

Controller Load Balancing in Software-Defined

Networking
Genetu Y. Basena

 Department of Computer Science and Systems

Engineering, Andhra University

Vishakhapatnam, Andhra Pradesh, India

Prof. P V G D Prasad Reddy
 Department of Computer Science and Systems

Engineering, Andhra University

Vishakhapatnam, Andhra Pradesh, India

Abstract- In cloud environment, handling users’ service

requests and providing the requested resources fairly is a

decisive challenging. The Load balancing is important to fairly

allocate service requests to unloaded server dynamically

maintain uniform load distribution in server farms. In

conventional IP networks, maintaining a load balancing is an

obstinate and unadaptable task due to lack of global topology

view by the forwarding devices. However, SDN provides

centralized decision making for any topological changes in

minimum time fractions. To address the aforementioned

challenge, we proposed a new server side load balancing

strategy that allows efficient and effective server management

scheme for the SDN OpenFlow networks. Experimental results

conducted on Ryu controller and Mininet emulator depicted

increased performance compared to the existing mechanisms.

Keywords – SDN, Control plane, OpenFlow, Load Balancing,

Ryu, Mininet.

I. INTRODUCTION

The rapid growth of Internet and the services hosted on

it, the computing platforms which are dynamically

expandable and virtualized such as Servers, data storages,

software, and networking are available online has greatly

simplified the innovation and research activities in the field

of IT [1]. The cloud provides server storage and computing

resources online to use on on-demand bases for the end

users. Users acquire those services from the distributed

servers located on different data centers. The Computing

system hardware and software resources, mainly the

computing power and data storage are obtainable on-

demand, without the end users local administration and

management. Users can keep their data and files on clouds

rather than saving them on hard drives for effective access

from anywhere connected to the Internet. The cloud

predominantly divided into two layers, the frontend which

provides interface to interact their stored data using software

applications. The backend contains software and hardware

components such as computing powers, central servers,

database and storages. In some cases middleware software

interconnects the frontend and backend for unified access.

Figure 1. Cloud computing architecture

1.1 Software Defined Network

SDN is an innovative model that simplifies the network

management and control by providing the low level

functional abstractions [2]. It allows the network

administrators to quickly respond to any change evolving

changes due to topological or policy requirements [3]. In

SDN, unlike the traditional networking, performance and

functionality changes are managed and controlled through

software programs residing in controllers rather than

individual devices being configured by the administrator.

The SDN architecture has two main planes. The control plan

which is accountable for data transmitted over the entire

network. It has all the needed software logics programed

inside the server known as the controller. The data plane is

mainly responsible for data forwarding. It contains network

devices such as switches and routers. The two planes interact

through an OpenFlow which is a standard protocol

implemented for SDN systems communication [4].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS100061
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 10, October-2022

144

www.ijert.org
www.ijert.org
www.ijert.org

Figure 2. The SDN architecture

SDN architecture is shown in Fig. 2. (a) Shows a layered

architecture having the forwarding plan, the control plane,

and the application plane. Network application layer

comprises the programs such as load balancer, firewall, and

security apps and so on. The forwarding plane involves

virtual and physical devices which run traffic forwarding

rules implemented using the OpenFlow protocol. The control

layer consists of centralizing control plain used for

communication with below layer of sdn known as

infrastructure layer using OpenFlow protocol which uses

southbound API.

Table 1. Difference between traditional network and SDN network

Conventional IP networking Software Defined Networking

Statically configured per devices

and strict networks, not convenient

for custom applications.

Easily programmable and adaptive

networks during application

development as well as on the
production times whenever business

requirements are changed.

Operates using proprietary protocols Operates through APIs, customizable
as per users need

Hardware devices Virtual devices customized by users

via open software tools.

Decisions made per device bases
through the distributed control plane

Logically centralized control plane

Figure 3. OpenFlow architecture

Figure 4. Conventional Vs. SDN networks

The remainder of the paper is arranged as

follows. Related literature works are presented in

section II. The suggested Load balancing model

is detailed in section III. Section IV will present

the experimental results. Finally section V

presents the concluding remarks.

II. RELATED WORKS

This section briefly discusses the latest research works

conducted in the area of SDN based Load balancing.

Guoyan Li et. al in [5], proposed a particle swarm

optimizations approach using network queuing model in

order to analyze the propagation delay. To implement this

method, they used Breadth First algorithm to search best

paths to implement load balancing. Their study formulated

the Intra and Inter domain communication overhead cost

estimation approach. Authors in [6] have presented a

dynamic load balancer optimization approach using a swarm

optimization algorithm (SOA). Their study shown better

approach optimized the number of switches to be connected

with a controller for better load balancing. Results also

showed minimized latency and deployment costs. Xai Xue et

al. [7] presented an approach known Ant-Colony

Optimization technique augmented with the Genetic

Algorithm (GA) to implement an optimized Load balancer.

Their study addressed network resource overloading problem

and obtained improved path selection method for routing

purposes. S. Kaur et al. [8] presented a server load handling

mechanism that implemented load balancer using the Round

Robin (RR) approach in POX controller and OpenFlow

vSwitches. They obtained better performance results

compared with randomized Load balancing algorithm.

Tkachava et al. [9] discussed a Centralization management

and control of traffic distribution among multiple network

paths having better throughput utilization. Their approach

was tested on small sized network and provided better load

distribution on data forwarding devices. Tiago Oliveira et al.

[10] presented a dynamic load balancing strategy that

allocates video traffic request in multi-servers system. They

achieved a flexible approach to deliver high capacity quality

of service needs required in telecommunication industries to

maintaining users’ quality of experience to address the QoS

issues. Sushma Sathyanarayana et al. [11] proposed an Ant-

colony optimization combined with dynamic server load

balancing approach to choose the best path which has

smaller delay and better throughput. Kannan Govindarajan et

al. [12] presented a novel load balancing technique

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS100061
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 10, October-2022

145

www.ijert.org
www.ijert.org
www.ijert.org

implemented using a particle swarm optimizations approach.

The deployed technique revealed minimum average response

time performance. Yao Chung Chang et al. [13] presented

bacteria inspired network algorithm combined with genetic

algorithm to send large traffic volume using paths with larger

bandwidth.

Figure 5. Proposed systems architecture

II. PROPOSED MODEL

This section describes the essential components of our

network load balancing application design which is followed

by load adjustment mechanism. Usually, when a new packet

arrives to a switch port, It checks out its flow table entries

with the address information inside the packet header. Incase

if a match fails, then the switch sends a PACKET_IN

message to the SDN controller expecting routing

information. Then, the controller forwards PACKET_OUT

message to the switches to install the flow information.

Otherwise, the switch forwards the packet to next hop.

Similarly, all switches connected in the SDN network will

follow the above procedure till the packet reaches its final

destination.

In this study, we designed an SDN networks as undirected

Graph G which is consists of a controller C={C1}, M

switches S={S1, S2, S3,…, SM}, K servers D={D1, D2, D3,

…, DK} and N hosts H={H1, H2, H3, …, HN}.

The Servers provide the same services for clients’ request.

The presented system model suggests an improved version of

load balancing strategy that can be used in the SDN

controller and the openFlow switches. The switches store

traffic information in their flow table, the controller analyses

the network statistics and the information is constantly

updated for load adjustments.

3.1 Measurring Server load

In our design, we calculate the network latency at equal time

interval, T. Let’s assume Ax and By to designate the xth

switch and the yth time interval respectively. We assume

Tarrive shows the PACKET_IN message time of arrival and

Treply indicates time interval until we get PACKET_OUT

message from the controller. Hence, latency is defined as,

 Tresponce = Treply - Tarrive (1)

3.2 Measuring system Threshold

To find the overloaded server and load imbalance existence

on the network, a constant threshold value is important.

When the server load is higher than the threshold value it is

highly possible for network unbalance due to longer time

needed to settle the massive network traffic.

3.3. Proposed algorithm

__

Algorithm 1: Proposed Algorithm to select least loaded

server.

__

Input: Set of flows through switches F={f1, f2, f3,..., fn}

 Set of links connecting servers L= {l1, l2, l3, ..., lm}

 Set of connected servers S={s1, s2, s3, ..., sn}

Output: an Optimal server Smin is selected for the pool.

begin:

while packet (i) is generated by clients do

 foreach flow fi Ɛ F do

 if flow size (fi) > Thershold Ts

 foreach S Ɛ Sn do

 if L(s) < Lmin then

 Lmin = L(s)

 Smin = S

 end

 else

 Select server using WRR scheme //least loaded

server (Smin) using weighted RR

 end

end

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS100061
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 10, October-2022

146

www.ijert.org
www.ijert.org
www.ijert.org

IV. SYSTEM IMPLIMENTATION

In this study, we implement a new load balancing algorithm

in SDN network topology shown in Figure 5. above and

study performances in terms of server response time and

throughput. The load balancing experimentation is conducted

on the software and hardware specified in Table 1 and Table

2 respectively. The algorithm and network topology were

scripted using Python programming language that is

Python3. The Mininet emulator is connected with a Ryu

controller at port number 6633.

Experimental Setup

The subsequent software and hardware components are used

to perform this experiment. In Table 1 provides the list of the

software with description.

Table 2. Software specifications

Table 3. Hardware specifications

V. RESULT AND DISCUSSIONS

This section discusses the results obtained by simulating

the load balancing algorithms in SDN. We used Ryu as

controller and the Mininet emulator. The performance of the

load balancing algorithms is compared using the two

performance measurement parameters, the average response

time and throughput. which are defined as follows.

Throughput: Is a performance measurement criteria that

measures the amount of packets transmitted successfully in

any given period of time. Average Response Time: Is a

performance measurement parameter which calculates the

total time taken to respond for clients’ request during a given

time period divided by the responses made by server.

The HTTP protocol server Load testing tool is utilized to test

the load balancing algorithms performance. The Throughput

and Response time data were collected from the tool and

tabulated as shown in the Table 3.

Table 3. Comparison of Average response time and

Throughput for different Load balancing algorithms

Figure 6 shows results obtained to analyze the average

response time collected by varying the number of clients for

each Load balancing algorithms in the experiment. It is

perceived that as the number of clients increases, the average

response time becomes higher in every algorithm. Though the

extent of the variation differs per each algorithm. The

performance of our proposed algorithm shows minimum

average response time result compared to the others.

Figure 6. Comparison of response time for different Load balancing

Algorithms by varying the size of clients.

Figure 7. depicts the throughput performance of the three load

balancing algorithms evaluated by varying the number of

clients generating the HTTP GET request using curl

command in Linux system. The proposed algorithm performs

better than Randomized load balancing algorithm. However,

as networked clients size increases the throughput slightly

decreases. The weighted Round Robin algorithm shown

better throughput value compared to the three Load balancing

mechanisms.

Figure 7. Comparison of Throughput for different Load balancing

Algorithms by varying the size of clients.

Software Version

Ubuntu 20.04

Ryu controller 4.32

Mininet 2.3.0d6

Open vSwitches 2.13.0

iperf 2.0.13

Virtual Box 6.1

Wireshark 3..2.3

RESTer 4.1.1

Hardware Version/capacity

CPU/Processor Intel(R) Core(TM) i7-8550U CPU @

1.80GHz 1.99 GHz

Memory (RAM) 8 GB

Hard Disk 1 TB

Load balancing Algorithms

Performance Metrics

Average response

time (sec.)

Throughput

(MB/sec)

Proposed algorithm 1.15 0.389

Weighted Round Robin (RR) 1.41 0.364

Least connection 2.12 0.340

Random 2.48 0.350

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS100061
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 10, October-2022

147

www.ijert.org
www.ijert.org
www.ijert.org

V. CONCLUSION

Dealing with SDN based load distribution issues among the

available servers is easy and efficient compared to the

conventional load balancers. The experimental study

conducted to measure the throughput and average response

time performances of Load balancing algorithms by changing

the number of clients requesting services on the network. In

this venture, our proposed load balancing scheme shown a

minimum response time compared to the other load balancing

algorithms. We also observed the Weighted Round Robing

scheme has higher throughput than the other algorithms. The

main limitation of the experimentation is that it is not

conducted using hardware setups. We used Ryu controller

and Mininet emulator as the testing tools. The proposed

algorithm delivered smooth traffic flow between clients and

servers without impairments.

REFERENCES

[1] Al Nuaimi, K., Mohamed, N., Al Nuaimi, M., Al-Jaroodi, J.: A survey
of load balancing in cloud computing: challenges and algorithms, pp.
137–142 (2012)

[2] Zhang, H., Guo, X.: SDN-based load balancing strategy for server
cluster. In: 2014 IEEE 3rd International Conference on Cloud
Computing and Intelligence Systems (2014)

[3] Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using

openflow: a survey. IEEE Commun. Surv. Tutor. 16(1), 493–512
(2014)

[4] J. Ali and B. H. Roh, “An effective hierarchical control plane for

software-defined networks leveraging TOPSIS for end-to-end QoS
class-mapping,” IEEE Access, vol. 8, pp. 88990–89006, 2020.

[5] Li G, Wang X, Zhang Z. SDN – based load balancing scheme for
multicontroller deployment”. IEEE Access 2019

[6] Ateya AA, Muthanm A, Vybornova A, et al. Chaotic Salp swarm

algorithm for SDN multi-controller networks. Eng Sci Technol. 2019.

[7] Xue X, Kim KT. Dynamic load balancing of software – defined
networking based on genetic Ant colony optimization. Sensors. 2019.

[8] Kaur S, Singh J, Kumar K. Round Robin based load balancing in

softwaredefined networking. 2nd international conference on
computing for sustainable global development IEEE 2015

[9] Tkachova O, Chinaobi U, Yahya Ar. A load balancing algorithm for
SDN. Sch J Eng Technol. 2016.

[10] Oliveira T, Sargento S. QoE – based load balancing of OTT video

content in SDN networks. Symposium on computers and
communications (ISCC). IEEE; 2019.

[11] Sathyanarayava S, Moh M. Joint route – server load balancing in
software defined networks using ant colony optimization. IEEE. 2016.

[12] Govindarajan K, Kumar VS. An intelligent load balancer for software
defined networking (SDN) based cloud infrastructure. IEEE; 2017.

 [13] Yao CC, Wei X-C, Jin WJ. Bacteria inspired communication

mechanism based on software defined network. 27th Wireless and
optical communications conference (WOCC 2018). IEEE 2018

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS100061
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 10, October-2022

148

www.ijert.org
www.ijert.org
www.ijert.org

