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Abstract-- This study uses the Hamilton method to derive the < .

equation of motion of a flexible aircraft. The purpose is to .

design a robust controller using the H,, and the loo-shaping fi(’ A\

methods. The u method is used to analyze the system and the L2

v — gap, to compare the controllers.

Index Terms--Flexible aircraft, H,, algorithm, loop-shaping,

u-analysis, v — gap. ‘\
7 b
INTRODUCTION v/
Modeling the motion of a flexible aircraft is more complex than p / T
the case of a rigid aircraft. The flexibility of the structure increases — -
the number of the parameters of the equations of motion. The v

components of the state vector are intensified, and it is
complicating the design of an efficient controller for the system. -
In this article, only the longitudinal flight of a flexible airplane will

be developed.
Fig. 1. Flexible aircraft model.

1. EQUATIONS OF MOTION

; . For the flexible aircraft showed in the Fig 1, the equations of
The function of Lagrange is defined by:

energy are:
L=T-U @) &
And the Hamiltonian function is defined by: T = % m(uz v Wz)
H=p'q-L )
p
Where q represents the generalized coordinates, T is the kinetic 1 13 .
. . o +=[p a rli]q +*2Mi77i2
energy, U is the potential energy and p is given by: 2 r 243
oL (5)
b= oq ®) Ue:%za)iznziMi
i=1
The equations of the motion of the system is given by the ‘
Hamilton canonic equations: u, = [mg sing —sing cos® —cosg cosd] y
. oH z
q=—
op
(4) . i :
. oH 0 [u v w[ : Velocities vector;
p=—-——F1—+
aq [p g r] : Angular velocities vector;
Where Q is the generalized force applied on the system. m: Vehicle mass;
g: Gravity acceleration;
7n;: The generalized displacement coordinates of the ith vibration
mode;
w;: The undamped natural frequency of the ith vibration mode;
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M;: The respective generalized mass of the ith vibration mode;

I lyys 1 © The moments of inertia;

Ixy: 1y, : The xp and yz inertial product;

Xy
¢, 0: The roll and the pitch angle;
Ue: Elastic potential energy;

Ug: Elastic potential energy.

Then the function of Lagrange:

n

1 1 P 1
L:Em(u2+v2+w2)+5[p g rfi]q +EZMi;'1iZ—
r

i=1

| NG
%Zwlzqz.Mi—[mgsine —sing cos® —cosg cosh]y
i=1 7
And the Hamiltonian function:
) . R AP
H =mux+mvy+mwz—5m(u +Vi+ W )+
p
1 13 .2
Sleoa D+ o2 M
r = (7)

X

+%Zwi2nz.Mi+[mgsin9 —sing cos® —cos¢ cosf]y
i=1

z

With the Hamilton canonic equations, the longitudinal equation of
motionis given by:
m[u —rv +qw+ gsin 8]= X

m[W—qu + pv—gcosgcosd]=Z

QIyy—(pIxy+r'IyZ)+(Ixx—Izz)pr 8
2 2 (8)

+(pl,, —rl g+ (p"-r)l,=M

5 2 _Qi

77i+a)i77i—M

Where: X, ¥, Z The longitudinal force, the normal force and the
pitching moment;

2. SYSTEM DESCRIPTIONS AND MODELING
With some assumption in the parameters and for one vibration

mode, the resulting of state-space model for linear control

synthesis is given by:

TR R B P X, X,
u o o 3 _U_ o
o| |20z o 4oz 4| o
U, U, U, U, U, U, U,
0 ¢ 51 (9
= 0 0 0 1 0 0 + 0 0
0 . q 0] )
Al MM 0 M My MM
0 0 0 0 0 1 0 0
L7] L7
ot 0 T ol 1] |0 T |

xI = [u a6 0=qy ;’7] : The state vector;
[(5, O ]T : Thrust and elevator commands;

Uy : Equilibrium longitudinal velocity;

Qi

IT : Short notation for the derivative of ;
i

X,Z,M : The derivative notation of X, Z and M

3. SYNTHESIS
3.1. H,, synthesis
The problem when designing a controller is to find a controller

K for a system P (Fig 2) that generates a signal u considering the
information from y to mitigate the effect of w on z. In fact, the
controller is synthesized while minimizing the closed loop norm

w to z.
[R(PK), <

|F(P.K)|, : The lower linear fractional transformation of P and

(10)

K, transfer function from w to z;

y : A fixed real number.

P(s)

K(s)

Fig. 2. Standard interconnection for the H,, synthesis.
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3.2. Loop shaping synthesis

Loop shaping procedure shaped the nominal plant using a pre-
compensator Wi and/or a post-compensator W». The controller
is synthesized with minimizing the norm of the McFarlan and

Glover stability margin, such that:

‘[gw}ﬂ-raKwyiﬂgl 1

<g (11)

0

Where Ps =W5PW, and ¢ an optimal stability margin;

P, =M ;1N1 is the coprime factor of P;.

The final feedback controller is:

K =W1 chuWZ (12)
4, u-ANALYSIS
M is defined as a transfer function form, w to z:

M =F(P.K) (13)

The structured singular value of a matrix M is defined as:

1
Ha= mir{;(d): det(l —AM)zo]

o denoted the upper singular value and 4 a set of uncertainty.

(14)

The closed-loop system achieves the nominal performance if

only if:

sups(Mpp)<1 (15)

The closed-loop system achieves the robust stability if, only if:

sup s(Myg) <1 (16)

The closed-loop system achieves the robust performance if, only

if:

supu,(M)<1 (16)

5. V- GAP
The v— gap metric is defined by the quantification of the
distance between any two processes in terms of similarity of

behavior when connected to a closed loop.

0

et

T

oot e [

—T_
Ny
and wnode {MJ

5,(G1.G;)= 17

1otherwise

G =NM;t= Mf l|\~li : The normalized right (left) coprime
factorizations of the plants no denoted the winding number.

6. SIMULATION
The large high-speed is adopted as the simulation object. The
singular value plot of the system is shown in Fig 3. The peak
value is 80 dB at 0.356 rad/s, it is the necessary to design a
controller to stabilize the system.
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Fig. 3. Diagram of the singular value

Controllers are synthesis with the open-loop bock shown in fig
4. The system is perturbed by an additive uncertainty. The
objectives of the design are to maintain stability and
performance in presence of a bounded uncertainty.

The weights are selected to maximize disturbance rejection, and
minimize wind gust effect and a sensor noise.

125
s+10

W1=1,5i,W2
3s+10
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With:
7 7 d
dy =s® +1178s% +30755+2968
Wy w; Iy =2,346.10° s3 +0,0283%% +0,5625 - 0,0010%
lp =-2,541.10° s> -0,35485% -6,9775-0,2226
+ @ * l,; =-1,099.10° s%-8,814.10° 52 -0,00018 - 2,992.10°
K G
. v " . l,, =1,253.10° s°+0,000110%2 +0,002254+0,000433¢
lg; =-3,9.10° s® -0,00040082 - 0,0075665 -0,00217€
Fig. 4. Close-loop system with additive uncertainty. Iy, = -3,934.10° s3+0,004978% +0,093515+0,02911
The two controllers are obtained: 9 3 )
I =-2,964.10° s*-6,189.10° s -0,001215- 0,00106€
e H_controller:
- . I, =2,307.10° s3+0,000767%% +0,0148%+0,01324
Py by
d, dj The v— gap of the two controller is:
Moy Py 5,(Ky ,K( )=0,0024
K. —| dn dn
HT e h It mean that the two controller are close.
Mg Ny
dy, dj The close-loop matrix for the u -analysis (Fig 5) is :
LUTRL) M | ~W2KS WKS
L dy dy S| -ws WS
With: Where S = [1+ GK]—l'
dy, =s%+1,41s? +0,48385+0,04285 M
hy; =1,947.10 s° -2,89.10° 52 +9,614.10 s+1,91.10’
d
hy, = -2,345.10° s* +0,0003394 -6,505.10° 5-1,925.10° P “
r 7
hy = -1,029.10' s* +5,663.10° s? - 7,473.10'° 5-7,442.10" " ¢
hy, = 4,165.10° 5% -6,775.10% s? +7,231.10° s +7,78.10%°
hey =4,492.10° s° +1,598.10" s> +4,066.10° s+1,987.1¢° K

he, = 1,33.10% s%-1,773.10° s? - 4,542.10" 5-2,234.10°

Fig. 5. Close-loop matrix for u -analysis.
hy = 8,759.10' s®-1,615.10° 5% +4,456.10° s+3,662.10'°
The frequency range of the analysis is [10™%; 10*] rad/s.

hyy = -4,752.10° s +1,983.10" s? - 4,543.1C° 5- 3,889.10° bt Stabilty: 8.5,V of it
0.03 FFWR F FFYRFFRE ¥ FY IR
. — inf[mu(MllH)]
e  Loop shaping controller: 0oss — suplmuv1,)] ||
_ _ ’ i} \ e infmMU(M11, ]
Ill IlZ 0.02 ——— sup[mu(M11, o] ||
= £ " N |
/f
dl dl g o0.015 - w’ \
I 12 N \
d d 0.01
KL — | | | | A \ ’\l\
31 32 0.005 S
d d N ~.
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L i Fig. 6.u-plot for robust stabilityanalysis
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TABLE 1 RESULTS OF ROBUST STABILITY ANALYSIS

Close- wp(rad max[u(M;4)] Guaranteed of stability
loop /sec)
Ky 0,1804 0,0165
1Al < 0,0165
Kip 1.5167 0.0260 1
18l < 55260

The peak value of u(M,,) is less than one for each case of close-
loop (Table 1, Fig 6). This implies that for all perturbations,

1Al < —
stability is large for theH,,algorithm.

Nominal performance: S.S.V of M22
0.01 i

1\; )the stability is guaranteed. The guaranteed
11
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i — N MU(M22, )]
0.009 i r \ .
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Fig. 7.u-plot for nominal performance analysis

TABLE 2 RESULTS OF NOMINAL PERFORMANCE

ANALYSIS
Close-loop Wy, (rad/sec) max[p(M,,)]
Ky 0,1804 0,0097
K.p 0,0001 0,0070

The peak value of u(M,,) is less than one for each case of close-
loop (Table 2, Fig 7). This implies that for all perturbations,
nominal performance was achieved. However the performance
specification is better for the close-loop with loop shaping

algorithm.

Robust performance: S.S.V of M
0.035 i

Tf T FEFPFFRE F F FEFFE
inﬂmu(MF)]
0.03 s SUP[MU(M, )]
int{mu(MLp)]
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Figure 6 u-plot for robust stability analysis

TABLE 2 RESULTS OF ROBUST STABILITY ANALYSIS

Close- Wy (rad | max[u(M)] Guaranteed of
loop /sec) stability
Ky 0, 1804 0, 0262
1Al < 0,0262
K. 1,5167 0,0307
1Al < 0.0307

The peak value of u(M) is less than one for each case of close-
loop (Table 3, Fig &8). This
L
u(M)

implies that for all

perturbations, ||Al|, < the performance is guaranteed. The

guaranteed performance is large for the H,, algorithm.

7. CONCLUSION
The large high speed is instable. However, the two controllers
designs, H,, and loop shaping guarantee a robust stability, and a
nominal and robust performance. The two controllers are close
in reference of the v — gap.
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