is

applicable to many different physical setups, from

multiprocessing to multithreading, network

programming, Web services, highly parallel processors

for scientific computation, and distributed computation.

Writing applications with this model is extremely

simple, since programmers do not need to deal with

low-level concepts typically used in concurrent

programming.

2.1 Parallel Languages

Some parallel languages, like SISAL and PCN have

found little favor with application programmers. This is

because users are not willing to learn a completely new

language for parallel programming. They really would

prefer to use their traditional high-level languages (like

C and Fortran) and try to recycle their already available

sequential software. For these programmers, the

extensions to existing languages or run-time libraries

are a viable alternative.

2.2 Reasons for writing concurrent & parallel

programs
 Writing concurrent and parallel programs is more

challenging than the already difficult problem of

writing sequential programs. However, there are some

compelling reasons for writing concurrent and parallel

programs:

Performance: We need to write parallel programs to

achieve improving performance from each new

generation of multi-core processors.

Hiding latency: Even on single-core processors we can

exploit concurrent pro- grams to hide the latency of

slow I/O operations to disks and network de- vices.

Software structuring: Certain kinds of problems can be

conveniently represented as multiple communicating

threads which help to structure code in a more modular

manner e.g. by modeling user interface components as

separate threads.

Real world concurrency: In distributed and real-time

systems we have to model and react to events in the

real world e.g. handling multiple server requests in

parallel.

 All new mainstream microprocessors have two

or more cores and relatively soon we can expect to see

tens or hundreds of cores. We cannot expect the

performance of each individual core to improve much

further. The only way to achieve increasing

performance from each new generation of chips is by

dividing the work of a program across multiple

processing cores. One way to divide an application over

multiple processing cores is to somehow automatically

parallelize the sequential code and this is an active area

of research. Another approach is for the user to write a

semi-explicit or explicitly parallel program which is

then scheduled onto multiple cores by the operating

systems and this is the approach we describe in these

lectures.

 Parallel processing is much faster than sequential

processing when it comes to doing repetitive

calculations on vast amounts of data. This is because a

parallel processor is capable of multithreading on a

large scale, and can therefore simultaneously process

several streams of data. This makes parallel processors

suitable for graphics cards since the calculations

required for generating the millions of pixels per

second are all repetitive. GPUs can have over 200 cores

to help them in this. The CPU of a normal computer is

a sequential processor - it's good in processing data one

step at a time. This is needed in cases where the

calculation the processor is performing depends on the

result of the previous calculation and so on; in parallel

processing these kinds of calculations will slow it

down, which is why CPUs are generally optimised for

sequential operations and have only 1-8 cores.

 Consider a traditional sequential language. In

many cases, you must explicitly break your code into

separate pieces called threads that can run on multicore

processors. (The OS handles these threads after they are

created.) Although the concept of threads is

straightforward, working with them can be time-

consuming and tedious. Each thread must be carefully

managed – plus, data accessed by threads is very

susceptible to race conditions if not protected carefully.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

parallel sections of code and maps them into threads,

which can take advantage of a multicore processor.

Let us consider both single processor and multi-

processor machines (like the Intel dual-core, or high

end processors that have tens of processors). The figure

below illustrates two concurrent tasks (such as make

and gcc) that can be scheduled sequentially or in

parallel.

2.3 Advantages of using concurrent

programming

It has many advantages such as:

 It lets the programmer decide which part of

the code he wants to run concurrently.

 It creates and manages the threads for the

programmer.

 Its compiler are available from a lager number

of companies such as Intel and IBM to name a

few.

 “It provides a set of pragmas, runtime

routines, and environment variables that

programmers can use to specify shared-

memory parallelism in Fortran, C, and C++

programs.” (Copty)

 OpenMP can run the code as a serial

code.

 OpenMP is easier to program than other

parallel programming languages such as

MPI(Message Passing Interface).

 Reactive programming: User can interact with

applications while tasks are running, e.g.,

stopping the transfer of a big file in a web

browser.

 Availability of services: Long-running tasks

need not delay short-running ones, e.g., a web

server can serve an entry page while at the

same time processing a complex query.

 Parallelism:Complex programs can make

better use of multiple resources in new multi-

core processor architectures, SMPs, LANs or

WANs,e.g.…scientific/engineering

applications, simulations, games, etc.

 Controllability:Tasks requiring certain

preconditions can suspend and wait until the

preconditions hold, then resume execution

transparently.

 Advantages for developers:

There are some cautions that we should be aware of:

 Considering Overheads: Parallel execution

doesn’t come for free. There are overhead

costs associated with setting up and managing

parallel programming features. If you have

only a small amount of work to perform, the

overhead can outweigh the performance

benefit.

 Coordinating Data: If your pieces of work

share common data or need to work in a

concerted manner, you will need to provide

coordination. As a general rule, the more

coordination leads, the poorer the performance

of your parallel program.

 Scaling Applications: Adding a second core or

CPU might increase the performance of your

parallel program, but it is unlikely to double it.

Likewise, a four-core machine is not going to

execute your parallel program four times as

quickly. You can expect a significant

improvement in performance, but it won’t be

100 percent per additional core, and there will

almost certainly be a point at which adding

additional cores or CPUs doesn’t improve the

performance at all.

3. Parallel distributed O.S

Distributed operating systems have many aspects in

common with centralized ones, but they also differ in

certain ways. This paper is intended as an introduction

to distributed operating systems, and especially to

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

current university research about them. After a

discussion of what constitutes a distributed operating

system and how it is distinguished from a computer

network, various key design issues are discussed.
DISTRIBUTED OPERATING SYSTEMS will provide

engineers, educators, and researchers with an in-depth

understanding of the full range of distributed operating

systems components. Researchers are exploring the

world of distributed computing, in which users in
various locations can work with the same set of
geographically dispersed resources. These efforts have
led to such high-profile technologies as peer-to-peer
(P2P), pervasive, and nomadic computing. A critical
part of this research is developing consistent
approaches to distributed-computing operating
environments, which must work consistently across
many platforms and technologies. Major efforts in this
area include Globe, Opus, and Project Oxygen. None of
the three represents radically new technologies, but

instead each applies existing technologies in a novel

way.

 A distributed system is a collection of

independent processors that do not share memory or a

clock and appears to the users of a system as a single

computer. Such a system must: (a) be able to support

an arbitrary number of processes, the distribution of

which should be transparent to the user; (b) provide an

efficient communication facility; and (c) be integrated

into a single virtual computer. The focus of this book is

an analysis of concepts and practice in distributed

computing. The intended audience is anyone who is

interested in the design and implementation of modern

computer systems, particularly the operating systems

and distributed algorithms that are essential in

supporting networking and distributed processing. A

distributed system is a collection of processors that do

not share memory or a clock. Each processor has its

own local memory. must be in English. These

guidelines include complete descriptions of the fonts,

spacing, and related information for producing your

proceedings manuscripts

3.1 Examples of Distributed Systems

Example 1:
 The Internet: net of nets (Fig. 1.1)

 – global access to “everybody” (data, service, other

actor; open ended)

 – enormous size (open ended) – no single authority

 – communication types

• interrogation, announcement, stream

• data, audio, video

Example 2:
Intranets (Fig. 1.2)

– a single authority

– protected access

• a firewall

• total isolation

– may be worldwide

– typical services:

• infrastructure services: file service, name service

• application services

Example 3:

Mobile and ubiquitous computing (Fig 1.3)

 • Portable devices

– laptops

– handheld devices

– wearable devices

– devices embedded in appliances

 • Mobile computing

• Location-aware computing

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

• Ubiquitous computing, pervasive computing

Operating system - a program that acts as an

intermediary between a user of a computer and the

computer hardware.

Operating system goals:

Modern Operating systems generally have following

three major goals. Operating systems generally

accomplish these goals by running processes in low

privilege and providing service calls that invoke the

operating system kernel in high-privilege state.
 Execute user programs and make solving user

problems easier.

 Make the computer system convenient to use.

 Use the computer hardware in an efficient

manner.

 To hide details of hardware by creating

abstraction.

 To allocate resources to processes (Manage

resources).

 Provide a pleasant and effective user interface.

operating-System Services:

Program execution - system capability to load a

program into memory and to run it.

I/O operations - since user programs cannot execute

I/O operations directly, the operating system must

provide some means to perform I/O.

File-system manipulation - program capability to read,

write, create, and delete files.

Communications - exchange of information between

processes executing either on the same computer or on

different systems tied together by a network.

Implemented via shared memory or message passing.

Error detection - ensure correct computing by detecting

errors in the CPU and memory hardware, in I/O

devices, or in user programs. Operating System

Concepts, Addison-Wesley Ó 1994 3.10 Silberschatz &

Galvin Ó 1994 Additional operating-system functions

exist not for helping the user, but rather for ensuring

efficient system operation.

Resource allocation - allocating resources to multiple

users or multiple jobs running at the same time. g

Accounting - keep track of and record which users use

how much and what kinds of computer resources for

account billing or for accumulating usage statistics. g

Protection - ensuring that all access to system resources

is controlled. Operating.

3.2 Classification of the OS
Multiprocessor Operating System

 Tightly-coupled software (single OS) running

on tightly-coupled hardware.

 A process can run on any processor F Single

ready queue!

All memory is shared

 File system similar to that on non-distributed

systems n Network Operating System

 Loosely-coupled hardware

 Loosely-coupled software

 Each computer runs its own OS

 User knows which machine he/she is on

Goal: share resources, provide global

(network) file system

Typical utility programs: rlogin, rcp, telnet,

ftp

 “True” Distributed Operating System

Loosely-coupled hardware

 No shared memory, but provides the “feel”

of a single memory

 Tightly-coupled software

 One single OS, or at least the feel of one

 Machines are somewhat, but not

completely, autonomous

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org

 distributed OS (like any OS) makes the use of

many machines more easy and efficient

3.3 KEY FEATURES AND ADVANTAGES

OF A DISTRIBUTED SYSTEM

The following are the key features of a distributed

system:

 They are Loosely coupled

 remote access is many times slower than local

access

 Nodes are autonomous

 workstation resources are managed locally.

 Network connections using system software

remote access requires explicit message

passing between nodes messages are CPU

to CPU.

 protocols for reliability, flow control, failure

detection, etc., implemented in software.

 the only way two nodes can communicate is

by sending and receiving network messages

this differs from a hardware approach in

which hardware signalling can be used for

flow control or failure detection.

Advantages of Distributed Systems over Centralised

Systems

 Better price/performance than mainframes•

More computing powero sum of the

computing power of the processors in the

distributed system may be greater than any

single processor available (parallel processing)

 Some applications are inherently distributed•

Improved reliability because system can

survive crash of one processor

 Incremental growth can be achieved by adding

one processor at a time

 Shared ownership facilitated.

Advantages of Distributed Systems over Isolated

PCs
 Shared utilisation of resources.

 Communication

 Better performance and flexibility than

isolated personal computers

 Simpler maintenance if compared with

individual PC’s.

 3.4 Disadvantages of Distributed Systems

Although we have seen several advantages of

distributed systems, there are certain disadvantages also

which are listed below

 Network performance parameters.

 Latency: Delay that occurs after a send

operation is executed before data starts to

arrive at the destination computer.

 Data Transfer Rate: Speed at which data can

be transferred between two computers once

transmission has begun.

 Total network bandwidth: Total volume of

traffic that can be transferred across the

network in a give time

 Dependency on reliability of the underlying

network.

 Higher security risk due to more possible

access points for intruders and possible

communication with insecure systems

 Software complexity.

 4. Conclusion
A distributed operating system takes the abstraction to

a higher level, and allows hides from the application

where things are. The application can use things on any

of many computers just as if it were one big computer.

A distributed operating system will also provide for

some sort of security across these multiple computers,

as well as control the network communication paths

between them. A distributed operating system can be

created by merging these functions into the traditional

operating system, or as another abstraction layer on top

of the traditional operating system and network

operating system.Any operating system, including

distributed operating systems, provides a number of

services. First, they control what application gets to use

the CPU and handle switching control between

multiple applications. They also manage use of RAM

and disk storage. Controlling who has access to which

resources of the computer (or computers) is another

issue that the operating system handles. In the case of

distributed systems, all of these items need to be

coordinated for multiple machines.

 As systems grow larger handling them can be

complicated by the fact that not one person controls all

of the machines so the security policies on one machine

may not be the same as on another.Some problems can

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

6www.ijert.org

be broken down into very tiny pieces of work that can

be done in parallel. Other problems are such that you

need the results of step one to do step two and the

results of step two to do step three and so on. These

problems cannot be broken down into as small of work

units. Those things that can be broken down into very

small chunks of work are called fine-grained and those

that require larger chunks are called coarse-grain.

When distributing the work to be done on many CPUs

there is a balancing act to be followed. You don’t want

the chunk of work to be done to be so small that it takes

too long to send the work to another CPU because then

it is quicker to just have a single CPU do the work, You

also don’t want the chunk of work to be done to be too

big of a chunk because then you can’t spread it out over

enough machines to make the thing run quickly.

5. References
1) Taubenfeld, Gadi (2006). Synchronization

Algorithms and Concurrent Programming.

Pearson / Prentice Hall. p. 433. ISBN 0-13-

197259-6.

2) Filman, Robert E. Daniel P. Friedman (1984).

Coordinated Computing: Tools and

Techniques for Distributed Software. New

York: McGraw-Hill. p. 370. ISBN 0-07-

022439-0.

3) Practical Concurrent Programming for Parallel

Machines D. B. Skillicorn.

4) Concurrent Programming and Robotics

Ingemar J. Cox AT&T, Bell Laboratories

Murray Hill, New Jersey 07974

5) Concurrent Programming: Principles and

Practice, Greg Andrews
6) Tanenbaum, van Steen: Distributed Systems,

Principles and Paradigms; Prentice Hall 2002
7) Coulouris, Dollimore, Kindberg: Distributed

Systems, Concepts and Design; Addison-

Wesley 2001

8) Andrew S. Tanenbaum and Albert

S.Woodhull, Operating Systems Design and

Implementation, 2/e, Prentice Hall, New

Delhi.

9) Distributed Operating Systems ANDREW S.

TANENBAUM and ROBBERT VAN

RENESSE Department of Mathematics and

Computer Science, Vrije Universiteit,

Amsterdam, The Netherlands

10) OPERATING SYSTEM CONCEPTS

Silberschatz Department of Computer

Sciences University of Texas at Austin

11) Roosta, Seyed. Parallel Processing and

Parallel Algorithms, Springer-Verlag, 1999.

BIOGRAPHY :

Mr Talari Asish kumar is

currently pursuing bachelors

degree in computer science

engineering from CMR

TECHNICAL CAMPUS,

Kandlakoya, Hyderabad. It is

one of the five colleges in

CMR GROUP OF

INSTITUTIONS.Which is

one of the premier educational institutions

dedicated to impart quality education and

promoting excellence in academic pursuits in the

field of Science.

Acknowledgement:
 I have taken efforts in this

project. However, it would not have been possible

without the kind support and help of individuals

and organization. I would like to extend my sincere

thanks to all of them. I am highly indebted to the

faculty of cse department of CMR Technical

Campus for their guidance and constant

supervision as well as for providing necessary

information regarding the project & also for their

support in completing the project. I would like to

express my gratitude towards my parents &

members of CMR Technical Campus for their kind

co-operation and encouragement which help me in

completion of this project. I would like to express

my special gratitude and thanks to industry persons

for giving me such attention and time. My thanks

and appreciations also go to my colleague in

developing the project and people who have

willingly helped me out with their abilities.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

7www.ijert.org

