
   

Continuous Integration Research Based on 

Docker 
 

Akarsha AP 
Department of Computer-science 

Dr.Ambedkar Institute of Technology 

Bangalore, Karnataka 

 
Abstract- The essential goal of the continuous integration is to 

maintain a strategic distance from the integration hell. To add 

the Continuous integration framework we have made 

utilization of a device called Docker which would bundle, ship 

and run any application, anyplace required. Docker is an open 

source which adjusts the new virtualization innovation. Docker 

made deployment less demanding to send and could be utilized 

as a part of most applications like puppet, ansible, chef. 

Additionally, Docker could be utilized when there are different 

committed backend servers for different parts due to which we 

can't without much of a scale up the Backend servers. Further 

there is no heap partaking in the backend frameworks. Since 

there are devoted backend servers, scaling up the environment 

is troublesome. Likewise when the assets can't be used 

productively. In this paper, we depict the Docker application 

and preferences in continuous integration. 

 

Keywords: Continuous Integration, Docker, Linux container, 

Virtualization, Mesos, Marathon, SVN, Jenkins 

 

I. INTRODUCTION 
 

Continuous integration is the word given out by Grady 

Booch in the year 1991, which will do the uniting of all 

working copy duplicates to shared store a few times in every 

day. The essential extent of CI is to dispose of the integration 

issues, insinuated as "integration hell"  
 

CI was meant to be used as a major aspect of blend of both 

computerized unit tests made through the carries on of test-

driven progression. At first it was pondered as running all 

unit tests and checking they all gone before concentrating on 

the mainline. This avoids one architect's work-in-headway 

breaking another planner's copy. If central, not completely 

complete components can be disabled before giving using 

highlight flips.  
 

Later elaborations of the thought displayed fbuild servers, 

which actually ran the unit tests once in a while or even after 

each present and report the results to the fashioners. Despite 

robotized unit tests, affiliations using CI frequently use a 

develop server to realize predictable techniques of applying 

quality control when all is said in done — little bits of effort, 

associated generally. Despite running the unit and 

integration tests, such strategies run additional static and 

component tests, measure and profile execution, concentrate 

and game plan documentation from the source code and 

empower manual QA frames. This constant use of worth 

control expects to upgrade the way of programming, and to 

lessen the time taken to pass on it, by supplanting the 

ordinary routine of applying quality control in the wake of 

completing all change. This is in a general sense the same to 

the principal considered joining more frequently to make 

integration less requesting, simply associated with QA 

frames.  

 

In the same vein, the demonstration of diligent transport 

further increases CI by guaranteeing the item observed the 

mainline is constantly in a state that can be sent to customers 

and makes the genuine game plan handle to a great degree 

quick.  

 To finish these destinations, ceaseless integration rely on 

upon the going with norms:  

 

• Keep the build done quickly  

• Maintain code repository  

• Test a clone of the generation environment  

• Every submit ought to be built  

• Automate the build  

• Make build self-testing  

• Make it simple to get the most recent deliverables  

• Everyone would see the aftereffect of the most 

recent form  

• Automate the deployment 

 

II. DOCKER SYSTEM TECHNOLOGY AND 

ARCHITECTURAL ADVANTAGES 

Docker is an open source wander released by dotCloud, a 

stage as an administration [PAAS], in the year 2013. Docker 

(Fig. 1) depends much upon Linux, as namespaces and 

cgroups, to ensure asset separation and group an application 

with its conditions. This packaging enables an application to 

continue running as anyone might expect for different Linux 

OS—supporting a level of transportability that could 

without quite a bit of a stretch move from a versatile PC to 

a creation server—paying little personality to Linux 

apportionment. The accommodation of use/organization 

was never guaranteed in light of the way that, Docker 

holders detach the application objectives from structure, we 

grasp that dependence perdition told David Messina 

 

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050443

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

396



   

 
Fig. 1 Deployment of Docker 

 

Inside a year, associations like Red Hat and Amazon 

included sponsorship for Docker. Exactly when Docker 

reported its 1.0 discharge in June 2014, the item had been 

downloaded 2.75 million times. Specialists say Docker's 

item is especially planned, getting in contact as more 

associations place assets into dispersed processing and in the 

midst of the flow DevOps says senior investigator at 451 

Research, Jay Lyman [1]  

Docker build has new course, COPY which ability to copy 

records and envelopes as-is from the manufacture setting. 

The Docker has ability to intrusion and non-stop running 

holders, that allow customers to recuperate CPU cycles 

which a compartment use for better resource booking. To the 

extent limit and record structures, they have included XFS 

reinforce and added the ability to make usage of a physical 

contraption. 
 

 
Fig 2. Difference between Docker and VM 

 

To achieve these destinations, Docker relies on upon the 

going with benchmarks:  

 

•Compatibility: Docker keeps running on real Linux 

conveyances, that incorporates Red Hat, Debian, Ubuntu, 

SuSE  

•Quality: It is solidified and tried for big business 

organizations  

•Interfaces: Docker accompanies module APIs for execution 

and document framework drivers  

•Extensibility: With boot2docker, there is a backing for non-

Linux OS, Mac OS X and Windows  

•Complete documentation: Quality documentation, mirror 

the most recent capacities and interfaces  

•Availability of business backing 

 

III. RELATED WORK 
 

"Docker gives composed customer interface. In like manner 

it gives ease. "Using Docker it is possible to develop 

progression and test circumstances for planners and get the 

chance to be productive without intruding with era systems" 

says, Tom Chernetsky [2]  

 

Late in 2014, Alex Polvi, CoreOS CEO presented the new 

holder meander called Rocket as a brief reaction to Docker's 

"in a general sense flawed" framework [2]. Docker's 

framework is not secure, it requires a focal Docker daemon. 

Notwithstanding the way that Rocket, depends on upon the 

systemd daemon to make a holder. Docker engage any 

application to be sent as a conservative, free, lightweight 

holder that will keep running in every practical sense 

wherever. By going on the twin insurances "Build Once Run 

Anyplace" and "Orchestrate One time and run anything," 

Docker has seen progression, and its effect is being seen 

over devops, scale-out, mutt cloud, PaaS and diverse 

circumstances that require a lightweight unmistakable 

alternative for standard virtualization [3]. 

The containers believed is seen taking after the start of 

UNIX with chroot summon. Solaris has a thought called 

Zones while Parallels, Google, and Docker have been 

working in open-source wanders as OpenVZ and LXC 

(Linux Containers) to make containers work securely [1].  

 

Google has open-source, holder development lmctfy (Let 

Me Contain That for You). When we use some of Google 

helpfulness — Search, Google Docs, Gmail it suggests we 

issued another compartment [1].  

 

Containerized applications share a run of the mill OS bit, 

removing the necessity for each event to continue running 

isolated separate OS. An application could be passed on in 

seconds and by using less resources than the hypervisor-

based virtualization (Fig. 2). Regardless of the way that, the 

applications rely on upon a commonplace OS piece, system 

can work only for applications that share the clear OS 

variation.  

 

Virtualization has been executed in the server farm, 

empowering IT change and serving as the mystery behind 

distributed computing.  

 

VM hypervisors, for example, Hyper-V, Xen, and KVM, all 

"depend on imitating virtual equipment which means they're 

fat as far as framework requirements."[1] Containers utilizes 

shared OS by which they are a great deal more productive 

than hypervisors in asset terms. That is, we can "leave the 

futile 99.9% VM garbage, and we will be left with a little, 

slick container containing your application says, James 

Bottomley [1]. Likewise, with a flawlessly tuned 

compartment framework, we can have four-to-six times the 

quantity of server application examples as you can utilizing 

KVM or XEN VMs on the same hardware. 

 

Docker is built on top of LXC. Like any holder innovation, 

it has its own particular CPU, RAM, record framework, 

stockpiling, et cetera. The contrast amongst containers and 

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050443

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

397



   

the VM is that while the hypervisor conceptual complete 

gadget, containers simply theoretical the OS portion. 

Additionally, if various duplicates of the same application is 

required then we have to change to containers.  

 

Docker made containers more secure and less demanding to 

convey and utilize. Additionally, engineers could utilize 

Docker to pack, ship, and run any application since it is 

compact, lightweight, independent compartment that can 

run anyplace basically.  

 

Like GitHub animated cooperation, development by making 

source code shareable, Docker Hub, Official Repos and 

business backing is helping undertakings acknowledge this 

test and along these lines by enhancing the way they pack, 

convey and oversee applications says, Jay Lyman. 

Docker containers are easy to convey in cloud, "Docker is 

planned such that it could be utilized into most DevOps 

applications, similar to Chef, Vagrant, Puppet, and Ansible, 

or it could be utilized all alone to oversee improvement 

situations" says, Ben Lloyd Pearson[4]  

 

In particular, Docker makes it conceivable to set up live 

server and run numerous advancement situations from the 

same host and have one of a kind programming, OS, test 

ventures and arrangements, and permit to take a shot at same 

task with precisely same settings, paying little mind to 

neighborhood host environment.  

 

Basically, Docker can get more applications running on 

same equipment and makes it simple for designer to make, 

prepared to-run applications; likewise it oversees and send 

applications.  

 

Docker is utilized as an establishment for build-and-

discharge pipelines because of the way that it offers 

immense advantages around institutionalization. "Docker 

gives the best and effortlessly oversaw device for bundling 

and sending administrations." says, Brian McCallister [3] 
 

IV. OBJECTIVES 
 

1) Implementing server Jobs for Installation ask for taking 

care of in view of the heap server agents choose the Backend 

to be utilized to perform the given assignment  

 

Accepting servers will be arranged to utilize stockpiling for 

bundles, undertakings, logs and Common Component 

History set up  

 

One devoted Backend for distributed and for compose 

status, all other Backend servers will go about as read-as it 

were  
 

All cron occupations, for example, check stage, gatherer 

build, compose radiators...etc. running in devoted Backend 

will be designed to keep running from server ( expert ), 

implies no activities will be activated from the committed 

Backend servers.  

 

Backend servers will be arranged as slaves. When the 

activity activated from the principle server, expert will save 

the accessible Backend balm to run the activity. No. of 

agents will be made in light of each Backend server asset 

limit. 

2) Linux Containers are outlined with required arrangement 

of administrations that keep running in negligible asset setup 

and is entirely occurrence subordinate activities (Dockers)  

 

Docker compartment with center, web and required 

programming to run activity just backend which will be 

utilized to distribute bundles from the builds bundles will be 

mounted to Docker holder properties will have knowledge 

to save a labs and begin a compartment with a particular port 

no activity will be done in Docker compartment and logs 

will be gotten in server/Backend logs to troubleshoot if there 

should be an occurrence of issues, additionally labeling will 

be done as a piece of post activity compartment will be 

discharged once the activity is done and results will be 

redesigned in server no. of parallel runs by means of 

containers can be controlled 

 

V. DESIGN 

 

Mesos uses a two-level booking instrument (Fig.3) where 

assets offers are made to frameworks (applications that 

continue running on top of Mesos). The Mesos expert center 

picks what number of assets to offer each framework, while 

each system chooses the assets it recognizes and what 

application to execute on those assets. This technique for 

asset assignment allows close perfect data area when sharing 

a gathering of center points amongst various frameworks. 

Mesos is gathered using the same benchmarks as the Linux 

portion, exactly at a substitute level of reflection. The Mesos 

portion continues running on every machine and gives 

applications (e.g., Hadoop, Spark) with API's for asset 

administration and arranging across over entire server farm 

and cloud environment. 

 
Fig. 3 Mesos Architecture 

 

Example of Mesos resource allocation (Fig. 4): 

Slave 1 reports to the expert that it has 4 CPUs and 4 GB of 

memory free. The expert then conjures the designation 

approach module, which lets it know that system 1 ought to 

be offered every single accessible asset.  

 

The expert sends an asset offer depicting what is accessible 

on slave 1 to structure 1.  
 

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050443

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

398



   

The structure's scheduler answers to the expert with data 

around two assignments to keep running on the slave, 

utilizing <2 CPUs, 1 GB RAM> for the main undertaking, 

and <1 CPUs, 2 GB RAM> for the second errand.  

 

At long last, the expert sends the undertakings to the slave, 

which allots proper assets to the structure's agent, which 

thusly dispatches the two errands (portrayed with dabbed 

line fringes in the figure). Since 1 CPU and 1 GB of RAM 

are still unallocated, the allotment module may now offer 

them to system 2.  

 

Likewise, this asset offer procedure rehashes when 

undertakings complete and new assets turn out to be free.  
 

While the slender interface gave by Mesos permits it to scale 

and permits the systems to develop freely, one inquiry 

remains: by what method can the imperatives of a structure 

be fulfilled without Mesos thinking about these 

requirements? For instance, in what manner can a system 

accomplish information territory without Mesos knowing 

which hubs store the information required by the structure? 

Mesos answers these inquiries by essentially giving systems 

the capacity to reject offers. A system will dismiss the offers 

that don't fulfill its limitations and acknowledge the ones that 

do. Specifically, we have found that a straightforward 

approach called delay planning, in which systems sit tight 

temporarily to get hubs putting away the information, yields 

almost ideal information region. 
 

 

 
Fig. 4: Example of Mesos resource allocation 

 

Further, ZooKeeper (Fig. 5) licenses passed on systems to 

arrange with each other through a typical different leveled 

name space of data registers (we call these registers znodes), 

much like a report structure. Not in any way like run of the 

mill record structures has ZooKeeper given its clients high 

throughput, low idleness, exceptionally available, totally 

asked for access to the znodes. The execution parts of 

ZooKeeper license it to be used as a piece of broad scattered 

structures. The trustworthiness perspectives keep it from 

transforming into the single motivation behind 

disillusionment in colossal systems. Its strict asking for 

grants propelled synchronization primitives to be executed 

at the client. 

 

 
Fig 5: Zookeeper Service 

 

The name space gave by ZooKeeper is much similar to that 

of a standard record framework. A name is a progression of 

way parts detached by a cut ("/"). Each znode in Zookeeper's 

name space is recognized by away. Likewise, every znode 

has a watchman whose way is a prefix of the znode with one 

less part; the exception to this standard is root ("/") which 

has no gatekeeper. In like manner, accurately like standard 

report frameworks, a znode can't be deleted if it has any 

children.  
 

The major differentiations amidst ZooKeeper and standard 

record frameworks are that each znode can have data 

associated with it (every report can moreover be a list and a 

different way) are limited to the measure of data that they 

can have. ZooKeeper was planned to store coordination 

data: status information, course of action, zone information, 

et cetera. This kind of meta-information is commonly 

measured in kilobytes, if not bytes. ZooKeeper has a natural 

once-over to ensure everything appears to be alright of 1M, 

to keep it from being used as a tremendous data store, 

however when all is said in done it is used to store much 

more diminutive bits of data. The organization itself is 

rehashed over a course of action of machines that include the 

organization. These machines keep up an in-memory photo 

of the data tree close by a trade logs and reviews in a steady 

store. Since the data is kept in-memory, ZooKeeper can get 

high throughput and low dormancy numbers. The 

disadvantage to an in-memory database is that the degree of 

the database that ZooKeeper can administer is compelled by 

memory. This limitation is further inspiration to keep the 

measure of data set away in znodes little.  

 

The servers that make up the ZooKeeper administration if 

all consider each other. For whatever period of time that a 

bigger part of the servers are available, the ZooKeeper 

administration will be open. Clients simply connect with a 

single ZooKeeper server. If the TCP relationship with the 

server breaks, the client will interface with a substitute 

server. Exactly when a client first takes up with the 

ZooKeeper organization, the primary ZooKeeper server will 

setup a session for the client. In case the client needs to 

interface with another server, this session will get 

reestablished with the new server. 

Scrutinized requests sent by a ZooKeeper client are taken 

care of locally at the ZooKeeper server to which the client is 

related. If the read request enlists a watch on a znode, that 

watch is also taken after locally at the ZooKeeper server. 

Make requesting are sent to other ZooKeeper servers and 

experience accord before a response is created. Thusly, the 

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050443

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

399



   

throughput of read requesting scales with the amount of 

servers and the throughput of create sales reduces with the 

amount of servers.  
 

Solicitation is fundamental to ZooKeeper; for all intents and 

purposes skirting on obsessive–compulsive issue. All 

updates are totally asked. ZooKeeper truly stamps each 

overhaul with a number that mirrors this solicitation. We call 

this number the zxid (ZooKeeper Transaction Id). Each 

overhaul will have an exceptional zxid. Scrutinizes (and 

watches) are asked for concerning upgrades. Examined 

responses will be stamped with the last zxid arranged by the 

server that organizations the read.  

 

Marathon keeps running on top of Apache Mesos together 

with the Chronos framework. For this situation, Marathon is 

the main framework to be propelled and it keeps running 

nearby Mesos. As such, the Marathon scheduler procedures 

were begun outside of Mesos utilizing init, upstart, or a 

comparative apparatus. Marathon dispatches two 

occurrences of the Chronos scheduler as a Marathon 

undertaking. On the off chance that both of the two Chronos 

undertakings kicks the bucket because of hidden slave 

crashes, power misfortune in the bunch, and so on. Marathon 

will re-begin a Chronos example on another slave. This 

methodology guarantees that two Chronos procedures are 

continually running. Since Chronos itself is a framework and 

gets Mesos asset offers, it can begin assignments on Mesos. 

In the utilization case appeared in Fig. 6 Chronos is at 

present running two assignments. One dumps a creation 

MySQL database to S3, while another sends an email 

bulletin to all clients by means of Rake. 
 

 
Fig. 6 Marathon runs on Mesos and Chronos 

 

In the meantime, Marathon likewise runs alternate 

applications that make up our site, for example, JBoss 

servers, a Jetty administration, Sinatra, Rails, etc. Fig. 7 

demonstrates the general design graph for the execution of 

Docker. 

 
Fig.7 Overall Architecture 

 
 

VI. CONCLUSION 
 

Through this examination work we find that each backend 

holder can be considered as a backend server committed to 

perform the undertakings. Mesos/Marathon API's will 

handle the compartment demand and discharge – 

lightweight twist inquiries should be possible. Load 

adjusting is effectively overseen. Further, assets can be used 

proficiently. Future study might be done in light of the way 

that Docker could be utilized with cloud innovation and 

huge information investigation. 

 

ACKNOWLEDGMENTS 

This paper is supported by Nokia networks R&D Center, 

Bangalore and Dr. Ambedkar Institute of Technology, 

Bangalore  

REFERENCES 
 

[1] http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-

popular/ 
[2] Wikipedia.org 

[3] http://www.zdnet.com/article/docker-an-open-source-startup-you-

need-to-know-about/ 
[4]  www.opensource.com 

[5] R.P. Goldberg, “Survey of Virtual Machine Research,” Computer, 

June 1974, pp.34-45. 
[6] Xavier M G, Neves M V, Rossi F D,et al.”Performance evaluation of 

container-based virtualization for high performance computing 

environments[C]//Parallel, Distributed and Network-Based 
Processing (PDP), 2013 21st Euromicro International Conference on. 

IEEE, 2013: 233-240 

[7] A Vouk M. “Cloud computing�issues, research and 

implementations” [J]. CIT. Journal of Computing and Information 

Technology, 2008, 16(4): 235-246.  

[8] Kratzke N. “Lightweight Virtualization Cluster How to Overcome 
Cloud Vendor Lock-In “[J]. Journal of Computer and 

communications, 2014, 2(12): 1. 

Vol. 5 Issue 05, May-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS050443

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

400


