CONDITIONS ON DR*ℓ* - GROUP

Dr. M. Jeyalakshmi Assistant Professor in Mathematics Alagappa Govt. Arts College, Karaikudi – 630 003

Abstract: In this paper we introduce that an ℓ - group, Brouwerian Algebra and Boolean ring can be realized from a DR ℓ - group by some specialization.

Key words: ℓ - group, Brouwerian Algebra, Boolean ring, Residuated lattice, DR ℓ - group.

1. Preliminaries

Definition 1.1 [4]

A non – empty set G is called an ℓ – group if and only if

(i) (G, +) is a group (ii) (G, \leq) is a lattice (iii) If $x \leq y$, then $a + x + b \leq a + y + b$, for all a, b, x, y in G. (or) (a + x + b) \vee (a + y + b) = ($a + x \vee y + b$) (a + x + b) \wedge (a + y + b) = ($a + x \wedge y + b$), for all a, b, x, y in G.

Definition 1.2 [4]

An ℓ – group G is called a commutative ℓ – group if a + b = b + a, for all a, b in G.

Definition 1.3 [4], [5]

A lattice L is called a residuated lattice if

(i) (L, \cdot) is an ℓ – group.

(ii) Given a, b in L, there exist the largest x, y such that

 $bx \le a \text{ and } yb \le a.$

Definition 1.4 [1], [4]

A non – empty set B is called a Brouwerian Algebra if and only if

(i) (B, \leq) is a lattice

(ii) B has a least element

(iii) To each a, b in B, there is a least x = a - b in B such that $b \lor x \ge a$

Definition 1.5 [4]

A ring (R, +, .) is called a Boolean ring if and only if $a \cdot a = a$, for all a in R.

Definition 1.6 [4]

A system A = (A, +, \leq) is called dually residuated lattice ordered group (simply DR ℓ – group) if and only if

(i) (A, +) is an abelian group.

(ii) (A, \leq) is a lattice.

(iii) $b \le c \Rightarrow a + b \le a + c$, for all a, b, c in A

(iv) Given a, b in A, there exist a least element x = a - b in A such that $b + x \ge a$.

Definition 1.7 [4]

A system $A = (A, +, \vee, \wedge)$ is called a $DR\ell$ – group if and only if

(i) (A, +) is an abelian group.

(ii) (A, \lor, \land) is a lattice.

(iii) $a + (b \lor c) = (a + b) \lor (a + c)$,

 $a + (b \land c) = (a + b) \land (a + c)$, for all a, b, c in A.

$$(iv) x + (y - x) \ge y,$$

 $x-y \leq (x \lor z) - y,$

 $(x + y) - y \le x$, for all x, y, z in A.

Remark [4]

Two definitions for $DR\ell$ – group are equivalent.

Examples 1.1 [4]

Commutative ℓ - group, Brouwerian Algebra and Boolean ring are DR ℓ - groups.

Properties of a DR ℓ - group

Now we see the properties of a $DR\ell$ - group which is already established in [4] .

1.
$$[(a - b) \lor 0] + b = a \lor b$$
,

2. $a \le b \Longrightarrow a - c \le b - c$ and $c - b \le c - a$,

3.
$$(a \lor b) - c = (a - c) \lor (b - c),$$

- 4. $a (b \wedge c) = (a b) \vee (a c),$
- 5. $a (b \lor c) = (a b) \land (a c),$
- 6. $(b \land c) a = (b a) \land (c a),$
- 7. $a \ge b \Longrightarrow (a b) + b = a$,
- 8. $a \lor b + a \land b = a + b$,
- 9. $(a b) \vee 0 + a \wedge b = a$,
- 10. $a \lor b a \land b = (a b) \lor (b a)$,

11. $a - (b - c) \le (a - b) + c$ and $(a + b) - c \le (a - c) + b$, for all a, b, c in A.

Theorem 1.2 [4]

The direct product of the $DR\ell$ - group is also a $DR\ell$ - group.

Theorem 1.3[4]

Any $DR\ell$ – group is a distributive lattice.

2. Realization from a DR ℓ - group

Theorem: 2.1

If A is a $DR\ell$ – group and $a + b = a \lor b$, for all a, b in A, then A is a Brouwerian Algebra.

Proof:

Given A is a $DR\ell$ – group and $a + b = a \lor b$, for all a, b in A.

To prove A is a Brouwerian Algebra.

By given, we have

- (i) (A, \leq) is a lattice
- (ii) A has a least element 0.

(iii) To each a, b in A, there exist a least element x in A such that $b \lor x = b + x \ge a$.

Hence A is a Brouwerian Algebra.

Theorem: 2.2

If A is a DR ℓ – group and (A, \leq , –) is a Brouwerian Albegra, then $a + b = a \lor b$, for all a, b in A.

Proof:

Given A is a $DR\ell$ – group and a Brouwerian Algebra.

To prove $a + b = a \lor b$, for all a, b in A.

Let a, b in A be arbitrary.

 \Rightarrow there exist a least element x = a - b in A such that $b \lor x \ge a$.

We have $y \lor (x-y) = y \lor x$ in any Brouwerian Algebra $\rightarrow (1)$

$$\Rightarrow$$
 a \lor (a - a) = a \lor a

$$\Rightarrow a \lor a = a$$

 \Rightarrow 0 is the least element.

By property 8, we have

```
a+b = a \lor b + a \land b\geq a \lor b + 0 = a \lor b\Rightarrow a+b \geq a \lor b \rightarrow (2)
```

By property $8 \Rightarrow a + b - a \lor b = a \land b \le a \lor b$

$$\Rightarrow a \lor b = (a \lor b) \lor [(a + b) - (a \lor b)]$$
$$= (a \lor b) \lor (a + b), by (1)$$
$$= a + b, by (2)$$

Proposition : 2.1

If A is a $DR\ell$ – group, then

- (i) $a * b \ge 0$
- (ii) $a * b = 0 \iff a = b$
- (iii) a * b = b * a
- (iv) $(a \lor b) * (a \land b) = a * b$, for all a, b in A.

Proof :

Let a, b in A be arbibrary.

(i) By property 3.10, we have

$$a \lor b - a \land b = (a - b) \lor (b - a)$$

= a * b

$$\Rightarrow a * b = a \lor b - a \land b \qquad \rightarrow (1)$$

we have $a \lor b \ge a \land b$, for all a, b in A.

$$\Rightarrow a \lor b - a \land b \ge 0 \qquad \rightarrow (2)$$

Using (2) in (1), we get

 $a * b \ge 0$.

(ii) Assume that a * b = 0

To prove a = b

Now $a * b = 0 \implies a \lor b - a \land b = 0$, by (1)

$$\Rightarrow a \lor b = a \land b$$

 \Rightarrow a = b.

Conversely, assume that a = b

To prove that a * b = 0

Now, $a = b \implies a \lor b = a \land b$

$$\Rightarrow a \lor b - a \land b = 0$$

 \Rightarrow a * b = 0, by (1)

(iii) $a * b = (a - b) \vee (b - a)$

$$=$$
 (b - a) \vee (a - b)

$$= b * a$$
, for all a, b in A

(iv)
$$(a \lor b) * (a \land b) = [(a \lor b) - (a \land b)] \lor [(a \land b) - (a \lor b)]$$

= $[(a - b) \lor (b - a)] \lor [(b - a) \lor (a - b)]$, by property 10 [4]
= $(a - b) \lor (b - a)$
= $a * b$, for all a, b in A.

Theorem 2.3

If the symmetric difference is associative in a $DR\ell$ – group A, then (A, *, \wedge) is a Boolean ring and further

$$\mathbf{a} + \mathbf{b} = \mathbf{a} \lor \mathbf{b} = \mathbf{a} * \mathbf{b} * (\mathbf{a} \land \mathbf{b})$$

a - b = a * (a \wedge b), for all a, b in A.

Proof :

Given that the symmetric difference is associative in a $DR\ell$ – group A.

To prove (1) (A, *, \wedge) is a Boolean ring. (2) $a + b = a \lor b = a * b * (a \land b)$, $a - b = a * (a \land b)$, for all a, b in A. For (1) :

(i) For all a, b in $A \Rightarrow a * b$ in A:

Let a, b in A be arbitrary.

Then $a * b = (a - b) \lor (b - a)$

Now a, b in A \Rightarrow a – b, b – a in A

$$\Rightarrow$$
 (a – b) \vee (b – a) in A

 \Rightarrow a * b in A.

(ii) a * (b * c) = (a * b) * c, for all a, b, c in A:

This follows by assumption.

(iii) There exist an element 0 in A such that a * 0 = 0 * a = a, for all a in A:

Let a in A be arbitrary.

Since A is a $DR\ell$ – group we have 0 in A.

By associativity of *, we have

$$a * (a* 0) = (a * a) * 0$$

= 0 * 0
= 0

Therefore a * 0 = a, by proposition 2.1

$$(a * 0) * a = (0 * a) * a$$

= 0 * (a * a)
= 0 * 0 = 0

Therefore 0 * a = a, by proposition 2.1

(iv) To each a in A, there exist an element a in A such that a * a = 0:

Let a in A be arbitrary.

Then $a * a = (a - a) \lor (a - a) = 0$

Thus a *a = 0

(v) a * b = b * a, for all a, b in A:

Let a, b in A be arbitrary.

Then a * b = b * a, for all a, b in A, by proposition 2.1

Therefore (A, *) is an abelian group.

(vi) For all a, b in $A \Rightarrow a \land b$ in A:

Let a, b in A be arbitrary.

Then $a \wedge b$ in A, since A is a $DR\ell$ – group

Thus a, b in A \Rightarrow a \land b in A.

(vii) $a \land (b \land c) = (a \land b) \land c$, for all a, b, c in A :

Let a, b, c in A be arbitrary.

Then $a \land (b \land c) = (a \land b) \land c$, for all a, b, c in A, since A is a $DR\ell$ – group

(viii) $\mathbf{a} \wedge (\mathbf{b} * \mathbf{c}) = (\mathbf{a} \wedge \mathbf{b}) * (\mathbf{a} \wedge \mathbf{c})$:

 $(\mathbf{b} * \mathbf{c}) \land \mathbf{a} = (\mathbf{b} \land \mathbf{a}) * (\mathbf{c} \land \mathbf{a}),$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbf{A} :

Let a, b, c in A be arbitrary.

For any x, y we have

 $(x \lor y) * (x \land y) = x * y, \text{ by proposition } 2.1 \tag{1}$

put x = b - a and y = a in (1), we have

 $[a \lor (b-a)] * [a \land (b-a)] = a * (b-a)$

Pre-multiply $a \lor (b - a)$ on both sides, we get

$$[a \lor (b - a)] * ([a \lor (b - a)] * [a \land (b - a)]) = [a \lor (b - a)] * [a^*(b - a)]$$

$$\Rightarrow ([a \lor (b - a)] * [a \lor (b - a)]) * [a \land (b - a)] = [a \lor (b - a)] * [a^{*}(b - a)],$$

by associative law

$$\Rightarrow 0 * [a \land (b - a)] = [a \lor (b - a)] * [a * (b - a)], since a * a = 0$$

$$\Rightarrow [a \land (b - a)] = [a \lor (b - a)] * [a *(b - a)], \text{ since } a * 0 = a \rightarrow (2)$$

But $[a * (b - a)]$ = $[a \lor (b - a)] - [a \land (b - a)]$
= $(a \lor b) - [a \land (b - a)]$
= $[(a \lor b) - a] \lor [(a \lor b) - (b - a)], \text{ by property } 4$
= $(b - a) \lor [(a \lor b) - (b - a)] \text{ by property } 3$
= $(a \lor b) - (b - a)$
= $a \lor b$

(ie) $a * (b - a) = a \lor b \rightarrow (3)$

Using (3) in (2), we get

$$a \wedge (b - a) = [a \vee (b - a)] * (a \vee b)$$

= $(a \vee b) * (a \vee b) = 0$, since $a * a = 0$

Hence $a \land (b - a) = 0 \rightarrow (4)$

so that $[a \land (b - c)] - [(a \land b) - c]$ = $(a - [(a \land b) - c]) \land ((b - c) - [(a \land b) - c])$ by property 6 = $(a - [(a - c) \land (b - c)]) \land [(b - c) - (a - c)]$ by property 6 and $a \le b \Longrightarrow a \land b = a$ = $(a - [(a - c) \land (b - c)]) \land [b - (c \lor a)]$ = $(a - [(a - c) \land (b - c)]) \land [(b - c) \land (b - a)]$, by property 5 < $a \land (b - a) \land (b - c)$ = $0 \land (b - c)$, by (4) = 0

so that $a \land (b - c) < (a \land b) - c$

But we always have $(a \land b) - c < a \land (b - c)$,

since
$$(a \land b) - c = (a - c) \land (b - c) < a \land (b - c)$$

Thus $(b * c) \land a = (b \land a) * (c \land a)$, for all a, b, c, in A.

(ix) $a \wedge a = a$, for all a in A:

Let a in A be arbitrary.

Then $a \wedge a = a$, for all a in A, since A is a $DR\ell$ – group.

Thus $(A, *, \wedge)$ is a Boolean Algebra.

For (2):

Let a, b in A be arbitrary.

Then a * (a \wedge b) = [a \vee (a \wedge b)] - [a \wedge (a \wedge b)] = a - (a \wedge b), by absorption and associative laws = (a - a) \vee (a - b), by property 5 = 0 \vee (a - b) = a - b

Thus $a - b = a * (a \land b)$, for all a, b in A.

Now, a * 0 = a \Rightarrow a \ge 0.

so that $a + a \ge a$, for every a and $0 - a \le 0$, for every a.

= (a + a) * 0Also, a + a= (a + a) * (a * a)= [(a + a) * a] * a $= ([(a + a) \lor a] - [(a + a) \land a]) * a, by property 10$ = [(a + a) - a] * a, since $a * a \ge a$. $=([(a + a) - a] - a) \vee (a - [(a + a) - a])$ = a - [(a + a) - a]Hence (a + a) - a= (a - [(a + a) - a]) - a= (a - a) - [(a + a) - a]= 0 - [(a + a) - a] $= 0 - a \le 0$ $\Rightarrow a + a$ ≤ a Hence a + a = a

Now, $(a + b) - (a \lor b) = (a + b) - [(a \lor b) + (a \lor b)]$

$$\leq (a - [(a \lor b) + (a \lor b)]) + b, by property 11$$

= [a - (a \lefta b)] - (a \lefta b) + b
= [a - (a \lefta b)] + [b - (a \lefta b)]
$$\leq 0 + 0 = 0$$

so that $a+b \leq a \lor b \to (6)$

Since $a \ge 0$ and $b \ge 0$ and by property 8, we have

$$a + b = a \lor b + a \land b$$

(ie)
$$a + b \ge a \lor b \rightarrow (7)$$

From (6) and (7), we have

 $a + b = a \lor b$

Now, $a * b * (a \land b) = a * [b * (b \land a)]$

= a * (b - a), by property 10 and by property 5 = $[a \lor (b - a)] - [a \land (b - a)]$ = $(a \lor b) - 0$, by (4) = $a \lor b = a + b$

Thus $a + b = a \lor b = a * b * (a \land b)$, for all a, b in A.

References:

[1]. E. A. Nordhaus and Leo Lapidus, Brouwerian Geometry, Canad. J. Math., 6 (1954).

[2]. *G. Birkhoff*, Lattice Theory, American Mathematical Society, Colloguium Publications, Volume 25, Providence R. I., 3rd Edition, 3rd Printing, (1979).

[3]. *K.L.N. Swamy*, Dually Residuated Lattice Ordered Semigroup, Math. Ann. 159, 105 – 114 (1965).

[4]. *M. Jeyalakshmi and R. Natarajan*, DRℓ – group, Acta Cienca Indica, Vol. XXIX. M, No.4, 823 – 830 (2003).

[5]. M. Ward and R. P. Dilworth, Residuated Lattice, Trans, Am. Math., Soc. 45, (1939).