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Abstract-- This study uses the Hamilton method to derive the 

equation of motion of a flexible aircraft. The purpose is to 

design a robust controller using the 𝑯∞ and the loo-shaping 

methods. The 𝝁 method is used to analyze the system and the 

𝝂 – gap, to compare the controllers. 

 

Index Terms--Flexible aircraft, 𝑯∞ algorithm, loop-shaping, 

𝝁-analysis, 𝝂 – gap.  
 

INTRODUCTION 

Modeling the motion of a flexible aircraft is more complex than 

the case of a rigid aircraft. The flexibility of the structure increases 

the number of the parameters of the equations of motion. The 

components of the state vector are intensified, and it is 

complicating the design of an efficient controller for the system.  

In this article, only the longitudinal flight of a flexible airplane will 

be developed. 
 

1. EQUATIONS OF MOTION 

The function of Lagrange is defined by: 

𝐋 = 𝐓 − 𝐔 (1) 

And the Hamiltonian function is defined by: 

𝐇 = 𝐩𝐓𝐪̇ − 𝐋 (2) 

Where q  represents the generalized coordinates, T is the kinetic 

energy, U is the potential energy and p is given by: 
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The equations of the motion of the system is given by the 

Hamilton canonic equations: 
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Where Q is the generalized force applied on the system. 

 

Fig. 1. Flexible aircraft model. 

For the flexible aircraft showed in the Fig 1, the equations of 

energy are: 
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 Τwvu : Velocities vector; 

 Τrqp : Angular velocities vector; 

m: Vehicle mass; 

g: Gravity acceleration; 

𝜂𝑖: The generalized displacement coordinates of the ith vibration 

mode; 

𝜔𝑖: The undamped natural frequency of the ith vibration mode; 
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𝑀𝑖: The respective generalized mass of the ith vibration mode; 

zzyyxx I,I,I : The moments of inertia; 

yzxy II , : The xy and yz inertial product; 

𝜙, 𝜃: The roll and the pitch angle; 

Ue: Elastic potential energy; 

Ug: Elastic potential energy. 

 

Then the function of Lagrange: 
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(6) 

And the Hamiltonian function: 

 

  

 














































z

y

x

θcos cosθcos sinθsinmgMηω
2

1

ηM
2

1

r

q

p

 Irqp
2

1

wvum
2

1
zmwymvxmu

n

1i

ii
22

i

n

1i

2

ii

222





H

 

(7) 

With the Hamilton canonic equations, the longitudinal equation of 

motionis given by: 
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(8) 

Where: X,Y,Z The longitudinal force, the normal force and the 

pitching moment; 

2. SYSTEM DESCRIPTIONS AND MODELING 

With some assumption in the parameters and for one vibration 

mode, the resulting of state-space model for linear control 

synthesis is given by: 
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(9

) 

 

 η  η  qθ  θ  αu  xΤ    : The state vector; 

 ΤEτ δδ : Thrust and elevator commands; 

0U : Equilibrium longitudinal velocity; 


 : Short notation for the derivative of 

iM

iQ
; 


M,Z,X : The derivative notation of X, Z and M 

 

3. SYNTHESIS 

3.1. 𝐻∞ synthesis 

The problem  when designing a controller  is to find a controller 

K for a system P (Fig 2) that generates a signal u considering the 

information from y to mitigate the effect of w on z. In fact, the 

controller is synthesized while minimizing the closed loop norm 

w to z. 

  γKP,Fl 
  (10) 

 


KP,Fl : The lower linear fractional transformation of P and 

K, transfer function from w to z; 

γ : A fixed real number. 

 

 

Fig. 2. Standard interconnection for the 𝑯∞ synthesis. 
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3.2. Loop shaping synthesis 

Loop shaping procedure shaped the nominal plant using a pre-

compensator W1 and/or a post-compensator W2. The controller 

is synthesized with minimizing the norm of the McFarlan and 

Glover stability margin, such that: 

  11
s

1
s εMKPI

K
I 














 ~
 (11) 

Where 12s PWWP   and ε  an optimal stability margin; 

1
-1
ss NMP

~~
 is the coprime factor of sP . 

The final feedback controller is: 

21 WKWK   (12) 

 

4. 𝜇-ANALYSIS 

M is defined as a transfer function form, w to z: 

 KP,FM 1  (13) 

 The structured singular value of a matrix M is defined as: 

    0ΔMIdet:Δσmin

1
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  (14) 

σ denoted the upper singular value and Δ  a set of uncertainty. 

The closed-loop system achieves the nominal performance if 

only if: 

  1Mμ sup 22Δ   (15) 

The closed-loop system achieves the robust stability if, only if: 

  1Mμ sup 11Δ   (16) 

The closed-loop system achieves the robust performance if, only 

if: 

  1Mμ sup Δ   (16) 

5. 𝝂 – GAP 

The ν – gap metric is defined by the quantification of the 

distance between any two processes in terms of similarity of 

behavior when connected to a closed loop. 
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i
1

i
1

iii NMMNG
~~   : The normalized right (left) coprime 

factorizations of the plants no denoted the winding number. 

6. SIMULATION 

The large high-speed is adopted as the simulation object. The 

singular value plot of the system is shown in Fig 3. The peak 

value is 80 dB at 0.356 rad/s, it is the necessary to design a 

controller to stabilize the system. 

 

Fig. 3. Diagram of the singular value 

 

Controllers are synthesis with the open-loop bock shown in fig 

4. The system is perturbed by an additive uncertainty. The 

objectives of the design are to maintain stability and 

performance in presence of a bounded uncertainty. 

The weights are selected to maximize disturbance rejection, and 

minimize wind gust effect and a sensor noise. 
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Fig. 4. Close-loop system with additive uncertainty. 

The two controllers are obtained: 

• 𝑯∞controller: 
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-6-6 2 3-6
12 1,925.10 -  s6,505.10 - s0,0003394 + s2,345.10-  h   

-11-102-93-10
21 7,442.10 -  s7,473.10 -  s5,663.10 +  s1,029.10-   h   

-10-92-83-10
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-10-92-83-10
41 3,662.10 +  s4,456.10 +  s1,615.10 -  s8,759.10  h   

-9-82-73-9
42 3,889.10 -  s4,543.10 -  s1,983.10 +  s4,752.10-  h   

• Loop shaping controller: 
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The ν – gap of the two controller is: 

  0,0024K,Kδ LHν   

It mean that the two controller are close. 

The close-loop matrix for the μ -analysis (Fig 5) is : 
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Fig. 5. Close-loop matrix for μ -analysis. 

The frequency range of the analysis is [10−4; 104] rad/s. 

 

Fig. 6.𝜇-plot for robust stabilityanalysis 
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TABLE 1 RESULTS OF ROBUST STABILITY ANALYSIS 

Close-

loop 

𝜔𝑚(𝑟𝑎𝑑

/𝑠𝑒𝑐) 

max[𝜇(𝑀11)] Guaranteed of stability 

𝐾𝐻 0,1804 0,0165 
‖∆‖∞ <

1

0,0165
 

𝐾𝐿𝑃 1.5167 0.0260 
‖∆‖∞ <

1

0.0260
 

 

The peak value of 𝜇(𝑀11) is less than one for each case of close-

loop (Table 1, Fig 6). This implies that for all perturbations, 

‖∆‖∞ <
1

𝜇(𝑀11)
the stability is guaranteed. The guaranteed 

stability is large for the𝐻∞algorithm. 

 

Fig. 7.𝜇-plot for nominal performance analysis 
 

TABLE 2 RESULTS OF NOMINAL PERFORMANCE 

ANALYSIS 
Close-loop 𝜔𝑚(𝑟𝑎𝑑/𝑠𝑒𝑐) max[𝜇(𝑀22)] 

𝐾𝐻 0,1804 0,0097 

𝐾𝐿𝑃 0,0001 0,0070 

 

The peak value of 𝜇(𝑀22) is less than one for each case of close-

loop (Table 2, Fig 7). This implies that for all perturbations, 

nominal performance was achieved. However the performance 

specification is better for the close-loop with loop shaping 

algorithm. 

 

Figure 6 𝜇-plot for robust stability analysis 

 

TABLE 2 RESULTS OF ROBUST STABILITY ANALYSIS 

Close-

loop 

𝜔𝑚(𝑟𝑎𝑑

/𝑠𝑒𝑐) 

max[𝜇(𝑀)] Guaranteed of 

stability 

𝐾𝐻 0, 1804 0, 0262 
‖∆‖∞ <

1

0, 0262
 

𝐾𝐿𝑃 1,5167 0,0307 
‖∆‖∞ <

1

0,0307
 

The peak value of 𝜇(𝑀) is less than one for each case of close-

loop (Table 3, Fig 8). This implies that for all 

perturbations,‖∆‖∞ <
1

𝜇(𝑀)
 the performance is guaranteed. The 

guaranteed performance is large for the 𝐻∞ algorithm. 
 

7. CONCLUSION 

The large high speed is instable. However, the two controllers 

designs, 𝐻∞ and loop shaping guarantee a robust stability, and a 

nominal and robust performance. The two controllers are close 

in reference of the 𝜈 – gap. 
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