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Abstract- 
 Conditional functional dependencies (CFD), are 

extensions of classical functional dependencies that 

apply to certain subset of the relations, as specified 

in pattern tableau. The support and confidence of a 

given tableau are key properties in understanding 

and exploring data quality. Consider a data 

warehouse containing large quantities of historical 

data. Careful analysis of a particular relation over 

time may have revealed various tableaux that have 

high support and confidence, checking the support 

and confidence on new data as they arrive hour by 

hour is an important quality check, and can reveal 

new trends if the support or confidence change 

suddenly. Given sufficient computational resources, it 

is straightforward to compute the confidence of a 

CFD by first sorting the input on attributes of the 

relation. For each group in the support set, the 

number of matching rows and the frequency of the 

most common consequent that satisfies all applicable 

assertions, can be found, allowing direct computation 

of the confidence. So if proper samples of data are 

provided, calculating the confidence is easier. Our 

focus lies in coming up with providing some 

technique of providing sampled data. Existing 

sampling schemes are not sufficient as they do not 

provide us with reliable sampled data for which the 

confidence is to be calculated. We have proposed an 

algorithm in its naïve version, which follows the 

concept of reservoir sampling. The algorithm 

proposes a skip random variable S(n, t), which is 

generated in constant time by generating its 

continuous counterpart and then correcting it so that 

it has exactly the desired distribution function F(s),  

by a modification of von Neumann’s rejection-

acceptance method. Proposed Algorithm is 

significantly faster than other reservoir sampling 

algorithms. 

 

Keywords-Conditional Functional Dependencies 

(CFD), Functional Dependencies, pattern tableau, 

Support, Confidence, Reservoir Sampling, Random 

variable, rejection-acceptance method. 

 

 

I. INTRODUCTION: 
Conditional functional dependencies (CFDs) have 

recently been proposed to characterize the semantics 

of complex data and facilitate data cleaning [1, 2, 3, 4, 

5, 6, 7, 8]. A CFD is a functional dependency (FD) 

that holds on a subset of the relation specified in an 

accompanying pattern tableau. The support of a CFD 

is the fraction of rows that match the tableau. Its 

confidence, defined formally below, is the fraction of 

rows satisfying the functional dependency amongst 

those that match the tableau. The support and 

confidence of a given tableau are key properties in 

understanding and exploring data quality. Consider a 

data warehouse containing large quantities of 

historical data. Careful analysis of a particular 

relation over time may have revealed various 

tableaux that have high support and confidence, 

checking the support and confidence on new data as 

they arrive hour by hour is an important quality check, 

and can reveal new trends if the support or 

confidence change suddenly.  

 

Table 1.  Customers Detail 

 

 

 

 

 

 

SN CC AC PN NM STR CT ZIP 

1 01 908 1111 MIK TREE MH 07974 

2 01 908 1111 MIK TREE MH 07974 

3 01 212 2222 JOE 5TH 

STR 

NY 01202 

4 01 908 2222 JIM ELM 

STR. 

MH 07974 

5 44 131 3333 BEN HIGH 

STR. 

EDI EH4 

6 44 131 4444 IAN HIGH 

STR. 

EDI EH4 

7 44 908 4444 IAN PORT 

PI 

MH WIB 

8 01 131 2222 SEA 3RD 

STR. 

UN 01202 

705

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90306

Vol. 2 Issue 9, September - 2013



Each row specifies phone details of a customer. CC 

stands for country code, AC for area code, PN for 

(phone number), NM for (name), STR for street, CT 

for city, and ZIP for zip code. 

The following two FDs hold in Table 1. 

f1 : [CC, AC] CT 

f2 : [CC, AC, PN] STR 

Conditional functional dependencies are 

ø0 : ([CC, ZIP] STR, (44,  - || - )) 

ø1 : ([CC, AC] CT,  (01,  908||MH)) 

ø2 : ([CC, AC] CT, (44, 131 || EDI)) 

ø3 : ([CC, AC] CT, (0, 212 || NY)) 

CFDs ø0, ø2, ø2, ø3 specify special cases of FD f1. 

FD [CC, ZIP] STR does not hold in data set 1, but 

holds for the part of the data set where CC = 44. This 

has been summarized as a CFD ø0. An FD can be 

considered as a special case of CFD when the tuple 

pattern contains only the unnamed variable.   

 FD f1 : [CC, AC] CT  

 CFD f1 : ([CC;AC] CT,( - -, || -)). 

 

Definition (Support of CFD) 

 

The support of a CFD[10], is the fraction of records 

in a data set that satisfies the CFD.For example, the 

support of Á1 is 3/8 since three tuples in the example 

data set satisfy Á1. Given a minimum support 

requirement, a CFD is frequent if its support is at 

least as large as the minimum support. The support is 

the fraction of tuples that match at least one pattern in 

the tableau.  

 

Definition (confidence of CFD) 

Following prior work[10]. We define the confidence, 

Cø R, on a relation R is maximum fraction of its 

support set that can be retained, so that if all other 

tuples were deleted, the remaining ones would satisfy 

the embedded FD and all relevant assertions. 

Thus, the confidence can be computed exactly, given 

a table and a CFD, at the cost of sorting the whole 

table to form the groups. Without loss of generality, 

we can write the table R as a (multi)set of rows ri = 

(xi, yi), where xi € X is the antecedent, yi € Y is the 

consequent, and all other attributes are dropped.  

 

Denote the total number of rows in R as N. 

 Let Nx as |{ri : xi = x}|, the number of rows sharing 

the antecedent x (the size of the group of x),   

Nx,y as |{ri : xi = x Λ yi = y Λ V tp €Tp, tp[X] ≈ x  

tp[Y ] ≈ y}|,  

The number of rows with antecedent x and 

consequent y that satisfy all applicable assertions. 

Let support set of CFD ø on R as sø (R), i.e.,Sø (R) = 

{ri : ᴲtp €Tp. ri[X] ≈ tp[X]}, and define  Sø (R)  = |sø 

(R)|/N as the support of ø on R.  

Then Cø(R)=X  max 𝑁𝑥, 𝑦/𝑠∅ 𝑅 =𝑋∈𝑠∅ 𝑅 [𝑋]

  𝑁𝑥/|𝑠𝑥∈𝑠∅ 𝑅 [𝑋] ∅ 𝑅 max 𝑦 𝑁𝑥, 𝑦| 

The fraction Nx/N can be interpreted as the “support” 

of x, while the fraction max y Nx,y/Nx  can be 

thought of as a “confidence” of the group x. 

  

II. PROBLEM: 
 

Given sufficient computational resources, it is 

straightforward to compute the confidence of a CFD 

by first sorting the input on attributes X Y . For each 

group in the support set, the number of matching 

rows (Nx), and the frequency of the most common 

consequent that satisfies all applicable assertions 

(max y Nx,y) can be found, allowing direct 

computation of the confidence.  

 

We are interested in the case, where input is very 

huge. Records of data stored in the data warehouse. 

So reading each and every record is time consuming. 

There may be situations when CFD may not hold 

exactly i.e. some rows in the support set may agree 

with antecedent (X) but may disagree on 

consequent(Y). Note that simple uniform sample of 

rows is sufficient to estimate the support of any given 

CFD. Moreover any rows in the input which are not 

in the support set of specified CFD can be ignored. 

Instead we should first come up with sample records, 

then calculate the support and confidence for the 

given CFD. 

 

III. DRAWBACK OF EXISTING   

SYSTEM: 

 
So if proper samples of data are provided calculating 

the confidence is easier. Our focus lies in coming up 

with providing some technique of providing sampled 

data. 

Existing simple sampling schemes are not sufficient 

as they do not provide us with reliable sample data 

for which the confidence is to be calculated.  

 

Uniform Row Sampling: 
Consider a scheme which samples a set of rows 

uniformly from the relation, and then tries to use this 

information to estimate the confidence. Let the large 

group in R have a unique consequent, so the 

confidence is either 1 or 0.75, depending on how the 

small groups are arranged. The sampling scheme is 

unlikely to pick two rows from the same small group, 

and so has no information to distinguish the two 

cases, unless the sample size is Ω(√N). 
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Uniform Group Sampling:  
Consider a scheme that samples uniformly from the 

groups (so each group is equally likely to be picked), 

and collects some information about the sampled 

groups. Let the small groups have a unique 

consequent, so the confidence 

is either 1 or 0.5+2/N, depending on the consequents 

in the large group. However, unless some information 

is collected about the large group, then there is no 

way to distinguish the two cases. This only occurs if 

the sample size is Ω(√N).when groups are sampled 

uniformly. 

 These examples show that simple uniform sampling 

approaches alone will not suffice, and instead we will 

need to consider more sampling schemes. 

 

Two pass solution 

1]   Sampling approach 

2]   Heavy hitters 

In this paper we discuss reservoir sampling method 

We describe a solution to the CFD confidence which 

takes two passes through the data . In the first pass it 

samples tuples uniformly from the relation and in 

second pass for each sampled tuple the confidence of 

the respective group is calculated. [10] 

 

IV PRELIMINARIES: 
Reservoir algorithms: 

The first step of any reservoir algorithm is to put the 

first n records of the file into a “reservoir”[9] The rest 

of the records are processed sequentially, records can 

be selected for the reservoir only as they are 

processed. An algorithm is a reservoir algorithm if it 

maintains the invariant that after each record is 

processed a true random sample of size n can be 

extracted from the current state of the reservoir. 

 

We want n records in the sample to be in the same 

order as they appear in the file, so that they can be 

accessed sequentially .it is ideally suited to online use. 

Measure the performance based on CPU time. 

 

Previous work done: 

Algorithm S [11,18] has been developed. This 

method sequentially selects n records at random from 

a file containing N records where 0<= n<= N. It 

generates a random variable and skips the next record 

if NU > n, else repeats the process. It selects the next 

record in the file for the sample and sets n = n+1, N= 

N-1.  

 

 

 

 

 

V. PROPOSED WORK: 
 

The limiting restrictions on algorithms for this 

sampling problem are that the records must be read 

sequentially and at most once. This means that any 

algorithm for this problem must maintain a reservoir 

that contains a random sample of size n of the records 

processed so far.  

Proposed algorithm revolves around random variable. 

We define S(n, N) to be random variable that counts 

the number of records to be skipped before selecting 

the next record.  

Parameter n is the number of records remaining to be 

selected and N is the total number of records left in 

the file. 

The range of S(n, N) is set of integers in the interval 

0<= s<= N 

The distribution Function [9] 

 F(s) = Prob(S<=s), for 0 <= s <= N can be expressed 

as 

F(s) = l – [(N- n) 
s+1

] / N 
s+1 

F(s) = 0 for s < 0 

F(s) = 1 for s >= N - n 

 (The notation a
b
 denotes the “falling power” 

 a(a - 1) . . . (a - b + 1) = a!/(a - b)!, and the corr.  

notation a
ƃ
 denotes the “rising power” 

 a(b + 1) *. . (a + b - 1) = (a + b - l)! / (a - l)!.)  

 The Probability function f(s) [9] 

f(s)  =   Prob(S = s), for 0 <= s <= N-n 

 =   F(s) – F(s-1) 

 =   (n/N) *(N-n)s / (N-1)s 

f(s)         =   0  for s< 0 and s > N-n. 

 

The skip random variable S(n, N) is generated in 

constant time by generating its continuous 

counterpart and then correcting it so that it has 

exactly the desired distribution function F(s),  by  

modification of Von Neumann‟s rejection-acceptance 

method.  

Assume X is either a continuous or an integer random 

variable. Let g(x) be the density function of X  if X is 

continuous or f(x) be probability function if X is 

integer value. 

We choose a constant „c‟ >= 1  

so that f(└ x┘ <= cg(x) 

In order to generate S, we generate X and a random 

variate U which is uniformly distributed on unit 

interval. 

The expected value of S is εsf s =
N−n

n+1
 

 

Proposed Algorithm ‘P’ 
(1) If n>= N, we use previously discovered 

algorthims, as the proposed algorithm involves the 

overhead of calculating X, h((└ x┘), g(x). Proposed 
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algorithm only when n <= ∝ N , where ∝  is a 

constant value ranges between (0.05, 0.15). 

(2) Generate U and X . if U <= h((└ X┘)/ cg(X), 

probability is high,  

then set S = └ X┘, go to step 4 

(3) If U <= f(└ X┘) / cg(X),  

then set  S = └ X┘, else step 2. 

(4) Select the (S+1)nth record. Skip over the 

next S(n,N) records in the file and select the 

following one for the sample. 

 Set N = N – S(n, N) - 1 and n = n-1. Go to step 2, if 

n >0. 

 

VI. RESULTS: 

In this section we give three optimizations that 

dramatically improve the running time of the naive 

version of Algorithm D. 

1] Threshold Optimization. Proposed algorithm 

works best when n <= ∝ N. 

2]  Subroutine optimization. We can speed up 

Algorithm „P‟ by a factor of almost 2 by cutting in 

half the number of operations of the form x
y
, where x 

and y are either real (floating-point) numbers or large 

integers.  

3]Random Optimization. Algorithm „P‟ reduces the 

number of calls to RANDOM by a factor of 1/3 

 

 

 

 

 

 

 

 

 Table 2. Comparison of various algorithms  

 

VII. CONCLUSION: 

The proposed algorithm is a naïve version for random 

sample of size n from file of N records. 

(1) The algorithm uses rejection acception 

technique to do the sampling in optimum 

time. Proposed Algorithm is significantly 

faster than other reservoir sampling algorithm 

as shown the table. 

(2) Main idea is generating S quickly by 

generating fast approximation and correcting 

it so that its result distribution is the desired 

F(s) 

(3) Elimination of costly calls to mathematical 

subroutines 

(4) Speed is achieved by accepting the value of 

„S‟ only when U <= <= h((└ X┘)/ cg(X), else 

we reject and repeat the process with a new 

set of X, U. 

(5) The calculation of probability function f(s) is 

expensive and requires O(min{n,S}) time. 

Instead we quickly compute approximation 

h(s), such that h(s) <= f(s). Only with low 

probability we calculate f(s) 

(6) All reservoir algorithms require Q(n(1 + 

log(N/t))) time, whereas proposed runs in O(n) 

time and generates approximately n uniform 

random variables and performs n 

exponentiation operations. 

. 
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