
Confidence of Conditional Functional Dependencies Using Reservoir

Sampling

 Tiwari Pushpa

 1
, K. Dhana sree

2
, Dr.R.V.Krishnaiah

3

1
M.Tech Student,

 2
Associate Professor,

3
Principal

 1
M.Tech Student, Department of CSE, DRK Institute of Science & Technology, Hyderabad, Ap, India,

 2
Associate Professor, Department of CSIT, DRK Institute of Science & Technology, Hyderabad, Ap, India,

3
Principal, Department of CSE, DRK Group of Institutions, Hyderabad, Andhra Pradesh, India,

Abstract-
 Conditional functional dependencies (CFD), are

extensions of classical functional dependencies that

apply to certain subset of the relations, as specified

in pattern tableau. The support and confidence of a

given tableau are key properties in understanding

and exploring data quality. Consider a data

warehouse containing large quantities of historical

data. Careful analysis of a particular relation over

time may have revealed various tableaux that have

high support and confidence, checking the support

and confidence on new data as they arrive hour by

hour is an important quality check, and can reveal

new trends if the support or confidence change

suddenly. Given sufficient computational resources, it

is straightforward to compute the confidence of a

CFD by first sorting the input on attributes of the

relation. For each group in the support set, the

number of matching rows and the frequency of the

most common consequent that satisfies all applicable

assertions, can be found, allowing direct computation

of the confidence. So if proper samples of data are

provided, calculating the confidence is easier. Our

focus lies in coming up with providing some

technique of providing sampled data. Existing

sampling schemes are not sufficient as they do not

provide us with reliable sampled data for which the

confidence is to be calculated. We have proposed an

algorithm in its naïve version, which follows the

concept of reservoir sampling. The algorithm

proposes a skip random variable S(n, t), which is

generated in constant time by generating its

continuous counterpart and then correcting it so that

it has exactly the desired distribution function F(s),

by a modification of von Neumann’s rejection-

acceptance method. Proposed Algorithm is

significantly faster than other reservoir sampling

algorithms.

Keywords-Conditional Functional Dependencies

(CFD), Functional Dependencies, pattern tableau,

Support, Confidence, Reservoir Sampling, Random

variable, rejection-acceptance method.

I. INTRODUCTION:
Conditional functional dependencies (CFDs) have

recently been proposed to characterize the semantics

of complex data and facilitate data cleaning [1, 2, 3, 4,

5, 6, 7, 8]. A CFD is a functional dependency (FD)

that holds on a subset of the relation specified in an

accompanying pattern tableau. The support of a CFD

is the fraction of rows that match the tableau. Its

confidence, defined formally below, is the fraction of

rows satisfying the functional dependency amongst

those that match the tableau. The support and

confidence of a given tableau are key properties in

understanding and exploring data quality. Consider a

data warehouse containing large quantities of

historical data. Careful analysis of a particular

relation over time may have revealed various

tableaux that have high support and confidence,

checking the support and confidence on new data as

they arrive hour by hour is an important quality check,

and can reveal new trends if the support or

confidence change suddenly.

Table 1. Customers Detail

SN CC AC PN NM STR CT ZIP

1 01 908 1111 MIK TREE MH 07974

2 01 908 1111 MIK TREE MH 07974

3 01 212 2222 JOE 5TH

STR

NY 01202

4 01 908 2222 JIM ELM

STR.

MH 07974

5 44 131 3333 BEN HIGH

STR.

EDI EH4

6 44 131 4444 IAN HIGH

STR.

EDI EH4

7 44 908 4444 IAN PORT

PI

MH WIB

8 01 131 2222 SEA 3RD

STR.

UN 01202

705

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90306

Vol. 2 Issue 9, September - 2013

Each row specifies phone details of a customer. CC

stands for country code, AC for area code, PN for

(phone number), NM for (name), STR for street, CT

for city, and ZIP for zip code.

The following two FDs hold in Table 1.

f1 : [CC, AC] CT

f2 : [CC, AC, PN] STR

Conditional functional dependencies are

ø0 : ([CC, ZIP] STR, (44, - || -))

ø1 : ([CC, AC] CT, (01, 908||MH))

ø2 : ([CC, AC] CT, (44, 131 || EDI))

ø3 : ([CC, AC] CT, (0, 212 || NY))

CFDs ø0, ø2, ø2, ø3 specify special cases of FD f1.

FD [CC, ZIP] STR does not hold in data set 1, but

holds for the part of the data set where CC = 44. This

has been summarized as a CFD ø0. An FD can be

considered as a special case of CFD when the tuple

pattern contains only the unnamed variable.

 FD f1 : [CC, AC] CT

 CFD f1 : ([CC;AC] CT,(- -, || -)).

Definition (Support of CFD)

The support of a CFD[10], is the fraction of records

in a data set that satisfies the CFD.For example, the

support of Á1 is 3/8 since three tuples in the example

data set satisfy Á1. Given a minimum support

requirement, a CFD is frequent if its support is at

least as large as the minimum support. The support is

the fraction of tuples that match at least one pattern in

the tableau.

Definition (confidence of CFD)

Following prior work[10]. We define the confidence,

Cø R, on a relation R is maximum fraction of its

support set that can be retained, so that if all other

tuples were deleted, the remaining ones would satisfy

the embedded FD and all relevant assertions.

Thus, the confidence can be computed exactly, given

a table and a CFD, at the cost of sorting the whole

table to form the groups. Without loss of generality,

we can write the table R as a (multi)set of rows ri =

(xi, yi), where xi € X is the antecedent, yi € Y is the

consequent, and all other attributes are dropped.

Denote the total number of rows in R as N.

 Let Nx as |{ri : xi = x}|, the number of rows sharing

the antecedent x (the size of the group of x),

Nx,y as |{ri : xi = x Λ yi = y Λ V tp €Tp, tp[X] ≈ x 

tp[Y] ≈ y}|,

The number of rows with antecedent x and

consequent y that satisfy all applicable assertions.

Let support set of CFD ø on R as sø (R), i.e.,Sø (R) =

{ri : ᴲtp €Tp. ri[X] ≈ tp[X]}, and define Sø (R) = |sø

(R)|/N as the support of ø on R.

Then Cø(R)=X max 𝑁𝑥, 𝑦/𝑠∅ 𝑅 =𝑋∈𝑠∅ 𝑅 [𝑋]

 𝑁𝑥/|𝑠𝑥∈𝑠∅ 𝑅 [𝑋] ∅ 𝑅 max 𝑦 𝑁𝑥, 𝑦|

The fraction Nx/N can be interpreted as the “support”

of x, while the fraction max y Nx,y/Nx can be

thought of as a “confidence” of the group x.

II. PROBLEM:

Given sufficient computational resources, it is

straightforward to compute the confidence of a CFD

by first sorting the input on attributes X Y . For each

group in the support set, the number of matching

rows (Nx), and the frequency of the most common

consequent that satisfies all applicable assertions

(max y Nx,y) can be found, allowing direct

computation of the confidence.

We are interested in the case, where input is very

huge. Records of data stored in the data warehouse.

So reading each and every record is time consuming.

There may be situations when CFD may not hold

exactly i.e. some rows in the support set may agree

with antecedent (X) but may disagree on

consequent(Y). Note that simple uniform sample of

rows is sufficient to estimate the support of any given

CFD. Moreover any rows in the input which are not

in the support set of specified CFD can be ignored.

Instead we should first come up with sample records,

then calculate the support and confidence for the

given CFD.

III. DRAWBACK OF EXISTING

SYSTEM:

So if proper samples of data are provided calculating

the confidence is easier. Our focus lies in coming up

with providing some technique of providing sampled

data.

Existing simple sampling schemes are not sufficient

as they do not provide us with reliable sample data

for which the confidence is to be calculated.

Uniform Row Sampling:
Consider a scheme which samples a set of rows

uniformly from the relation, and then tries to use this

information to estimate the confidence. Let the large

group in R have a unique consequent, so the

confidence is either 1 or 0.75, depending on how the

small groups are arranged. The sampling scheme is

unlikely to pick two rows from the same small group,

and so has no information to distinguish the two

cases, unless the sample size is Ω(√N).

706

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90306

Vol. 2 Issue 9, September - 2013

Uniform Group Sampling:
Consider a scheme that samples uniformly from the

groups (so each group is equally likely to be picked),

and collects some information about the sampled

groups. Let the small groups have a unique

consequent, so the confidence

is either 1 or 0.5+2/N, depending on the consequents

in the large group. However, unless some information

is collected about the large group, then there is no

way to distinguish the two cases. This only occurs if

the sample size is Ω(√N).when groups are sampled

uniformly.

 These examples show that simple uniform sampling

approaches alone will not suffice, and instead we will

need to consider more sampling schemes.

Two pass solution

1] Sampling approach

2] Heavy hitters

In this paper we discuss reservoir sampling method

We describe a solution to the CFD confidence which

takes two passes through the data . In the first pass it

samples tuples uniformly from the relation and in

second pass for each sampled tuple the confidence of

the respective group is calculated. [10]

IV PRELIMINARIES:
Reservoir algorithms:

The first step of any reservoir algorithm is to put the

first n records of the file into a “reservoir”[9] The rest

of the records are processed sequentially, records can

be selected for the reservoir only as they are

processed. An algorithm is a reservoir algorithm if it

maintains the invariant that after each record is

processed a true random sample of size n can be

extracted from the current state of the reservoir.

We want n records in the sample to be in the same

order as they appear in the file, so that they can be

accessed sequentially .it is ideally suited to online use.

Measure the performance based on CPU time.

Previous work done:

Algorithm S [11,18] has been developed. This

method sequentially selects n records at random from

a file containing N records where 0<= n<= N. It

generates a random variable and skips the next record

if NU > n, else repeats the process. It selects the next

record in the file for the sample and sets n = n+1, N=

N-1.

V. PROPOSED WORK:

The limiting restrictions on algorithms for this

sampling problem are that the records must be read

sequentially and at most once. This means that any

algorithm for this problem must maintain a reservoir

that contains a random sample of size n of the records

processed so far.

Proposed algorithm revolves around random variable.

We define S(n, N) to be random variable that counts

the number of records to be skipped before selecting

the next record.

Parameter n is the number of records remaining to be

selected and N is the total number of records left in

the file.

The range of S(n, N) is set of integers in the interval

0<= s<= N

The distribution Function [9]

 F(s) = Prob(S<=s), for 0 <= s <= N can be expressed

as

F(s) = l – [(N- n)
s+1

] / N
s+1

F(s) = 0 for s < 0

F(s) = 1 for s >= N - n

 (The notation a
b
 denotes the “falling power”

 a(a - 1) . . . (a - b + 1) = a!/(a - b)!, and the corr.

notation a
ƃ
 denotes the “rising power”

 a(b + 1) *. . (a + b - 1) = (a + b - l)! / (a - l)!.)

 The Probability function f(s) [9]

f(s) = Prob(S = s), for 0 <= s <= N-n

 = F(s) – F(s-1)

 = (n/N) *(N-n)s / (N-1)s

f(s) = 0 for s< 0 and s > N-n.

The skip random variable S(n, N) is generated in

constant time by generating its continuous

counterpart and then correcting it so that it has

exactly the desired distribution function F(s), by

modification of Von Neumann‟s rejection-acceptance

method.

Assume X is either a continuous or an integer random

variable. Let g(x) be the density function of X if X is

continuous or f(x) be probability function if X is

integer value.

We choose a constant „c‟ >= 1

so that f(└ x┘ <= cg(x)

In order to generate S, we generate X and a random

variate U which is uniformly distributed on unit

interval.

The expected value of S is εsf s =
N−n

n+1

Proposed Algorithm ‘P’
(1) If n>= N, we use previously discovered

algorthims, as the proposed algorithm involves the

overhead of calculating X, h((└ x┘), g(x). Proposed

707

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90306

Vol. 2 Issue 9, September - 2013

algorithm only when n <= ∝ N , where ∝ is a

constant value ranges between (0.05, 0.15).

(2) Generate U and X . if U <= h((└ X┘)/ cg(X),

probability is high,

then set S = └ X┘, go to step 4

(3) If U <= f(└ X┘) / cg(X),

then set S = └ X┘, else step 2.

(4) Select the (S+1)nth record. Skip over the

next S(n,N) records in the file and select the

following one for the sample.

 Set N = N – S(n, N) - 1 and n = n-1. Go to step 2, if

n >0.

VI. RESULTS:

In this section we give three optimizations that

dramatically improve the running time of the naive

version of Algorithm D.

1] Threshold Optimization. Proposed algorithm

works best when n <= ∝ N.

2] Subroutine optimization. We can speed up

Algorithm „P‟ by a factor of almost 2 by cutting in

half the number of operations of the form x
y
, where x

and y are either real (floating-point) numbers or large

integers.

3]Random Optimization. Algorithm „P‟ reduces the

number of calls to RANDOM by a factor of 1/3

 Table 2. Comparison of various algorithms

VII. CONCLUSION:

The proposed algorithm is a naïve version for random

sample of size n from file of N records.

(1) The algorithm uses rejection acception

technique to do the sampling in optimum

time. Proposed Algorithm is significantly

faster than other reservoir sampling algorithm

as shown the table.

(2) Main idea is generating S quickly by

generating fast approximation and correcting

it so that its result distribution is the desired

F(s)

(3) Elimination of costly calls to mathematical

subroutines

(4) Speed is achieved by accepting the value of

„S‟ only when U <= <= h((└ X┘)/ cg(X), else

we reject and repeat the process with a new

set of X, U.

(5) The calculation of probability function f(s) is

expensive and requires O(min{n,S}) time.

Instead we quickly compute approximation

h(s), such that h(s) <= f(s). Only with low

probability we calculate f(s)

(6) All reservoir algorithms require Q(n(1 +

log(N/t))) time, whereas proposed runs in O(n)

time and generates approximately n uniform

random variables and performs n

exponentiation operations.

.

REFERENCES

[1] L. Bravo, W. Fan, F. Geerts, and S. Ma.

Increasing the expressivity of conditional functional

dependencies without extra complexity. In IEEE

International Conference on Data Engineering, 2008.

[2] L. Bravo, W. Fan, and S. Ma. Extending

dependencies with Bases, 2007.

[3] F. Chiang and R. Miller. Discovering data quality

rules. In International Conference on Very Large

Data Bases, 2008.

[4] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma.

Improving data quality: Consistency and accuracy. In

International Conference on Very Large Data Bases,

2007.

 [5] W. Fan, F. Geerts, X. Jia, and A.

Kementsietsidis. Conditional functional

dependencies for capturing data inconsistencies.

ACM Trans. Database Syst., 33(2), 2008.

[6] W. Fan, F. Geerts, L. Lakshmanan, and M. Xiong.

Discovering conditional functional dependencies. In

IEEE International Conference on Data Engineering,

2009.

[7] W. Fan, S. Ma, Y. Hu, J. Liu, and Y. Wu.

Propagating functional dependencies with conditions.

In International Conference on Very Large Data

Bases, 2008.

[8] Lukasz Golab, Howard Karloff, Flip Korn,

Divesh Srivastava, and Bei Yu. On generating near-

optimal tableaux for conditional functional

dependencies. In International Conference on Very

Large Data Bases, 2008.

[9] J. S. Vitter. Random sampling with a reservoir.

ACM Transactions on Mathematical Software,

11(1):37–57, March 1985.

[10] Graham Cormode, Lukasz Golab, Flip Korn,

Andrew Mcgregor, Divesh Srivastava and Xi Zang,

Estimating the confidence of conditional functional

dependencies

 [11] VITTER, J. S. Faster methods for random

sampling. Commun. ACM 27, 7 (July 1984). 703-

718.

Algorithms Average Execution

Time

S 17N

A 4N

C 8n
2

P 55n

708

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90306

Vol. 2 Issue 9, September - 2013

[12] VITTER, J. S. An Efficient Algorithm for

Sequential. Random Sampling. ACM Transactions on

Mathematical Software,Volume 13 Issue 1, March

1987, Pages 58-67

[13] FELLER, W. An Introduction to Probability

Theory and Its Applications, vol. I, 3rd ed. Wiley,

1968.

[14] FELLER, W. An Introduction to Probability

Theory and Its Applications, vol. II, 2nd ed. Wiley,

1971

 [15] FAN, C. T., MULLER, M. E., AND

REZUCHA, I. Development of sampling plans by

using sequential (item by item) selection techniques

and digital computers. Am. Stat. Assoc. J. 57 (June

1962), 387-402.

Author:

TIWARI PUSHPA has completed

MCA from Maharaja Sayajirao

University, Baroda, and pursuing

M.Tech (C.S.E) in DRK Institute of

Science and Technology, JNTUH,

Hyderabad, Andhra Pradesh, India. Her main

research interest includes Data Mining & Databases.

K. Dhana sree M.Tech, (Ph.D) associate professor

dept. Of csit, drk IST, jntu, Hyderabad. Research area

Datamining, computer networks and

securtiy computing.previously

published 3 international journal

papers and 1 international conference

paper.

Dr.R.V.Krishnaiah, did M.Tech (EIE) from NIT

Waranagal, MTech (CSE) form JNTU, Ph.D, from

JNTU Ananthapur, He has memberships in

professional bodies MIE, MIETE,

MISTE. His main research interests

include Image Processing, Security

systems, Sensors, Intelligent

Systems, Computer networks, Data

mining, Software Engineering,

network protection and security control. He has

published many papers and Editorial Member and

Reviewer for some national and international

journals.

709

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90306

Vol. 2 Issue 9, September - 2013

