

 Congestion Control Analysis over Wireless Ad hoc Networks

Firdous Ul Rashid Jitendra Singh Atendra Panwar Manoj Kumar

 M.Tech (CSE) A.P (CSE) M.Tech (CSE) M.Tech (CSE)

 SRM University SRM University SRM University SRM University

 NCR Campus NCR Campus NCR Campus NCR Campus

Abstract

Transmission Control Protocol (TCP), the mostly used

transport protocol, performs well over wired networks.

As much as wireless network is deployed, TCP should

be modified to work for both wired and wireless

networks. Since TCP is designed for congestion control

in wired networks, it cannot clearly detect non-

congestion related packet loss from wireless networks.

TCP Congestion control plays the key role to ensure

stability of the Internet along with fair and efficient

allocation of the bandwidth. So, congestion control is

currently a large area of research and concern in the

network community. Many congestion control

mechanisms are developed and refined by researcher

aiming to overcome congestion. During the last decade,

several congestion control mechanisms have been

proposed to improve TCP congestion control. The

purpose of this paper is to analyze and compare the

different TCP variants namely Reno, New Reno, Vegas

under the AODV routing protocol. TCP’s robustness is

as a result of its reactive behaviour in the face of

congestion, and fact that reliability is ensured by

retransmissions.

KeyWords: MANET, TCP Congestion Control

Algorithms, Reno, New Reno, Vegas.

1. Introduction
A mobile ad hoc network (MANET) is generally

defined as a network that has many free or autonomous

nodes, often composed of mobile devices or other

mobile pieces that can arrange themselves in various

ways and operate without strict top-down network

administration. In MANET each node acts as a router

and these networks are scalable. To support

connectivity between nodes MANET networks use

different kinds of protocols such as AODV, DSR, and

DSDV etc.

2. Transmission Control Protocol

TCP stands for Transmission Control Protocol and it is

a sliding window protocol that provides handling for

both timeouts and retransmissions. TCP is known as a

connection-oriented protocol. TCP is responsible for

ensuring that a message is divided into the packets that

IP manages and for reassembling the packets back into

the complete message at the other end. In the OSI

communication model, TCP is in layer 4, the Transport

layer.TCP establishes a full duplex virtual connection

between two endpoints.

3. TCP Congestion Control Algorithms

3.1 Slow Start: Slow start reduces the burst affect

when a host first transmits. It requires a host to start its

transmissions slowly and then build up to the point

where congestion starts to occur. The host does not

initially know how many packets it can send, so it uses

slow start as a way to gauge the network's capacity. A

host starts a transmission by sending two packets to the

receiver. When the receiver receives the segments, it

returns ACKs (acknowledgements) as confirmation.

The sender increments its window by two and sends

four packets. This build up continues with the sender

doubling the number of packets it sends until an ACK

is not received, indicating that the flow has reached the

network's ability to handle traffic or the receivers

ability to handle incoming traffic. Slow start does not

prevent congestion; it simply prevents a host from

causing an immediate congestion state. If the host is

sending a large file, it will eventually reach a state

where it overloads the network and packets begin to

drop. Slow start is critical in avoiding the congestion

collapse problem.

3.2 Congestion Avoidance: Congestion can occur

when data arrives on a big pipe (a fast LAN) and gets

sent out a smaller pipe (a slower WAN). Congestion

can also occur when multiple input streams arrive at a

router whose output capacity is less than the sum of the

inputs. Congestion avoidance is a way to deal with lost

packets. The assumption of the algorithm is that packet

loss caused by damage is very small (much less than

1%), therefore the loss of a packet signals congestion

somewhere in the network between the source and

destination. There are two indications of packet loss: a

timeout occurring and the receipt of duplicate ACKs.

Congestion avoidance and slow start are independent

algorithms with different objectives. But when

congestion occurs TCP must slow down its

transmission rate of packets into the network, and then

invoke slow start to get things going again. In practice

they are implemented together. Congestion avoidance

and slow start require that two variables be maintained

462

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

for each connection: a congestion window, cwnd, and a

slow start threshold size, ssthresh.In Congestion

Avoidance the window grows linearly.

3.3 Fast Retransmit: Duplicate ACKs that were

mentioned to be one way of detecting lost packets can

also be caused by reordered packets. When receiving

one duplicate ACK the sender cannot yet know whether

the packet has been lost or just gotten out of order but

after receiving several duplicate ACKs it is reasonable

to assume that a packet loss has occurred. The purpose

of fast retransmit mechanism is to speed up the

retransmission process by allowing the sender to

retransmit a packet as soon as it has enough evidence

that a packet has been lost. This means that instead of

waiting for the retransmit timer to expire, the sender

can retransmit a packet immediately after receiving

three duplicate ACKs.

3.4 Fast Recovery: After fast retransmit sends what

appears to be the missing segment, congestion

avoidance, but not slow start is performed. This is the

fast recovery algorithm. It is an improvement that

allows high throughput under moderate congestion,

especially for large windows. The reason for not

performing slow start in this case is that the receipt of

the duplicate ACKs tells TCP more than just a packet

has been lost. Since the receiver can only generate the

duplicate ACK when another segment is received, that

segment has left the network and is in the receiver's

buffer. That is, there is still data flowing between the

two ends, and TCP does not want to reduce the flow

abruptly by going into slow start. The fast retransmit

and fast recovery algorithms are usually implemented

together as follows:

1. When the third duplicate ACK in a row is received,

set ssthresh to one-half the current congestion window,

cwnd, but no less than two segments. Retransmit the

missing segment. Set cwnd to ssthresh plus 3 times the

segment size. This inflates the congestion window by

the number of segments that have left the network and

which the other end has cached.

2. Each time another duplicate ACK arrives, increment

cwnd by the segment size. This inflates the congestion

window for the additional segment that has left the

network. Transmit a packet, if allowed by the new

value of cwnd.

3. When the next ACK arrives that acknowledges new

data, set cwnd to ssthresh (the value set in step 1). This

ACK should be the acknowledgment of the

retransmission from step 1, one round-trip time after

the retransmission. Additionally, this ACK should

acknowledge all the intermediate segments sent

between the lost packet and the receipt of the first

duplicate ACK. This step is congestion avoidance,

since TCP is down to one-half the rate it was at when

the packet was lost.

 4. TCP Variants

4.1 TCP Reno: TCP Reno is the most widely adopted

Internet TCP protocol. It employs four Congestion

control Algorithms: slow start, congestion avoidance,

fast retransmit, and fast recovery .When packet loss

occurs in a congested link due to buffer overflow in the

intermediate routers, either the sender receives three

duplicate acknowledgments or the sender’s

retransmission timeout (RTO timer expires). In case of

three duplicate ACKs, the sender activates TCP fast

retransmit and recovery algorithms and reduces its

congestion window size to half. It then linearly

increases congestion window, similar to the case of

congestion avoidance. This increase in transmission

rate is slower than in the case of slow start and helps

relieve congestion. TCP Reno fast recovery algorithm

improves TCP performance in case of a single packet

loss within a window of data. However performance of

TCP Reno suffers in case of multiple packet losses

within a window of data.

4.2 New Reno: New Reno is a modification of TCP

Reno. TCP New Reno enhances TCP throughput

performance when multiple packets are dropped from a

single window of data for TCP Reno connections that

does not support the TCP SACK option. When multiple

packets are dropped from a single window of data, the

ACK for the retransmitted packet acknowledges some

but not all of the packets transmitted before the fast

retransmit. This is referred to as partial ACK. During

fast recovery when a TCP sender receives partial ACK,

the TCP sender concludes that the indicated packets

was lost and retransmit that packet. The remaining

three phases (slow start, congestion avoidance, and fast

retransmit) are similar to TCP Reno. A problem occurs

with New Reno when there are no packet losses but

instead, packets are reordered by more than 3 packet

sequence numbers. When this happens, New Reno

mistakenly enters fast recovery, but when the reordered

packet is delivered, ACK sequence-number progress

occurs and from there until the end of fast recovery,

every bit of sequence-number progress produces a

duplicate and needless retransmission that is

immediately ACKed.

4.3 Vegas: Vegas [8] is a TCP implementation which is

a modification of RENO. It builds on the fact that

proactive measure to encounter congestion is much

more efficient than reactive ones. It tried to get around

the problem of coarse grain timeouts by suggesting an

algorithm which checks for timeouts at a very efficient

schedule. Also it overcomes the problem of requiring

enough duplicate acknowledgements to detect a packet

loss, and it also suggests a modified slow start

algorithm which prevents it from congesting the

network.

 The three major changes induced by Vegas are:

463

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 New Re-Transmission Mechanism: Vegas extend

on the retransmission mechanism of RENO. It keeps

track of when each segment was sent and it also

calculates an estimate of the RTT by keeping track of

how long it takes for the acknowledgment to get back.

 Congestion avoidance: TCP Vegas is different from

all the other implementation in its behavior during

congestion avoidance. It does not use the loss of

segment to signal that there is congestion. It determines

congestion by a decrease in sending rate as compared to

the expected rate, as result of large queues building up

in the routers.

 Modified Slow-start: TCP Vegas differs from the

other algorithms during its slow-start phase. The reason

for this modification is that when a connection first

starts it has no idea of the available bandwidth and it is

possible that during exponential increase it over shoots

the bandwidth by a big amount and thus induces

congestion. To this end Vegas increases exponentially

only every other RTT, between that it calculates the

actual sending throughput to the expected and when the

difference goes above a certain threshold it exits slow

start and enters the congestion avoidance phase.

5 Simulation Parameters

Parameters Values

Simulator used NS2.3

No of Nodes 5,10,15,20

Simulation Time 190 sec

Traffic FTP

TCP Variants Reno,NewReno,

Vegas

Packet Size 512

Window Size 15

Routing Protocol AODV

Queue Size 50

6 Performance Metrics

6.1 Throughput: - It is defined as the ratio of the total

number of bits received by the destination to the total

simulation time. It is measured in bits per

second/Kbps/Packets per second.

 TP = received packets/simulation time (kbps)

6.2 End to End Delay: - It is defined as the time taken

for a packet to be transmitted across network from

source to destination. The lower the delay the better is

the performance.

6.3 Packet Delivery Ratio: - It is defined as the ratio

of the total number of packets received by the

destination node to the number of packets send by the

source node.

7 Simulation Results

In this section, we present the results of our ns-2

simulations of the three TCP variants namely Reno,

New Reno and Vegas under AODV routing protocol.

This wireless simulation has been done for 190

seconds.

 Fig1:No of Nodes vs Throughput

 In fig1, we compare the TCP variants on the basis of

Throughput and in the above graph we see that as the

number of nodes increases the Throughput decreases in

all the three TCP variants , but Vegas gives better

Throughput as compared to Reno and New Reno

 Fig2: No of Nodes vs PDR

464

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

In fig 2, the packet delivery ratio of Vegas increases as

the node density increases and the PDR of TCP Reno

and TCP New Reno decreases as the node density

increases.

 Fig3:No of Nodes vs Delay

Fig 3 prove the End to End Delay of TCP variants

namely Reno, New Reno and Vegas under different

node densities. From the experimented results the TCP

Vegas shows less delay than Reno and New Reno.

 Fig 4: Pause Time vs Throughput

Fig 4 shows Throughput of different TCP variants

under different Pause Time. It is observed that the TCP

Vegas gives better Throughput than other TCP variants.

Here the receiver receives maximum number of packets

because of less delay as shown in fig 3, so we can

conclude that here in TCP Vegas Throughput is better

than Reno and New Reno.

8 Conclusion
We have successfully evaluated the three TCP variants

using NS2 simulation tool in the Mobile Ad hoc

Networks. The results are more significant and

comparable. From the simulation results, we conclude

that TCP Vegas is much better than TCP Reno and

New Reno because the TCP Vegas provides good

Throughput than other two TCP variants and the packet

delivery ratio of Vegas is better than Reno and New

Reno.

9 Acknowledgement
We are very thankful to Mr. Rakesh Kumar Yadav (AP

CSE) SRM University Modinagar for their guidance ,

support , stimulating suggestions and encouragement

with the help of which we were able to complete our

research work.

10 References
[1] V. Jacobson. “Congestion Avoidance and

Control”.SIGCOMM Symposium no Communication

Architecture and protocols.IJCN, Vol (2) 1988.

[2]K.Fall, S.Floyd “Simulation Based Comparison of

Tahoe, Reno and SACK TCP” International Journal of

Advances in Engineering & Technology, Aug 2011.

[3] L.S.Brakmo, L.L. Peterson, “TCP Vegas: End to

End Congestion Avoidance on a Global Internet”, IEEE

Journal on Selected Areas in Communication, vol.

13[1995], (1465-1490).

[4] M. Jehan, Dr Radhamani and T KalaKumari

“VEGAS: Better Performance than other TCP

congestion control algorithms on MANETs”

international journal of computer Networks (IJCN),

Volume (3): Issue (2):2011.

[5] Vishnu Kumar Sharma and Dr Sarita Singh

Bhadauria “Performance Analysis on Mobile Agent

Based Congestion Control using AODV routing

protocol techniques with Hop by Hop algorithms for

MANET” International Journal of Ad hoc, Sensor &

Ubiquitous Computing (IJASUC) Vol.3, No.2, April

2012.

[6] Poonam Tomar and Shweta Yadav “Enhanced

Reliable TCP for congestion control with corruption

control in MANETs” Journal of Global Research in

Computer Science Volume 3, No. 4, April 2012.

[7] Prof. S.A. Jain, Mr. Abhishek Bande, Mr. Gaurav

Deshmukh, Mr. Yogesh Rade, Mr. Mahesh

Sandhanshiv “An Improvement In Congestion Control

Using Multipath Routing in Manet” International

Journal of Engineering Research and Applications

(IJERA) Vol. 2, Issue 3, May-Jun 2012,

[8] Mandakini Tayade and Sanjeev Sharma “Review

of different TCP variants in ah hoc networks” IJEST

ISSN: 0975-5462.

465

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

