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Abstract 

Artificial Neural Networks are known for non linear 

mappings of complex systems. However these are 

static mapping tools in the sense that the knowledge 

update is based on static data provided for training 

the network. Simple recurrent neural networks (SRN) 

such as the one proposed by Elman have the capacity 

of dynamic learning, but are found to possess 

severely hampered learning capabilities due to  

convergence problems. A novel way of overcoming 

the problem of convergence is proposed through this 

paper by using a Hybrid Recurrent Neural Network 

modelled from an Artificial Neural Network (ANN) 

possessing similar architecture. 

 

Keywords:  Elman networks (ENs), extended 

Elman networks, backpropagation, RNN 

convergence, hybrid RNN (HRNN). 

1. Introduction: 

Artificial Neural Networks (ANN) is a field of 

machine learning which in a way represents, to a 

large extent, the human style of learning. The study 

of ANN is inspired by the working principles of the 

human brain and by the way in which a human brain 

is able to process a large data by way of parallel 

processing and is able to retrieve the data at will [1]. 

Fundamentally, an ANN network does not need any 

knowledge of the process that it is trying to model, as 

it learns on the basis of the examples or the 

experimental data being supplied to it during training 

[2, 3]. It is exactly because of this advantage that a 

tool such as ANN is preferred over other prediction 

tools, such as statistical or numerical methods [3].  

Artificial Neural Networks are thus mathematical 

models representing the gathering and processing 

data in a way similar to the human brain [4-7]. The 

neural network’s ability to carry out the computations 

relating the inputs and outputs is inspired by the 

massive parallel and distributed processing of 

biological neurons. Neural Networks (NN) are able to 

perform complex mappings of input and output 

elements. When properly trained, ANN nicely 

generalizes the input output relationship by 

understanding the underlying relationship functions 

between input and output parameters, even from a 

limited data set. There are a variety of ANN 

architectures available, but the literature [8, 9] 

suggests that the ones which are being widely used 

are the supervised learning Feed Forward Neural 

Networks (FFNN). In FFNN the output of each 

neuron in a layer is passed on to each neuron in the 

subsequent layer, through connections called as 

synaptic weights. The knowledge of mapping is 

stored in the network in the form of these weights. 

The network is fed with the input vectors and the 

target output vectors one by one. The network 

calculates the output from the input data and in case 

of supervised learning this is compared with the 

target output. The error in the output is used to update 

the weights. 
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There are a lot of learning algorithms proposed in 

the studies on Neural Networks, but the one which is 

used most widely is the back propagation algorithm 

[1, 4, 8, 9, 10]. When the error is propagated 

backwards in the network, after each set of inputs is 

presented to the network, this algorithm uses the 

gradient descent approach in minimizing the Mean 

Squared Error (MSE) on the MSE weight planes and 

adjusts the connection weights accordingly, thus 

making the network learn.  The entire set of inputs is 

presented (epoch) to the network again and again till 

the MSE reduces to some predetermined value. The 

training time and the number of epochs required to 

train the network depend upon, the number of hidden 

layers in the MLP, the number of neurons in each 

layer, learning rate parameter and  momentum factor. 

There is no authentic information as to determine the 

number of hidden layers required for formulating a 

FFNN. One hidden layer is good enough to map most 

of the input output relationships, but more complex 

mappings are better achieved with two hidden layers 

[11]. Similarly there is no formula or relationship to 

fix the number of neurons in each hidden layer and 

this is done by trial and error [4, 11].  

In general a FFNN would look like the network 

shown in Fig: 1. The inputs from i
th

 layer (xi) are fed 

to the neurons in the first hidden (j
th

) layer. Each 

neuron in this layer receives the inputs from each 

neuron in the input layer through a weighted 

connection (wji). In the neuron the weighted sum of 

inputs Σwjixi is calculated. The activation function to 

be used has to be continuous so that back propagation 

algorithm can be used. The reason of using a 

activation function is to limit the output of the 

neurons within a pre set range. The activation 

function most often used is the sigmoid function 

which is continuous, monotonic non decreasing and 

nonlinear which is as follow 

                                                      (1) 

In the recent past quite a few Recurrent Neural 

Network (RNN) architectures have been studied [12-

16]. Recurrent networks are neural networks with one 

or more feedback loops, in which the loops may be 

local or global. RNN can be divided into two broad 

categories depending on whether the states of the 

network are guaranteed and observable or not. 

Observable state is one in which the state of the 

network can be derived by observing only the inputs 

and outputs [12]. A model which falls into this class 

was proposed by Narendra and Parthasarathy [17] 

and had time delayed outputs as well as inputs fed to 

a Multi Layer Perceptron (MLP) which computed the 

output using the recent state dynamics.  However, 

network having hidden dynamic states are not 

observable [12].  Single layered and multi layered 

recurrent networks are being extensively studied in 

recent times. A typical single layered RNN was the 

one proposed by Elman in 1990 [14]. In this network, 

the hidden layer is copied in a virtual or context layer 

and the feedback is given back to the same layer 

along with the next set of inputs in the next time step 

as seen in Fig: 2. The Elman network can be 

extended for a multilayered network with the 

temporal context layer providing feedback at each 

subsequent time step. Such a network is shown in 

Fig: 3. The convergence of a Simple Elman 

Recurrent Neural Network (SRN) has been 

established. The computational power of Elman 

networks is as good as that of finite state machines 

(FSM) [18]. In addition any network having 

additional layers between input and output layer than 

Elman network, possesses the same FSM power. The 

convergence of RNN has been active subject of 

research in machine learning. An extended back 

propagation algorithm for Elman networks reported a 

better convergence, faster training and better 

generalization [19]. In this algorithm, use is made of 

adaptive learning scheme coupled with adaptive dead 

zone to improve convergence speed.  

In this paper we try to develop a novel way of 

improving the convergence of Elman (SRN) using 

the borrowed weights of a partially trained FFNN 

into an Elman network with single hidden layer or an 

extended Elman network having more than one 

hidden and context layer. The paper further highlights 

the fact that the recurrent neural network so 

formulated performs the task of predictions of 

outputs from a given set of inputs comparable to that 

performed by the fully trained FFNN, from which the 

weights were borrowed to formulate the RNN, 

together with better convergence.  
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Fig1. Schematic diagram of FFNN 

. 

 Fig2. A simple RNN 

 

Fig3. An extended simple RNN 

 

 

2. Data Generation: 

The data for the ANN and proposed RNN has 

been taken from the work of M. A. Herbert [20]. The 

work dealt with study of microstructural details and 

mechanical properties of Al-4.5Cu-5TiB2 composite 

when rolled from mushy state in as cast and in pre 

hot rolled condition. The data is presented in Table: 

1. 

Two ANNs have been trained. The first ANN 

predicts small and large grain sizes (μm) from four 

inputs namely, Material type (as cast or pre hot 

rolled), % thickness reduction during rolling, % 

liquid volume fraction which determines the mushy 

state condition during rolling initiation and % TiB2 

(wt %) in the composite. ANNs were formulated 

using different values of learning rate parameter (η) 

and momentum factor (α). The FFNNs with 

architectures 4-7-4-2 and 4-9-9-2 with η = 0.85 and α 

= 0.65 were found to converge to a MSE of 

0.000362612 after 15 lakh epochs and 0.00017 after 

277356 epochs respectively. 

The second ANN predicts hardness of the 

composite (Hv) as output from five parameters 

provided as inputs. The input parameters were 

Material type, % thickness reduction, % liquid 

volume fraction, large grain size and small grain size. 

The ANN with 5-5-3-1 architecture and 5-9-6-1 

architectures were trained with η = 0.85 and α = 0.65 

and converged nicely to a MSE of 9.75*10
-5 

after 

325000 epochs and a MSE of 9.8774*10
-5- 

after 

345000 epochs. 

3. RNN Modeling: 

Elman Simple Recurrent Network (SRN) was 

modeled for Grain sizes as well as hardness 

predictions. The SRN with two context layers were 

tried with two hidden layer and with different 

combinations of number of neurons in each layer for 

different combinations of η and α. The networks 

failed to converge for a variety of combinations 

mentioned above. The SRN with Elman architecture 

uses a context layer that contains the same number of 

neurons as that in the hidden layer. The output of 

each hidden neuron which is being copied in the 

context layer will contain neurons with exciting as 

Input Layer 

Output Layer 

Virtual Layer 1 

Copy made 

at each 

time step 

Hidden Layer 2 

Hidden Layer 1 

Virtual Layer 2 

Input Layer 

Output Layer 

Virtual Layer 

Copy made 

at each time 

step 
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Input 
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well as inhibiting signals. These neurons then pass on 

the signals through weighted connections to each 

neuron in the current hidden layer in the next time 

step along with the signals these neurons in the 

current hidden layer receive from the neurons in the 

previous layer.   Due to this, the previously excited 

neuron or the neuron which otherwise would have 

received a consistent excited signal from previous 

layer neurons may get inhibiting signals from the 

context layer neurons or vice versa. This probably, 

does not allow the network to progressively move 

along the path of negative gradient on the MSE 

weight plane. Such a phenomenon is likely to cause a 

oscillatory profile on the MSE synaptic 

Table1. Experimental data of Al-4.5Cu Alloy and Al-4.5Cu-5TiB2 composite rolled from mushy state 

in as cast and pre hot rolled condition [21]. 

 
weight plane, which is exactly witnessed while 

training the simple Elman recurrent network. 

In order to overcome this shortcoming, various 

strategies discussed hereunder were tried; 

 

a. The networks with single hidden layer were 

trained for the same architectures mentioned 

earlier with different combinations of η and 

α. During training, it was observed that the 

Specimen 

Descriptions 

Liquid 

Volume 

Fraction 

As cast Al-4.5Cu-

5TiB2 Composite 

samples subjected 

to mushy state 

rolling 

Pre hot rolled 

Composite samples 

subjected to mushy 

state rolling 

 

Grain sizes of Al-4.5Cu 

alloy samples subjected 

to mushy state rolling 

  
Grain size ( μm ) Grain size ( μm) Grain size ( μm) 

Large Small Large Small Large Small 

As cast  50 ± 8 52 ± 15  

 As rolled 

28 ± 9  

As rolled 

44 ± 6 

2.5% 

thickness 

reduction 

f
l 
~ 0.1 62 ± 14 27 ± 12 43 ± 16 27 ± 13   

f
l 
~ 0.2 58 ± 18 33 ± 11 42 ± 18 26 ± 11   

f
l 
~ 0.3 66 ± 15 37 ± 10 47 ± 20 25 ± 11 329 ± 204 158 ± 91 

5% 

thickness 

reduction 

f
l 
~ 0.1 54 ± 16 25 ± 9 42 ± 16 26 ± 11   

f
l 
~ 0.2 51 ± 11 31 ± 10 41 ± 15 25 ± 12   

f
l 
~ 0.3 55 ± 14 32 ± 10 46 ± 17 24 ± 11 363 ± 225 157 ± 86 

7.5% 

thickness 

reduction 

f
l 
~ 0.1 62 ± 20 32 ± 13 40 ± 15 26 ± 10   

f
l 
~ 0.2 48 ± 19 26 ± 12 39 ± 15 25 ± 11   

f
l 
~ 0.3 53 ± 18 27 ± 13 45 ± 17 24 ± 09 383 ± 222 158 ± 98 

10% thickness 

reduction 

f
l 
~ 0.1 49 ± 17 29 ± 11 47 ± 18 32 ± 13 351 ± 218 194 ± 96 

f
l 
~ 0.2 47 ± 14 30 ± 12 43 ± 16 25 ± 11 325 ± 217 176 ± 103 

f
l 
~ 0.3 54 ± 12 26 ± 11 45 ± 16 27 ± 12 357± 217 155 ± 87 
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network does not converge. Initially during 

training it learns nicely. But as the training 

progresses, the network starts oscillating 

randomly. Further it is observed that the 

oscillations decrease and the network stops 

learning and MSE reaches a value much 

higher than the pre set value which in our 

case is selected as 0.0001, thus indicating 

that the network has not been able to map 

the input output pattern. 

b. The network model was slightly changed 

now, with the neurons in the hidden layer 

giving feedback only to itself. The networks 

were modeled for each of the case with 

similar architectures discussed at (a) above 

with different combinations of η and α. It 

was observed that the networks still oscillate 

during training and fail to converge to the 

pre-set value, but a better convergence is 

seen as indicated by slightly lower MSE 

indicating that learning capability of the 

network has slightly improved. But the 

convergence obtained is nowhere near the 

pre-set value of MSE. Hence, this strategy, 

though could not be discarded totally, was 

found to be ineffective. 

c. In the modified model stated at (b) above, 

the weight vectors of a partially trained 

ANN with similar architecture were 

borrowed. The ANN network is partially 

trained till a steep negative gradient is 

identified on the MSE weights plane 

indicating the downward movement of 

MSE. The SNN is then modeled with similar 

architecture as that of partially trained ANN. 

The weight vectors of the SNN from input 

layer to hidden layer 1, hidden layer1 to 

hidden layer 2 and from hidden layer 2 to 

output layer are replaced by the 

corresponding weight vectors of partially 

trained ANN. The biases for different layers 

except the context layers of the SNN are 

also replaced by the corresponding biases 

from the partially trained ANN. The weight 

vectors from the context layer neurons to 

hidden layer neurons (each neuron to itself) 

is taken as a zero vector (unbiased) and so 

also the biases to these neurons in context 

layer are kept as zero. Once the architecture 

is finalized this way, the network is trained. 

Upon training with the same values of η and 

α as that used for partially trained ANN, the 

SNN so formulated is found to converge 

excellently. The convergences of SNNs so 

modeled are found to perform better as 

compared to the parent ANNs from which 

these have been modeled. The performance 

of the SNNs modeled from the parent ANNs 

is demonstrated using the following cases. 

We have named this SNN as Hybrid RNN 

(HRNN). 

3.1. Modeling of Hybrid RNN for Grain size  

prediction: 

3.1.1 HRNN with 4-7-4-2 architecture: 

The Elman RNN network selected has 4 input 

neurons, 7 neurons in hidden layer 1, 4 in hidden 

layer2 and 2 output neurons. The network was trained 

with learning rate parameter as 0.85 and momentum 

factor 0.65.  Initially the network is trained as an 

ANN network. Table: 2 gives the details of the error 

in prediction in terms of MSE existing at various 

stages of network training. The ANN network 

converges to a MSE of 0.000362612 after 15 lakh 

epochs. To obtain the HRNN the ANN is now trained 

till 50000 epochs. The weights of this ANN are then 

borrowed in the input weights file for RNN training. 

The network is found to oscillate after it reaches a 

MSE of 0.00205. This happens, probably due to the 

fact that the ANN training up to 50000 epochs has 

not provided sufficient gradient descent on the MSE 

weights plane for the Hybrid RNN to further travel in 

the direction of negative gradient. 

Further to this, the ANN was trained up to 100000 

epochs and the weights were borrowed in the input 

weights file for RNN training. The results were better 

than the first case, but the convergence was found to 

be slow. After training for150000 epochs, the MSE is 

found to be 0.0013. Hence in the next step the ANN 

is trained for 500000 epochs and subsequently, the 

weights are borrowed in the input file for RNN 

training. It was found that after training for around 

227000 epochs, the network converged satisfactorily.  
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3.1.2 HRNN with 4-9-9-2 architecture: 

Here the network is selected with 4 input neurons, 

9 neurons each in second and third layer and 2 output 

neurons. Here the number of input patterns is taken as 

240, just to emphasize that the number of input 

vectors has no great bearing on the convergence of 

Hybrid RNN. The ANN network is first trained until 

50000 epochs and then hybrid RNN is constructed by 

borrowing weights of trained ANN. The network is 

further trained for 85000 epochs as it gave the same 

MSE as that of parent ANN when trained to 277356 

epochs. 

 

Table 2: Variation of MSE with number of 

epochs 

Sr. 

No. 

Number of 

epochs 

MSE 

1 1 0.329771 

2 100000 0.00467185 

3 200000 0.002215 

4 300000 0.00153321 

5 400000 0.0014147 

6 500000 0.00129209 

7 600000 0.00105979 

8 700000 0.000684544 

9 800000 0.00056784 

10 1500000 0.000362612 

3.1.2  Modeling of Hybrid RNN for 

Hardness prediction: 

In a manner similar to the Hybrid RNN 

formulated for Grain size prediction, Hybrid RNN is 

constructed for Hardness as will be discussed in 

forthcoming sections.  

3.2.1 HRNN with 5-5-3-1 architecture: 

Initially, the ANN for hardness prediction was 

trained with architecture of 5 input neurons, 5 and 3 

neurons in hidden layer1 and 2 respectively and one 

output neuron. The network is trained to achieve a 

MSE of 09.75*10
-5 

after 325000 epochs. The Hybrid 

RNN was constructed after training the above ANN 

for 50000 epochs in the same fashion as discussed 

earlier for grain size prediction. After around 200000 

epochs, the hybrid RNN gave the same MSE as 

parent ANN. 

3.2.2  HRNN with 5-9-6-1 architecture: 

Hybrid RNN is constructed from ANN having 

architecture as input layer 1: 5 neurons, Layer 2: 9 

neurons, Layer 3: 6 neurons, Output: 1 neuron. The 

Hybrid RNN was formulated after just 5000 epochs, 

when a steep downward trend was observed in MSE 

at a rapid pace. The Hybrid RNN gave a MSE of 

9.8774*10
-5- 

after 124000 epochs while to obtain the 

same value of MSE 345000 epochs were required for 

training the ANN. 

4. Results and Discussions: 

4.1. Grain Size Predictions: 

4.1.1 HRNN with 4-7-4-2 architecture: 

The results of the predictions and the comparison 

between the ANN network after 15 lakh epochs and 

HRNN after 2.24 lakh epochs is present in Table: 3 

below.  

It is seen that the maximum error is |0.58| % at 

5% thickness reduction with 10% liquid volume 

fraction in the as cast composite for small grain size, 

while for large grain size it is also at the same 

location. However in the majority of the cases, the 

error with hybrid RNN is within |0.5|%. The HRNN 

is modelled after borrowing the weights from 

partially trained ANN after 5 lakh epochs. Further, 

the HRNN converged nicely to a MSE of 

0.000362612. Thus to achieve the same degree of 

convergence HRNN has consumed 776000 lesser 

epochs as compared to that of parent ANN, thus 

giving a saving of more than 50% of computational 

time. Furthermore, the error in predictions too is quite 

insignificant in comparison with the parent ANN 

predictions for the same data.  

4.1.2 HRNN with 4-9-9-2 architecture: 

The comparison of predictions between the parent 

ANN and Hybrid RNN is given in Table: 4 below for 

a MSE of 0.0001762 achieved by parent ANN after 

being trained using 277356 epochs. The HRNN was 

trained with 240 patterns to emphasize that the data 

set available for training has no much bearing on the 

implementation of the model. The total number of 

epochs of HRNN coupled with partially trained ANN 

works out to 135000 epochs, thus giving a saving in 

computation time in excess of 50%. It can be seen 

that the error in estimation with hybrid RNN with 

respect to Parent ANN is within 6%, while in 

majority of the cases the error is within 1%. 
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4.2 HRNN for Hardness predictions: 

In a manner similar to the Hybrid RNN 

formulated for Grain size prediction, Hybrid RNN is 

constructed for Hardness predictions.  

4.2.1 HRNN with 5-5-3-1 architecture: 

Initially, the ANN for hardness prediction was 

trained with architecture of 5 input neurons, 5 and 3 

neurons in hidden layer1 and 2 respectively and one 

output neuron. The network was trained to achieve a 

MSE of 09.75*10
-5 

after 325000 epochs. . The Hybrid 

RNN was then constructed after training the above 

parent ANN for 50000 epochs in the same fashion as 

discussed earlier for grain size prediction. After 

around 200000 epochs, the hybrid RNN gave the 

same MSE. The comparison of the predictions done 

by the parent ANN and the HRNN for hardness 

prediction with 5-5-3-1 architecture is presented in 

Table: 5. It can be seen that the error in estimation 

lies between |2.5%|, while the computational time is 

saved by 23%. It can also be seen that in majority of 

the cases, the error is within|1%|. Fig: 4 shows the 

graph of comparison   of      variation     of    hardness 

predicted by ANN and Hybrid RNN for as cast Al-

4.5Cu-5TiB2 composite when rolled from mushy 

state with various liquid volume fractions at the 

initiation of rolling with 5-5-3-1 architecture. It can 

be seen from the graph that the plots for predictions 

with ANN and that with Hybrid RNN follow each 

other very closely. Maximum deviation is observed in 

case of predictions at 30% liquid volume fraction in 

the vicinity of 5% thickness reduction. Fig: 5 shows 

the plot of comparison of variation of hardness as 

predicted by ANN and Hybrid RNN with 5-5-3-1 

architecture when Al-4.5Cu-5TiB2 composite in pre 

hot rolled condition is rolled from mushy state at 

various thickness reductions. The rolling is initiated 

at mushy state corresponding to 10%, 20% and 30% 

liquid volume fractions respectively. It can be seen 

from Fig: 5 that the plots for predictions with ANN 

and hybrid RNN are almost identical indicating that 

the learning has been adequate and that both the 

networks have generalized quite nicely.  

4.2.2 HRNN with 5-9-6-1 architecture: 

Hybrid RNN is constructed from ANN having 

architecture as 5 neurons in input layer,  9 neurons  in 

Layer 2, 6 neurons in Layer 3, 1 neuron in Output 

layer for hardness . The network was formulated after 

just 5000 epochs, when the down trend was observed 

in MSE at a rapid pace. The Hybrid RNN gave a 

MSE of 9.8774*10
-5 

after 124000 epochs while to 

obtain the same MSE, 345000 epochs of ANN were 

required. Table: 6 gives the relative performance in 

prediction of hardness with HRNN with the parent 
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Fig4: Plot showing comparison of ANN and 

Hybrid RNN for hardness prediction 

when as cast Al-4.5Cu-5TiB2 composite 

is rolled from mushy state with various 

thickness reductions 
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Fig5: Plot showing comparison of ANN and 

Hybrid RNN for hardness prediction 

when pre hot rolled Al -4.5Cu-5TiB2 

composite is rolled from mushy state 

with various thickness reductions 
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Table3. Comparison of grain sizes by ANN Hybrid RNN after 2.24 lakh epochs of HRNN and 15 

lakh epochs of ANN 

  Input output 

        Grain Sizes 

Sr. No. 

Mat / 

Process % TR
* 

%LVF
** 

large 
% 

Difference 

over ANN  

Small 
 % 

Difference 

over ANN  ANN RNN ANN RNN 

1 1 2.5 10 61.218 61.101 0.190139 28.124 28.037 0.307209 

2 1 2.5 20 58.339 58.323 0.026569 33.370 33.364 0.018879 

3 1 2.5 30 66.012 65.976 0.054232 36.223 36.2 0.064047 

4 1 5 10 54.532 54.235 0.54335 23.870 23.732 0.578546 

5 1 5 20 50.537 50.525 0.023745 28.842 28.841 0.004854 

6 1 5 30 55.643 56.666 -1.83923 29.867 29.86 0.024776 

7 1 7.5 10 61.727 61.623 0.168968 31.654 31.586 0.21482 

8 1 7.5 20 47.586 47.582 0.007986 26.494 26.497 -0.01057 

9 1 7.5 30 53.171 53.139 0.060559 27.758 27.751 0.022696 

10 1 10 10 48.363 48.361 0.004135 31.307 31.306 0.002236 

11 1 10 20 48.280 48.275 0.010149 28.316 28.318 -0.00671 

12 1 10 30 52.639 52.609 0.057751 27.881 27.875 0.020085 

13 2 2.5 10 43.255 43.218 0.085769 27.893 27.880 0.047323 

14 2 2.5 20 43.189 43.194 -0.01343 27.267 27.271 -0.0154 

15 2 2.5 30 47.313 47.305 0.018177 26.775 26.776 -0.00486 

16 2 5 10 41.217 41.203 0.032511 26.380 26.377 0.013267 

17 2 5 20 41.050 41.059 -0.02168 25.334 25.340 -0.02566 

18 2 5 30 44.999 44.990 0.021111 25.377 25.380 -0.01025 

19 2 7.5 10 41.790 41.793 -0.00885 26.301 26.305 -0.01369 

20 2 7.5 20 39.705 39.716 -0.0267 24.067 24.075 -0.03282 

21 2 7.5 30 44.711 44.701 0.022366 24.925 24.928 -0.01163 

22 2 10 10 46.251 46.255 -0.00757 30.492 30.494 -0.00394 

23 2 10 20 42.351 42.359 -0.01983 26.462 26.468 -0.02381 

24 2 10 30 45.599 45.588 0.025658 25.617 25.619 -0.00781 

% TR* - % Thickness Reduction      % LVF** - % liquid Volume Fraction 
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Table: 4 Comparison of grain size predicted by ANN & hybrid RNN after MSE = 0.0001762 

  Input Output 

        Grain Sizes 

Sr. No. 

Mat / 

Process 

% 

TR
* 

%LVF
** 

large 

% 

Difference 

over ANN  

Small  % 

Difference 

over 

ANN  ANN RNN ANN RNN 

1 1 2.5 10 54.1875 54.2067 -0.03543 29.5234 29.484 0.133453 

2 1 2.5 20 52.6612 52.6909 -0.0564 34.1046 34.0894 0.044569 

3 1 2.5 30 59.9039 59.9517 -0.07979 37.5049 37.7475 -0.64685 

4 1 5 10 51.05 51.0677 -0.03467 29.0427 29.0233 0.066798 

5 1 5 20 46.2683 45.6567 1.321855 30.6739 30.6757 -0.00587 

6 1 5 30 52.2429 52.2859 -0.08231 33.6145 31.3427 6.758393 

7 1 7.5 10 49.4019 49.4101 -0.0166 29.4733 29.4526 0.070233 

8 1 7.5 20 43.8056 43.8131 -0.01712 29.4299 29.4262 0.012572 

9 1 7.5 30 49.2255 49.2655 -0.08126 28.0999 28.3094 -0.74555 

10 1 10 10 49.0084 49.0092 -0.00163 30.5889 30.5638 0.082056 

11 1 10 20 43.7229 43.7293 -0.01464 29.9121 29.9042 0.026411 

12 1 10 30 49.1137 49.4527 -0.69024 27.3891 27.5708 -0.6634 

13 2 2.5 10 44.8487 44.8163 0.072243 24.5998 24.5705 0.119107 

14 2 2.5 20 42.8446 42.8538 -0.02147 26.5484 26.5529 -0.01695 

15 2 2.5 30 48.2753 48.3038 -0.05904 26.7442 26.9351 -0.7138 

16 2 5 10 43.5371 43.5299 0.016538 24.9919 24.9872 0.018806 

17 2 5 20 39.5439 39.5377 0.015679 25.133 25.1385 -0.02188 

18 2 5 30 43.6984 43.7249 -0.06064 24.7239 24.8992 -0.70903 

19 2 7.5 10 43.6721 43.6584 0.03137 26.2624 26.2512 0.042647 

20 2 7.5 20 38.8598 38.8544 0.013896 25.3776 25.3831 -0.02167 

21 2 7.5 30 42.8648 42.8592 0.013064 25.0421 25.0383 0.015174 

22 2 10 10 44.9272 44.9116 0.034723 28.1909 28.1709 0.070945 

23 2 10 20 40.3236 40.3147 0.022071 26.947 26.9414 0.020782 

24 2 10 30 44.3036 44.3185 -0.03363 26.6612 26.7723 -0.41671 

% TR* - % Thickness Reduction       % LVF** - % liquid Volume Fraction 

ANN with 5-9-6-1 architecture with same values of η 

= 0.85 and α = 0.65. We see that the error in 

estimation lies within |4%|, while the computation 

time using Hybrid RNN is saved by around 80%. 

 

4.3 Statistical Testing:  

In the statistical analysis carried out, three types 

of tests were conducted which are listed as under: 

1. To test equality of two means by using the 

two sample student_t test. 
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Table5. Comparison of ANN & hybrid RNN for hardness prediction using 5-5-3-1 

architecture 

  Input Output 
% 

DIFFERENCE 

OVER ANN 

VALUE 

Sr. 

No. 

Materia

l/ 

Process 

% TR
* 

%LVF
** 

Grain Sizes Hardness 

        large Small ANN RNN 

1 1 0 0 50 50 78.0613 77.9555 0.135535 

2 1 2.5 10 62 27 90.1529 89.3799 0.857432 

3 1 2.5 20 58 33 103.241 104.161 -0.89112 

4 1 2.5 30 66 37 86.037 86.7449 -0.82279 

5 1 5 10 54 25 101.248 100.237 0.998538 

6 1 5 20 51 31 111.916 111.436 0.428893 

7 1 5 30 55 32 99.031 96.5667 2.488413 

8 1 7.5 10 62 32 107.057 107.183 -0.11769 

9 1 7.5 20 48 26 116.601 116.431 0.145796 

10 1 7.5 30 53 27 102.854 102.386 0.455014 

11 1 10 10 49 29 115.604 114.982 0.538044 

12 1 10 20 47 30 121.807 120.859 0.77828 

13 1 10 30 54 26 107.18 107.595 -0.3872 

14 2 0 0 52 28 84.6917 84.7368 -0.05325 

15 2 2.5 10 43 27 96.4489 95.235 1.258594 

16 2 2.5 20 42 26 105.44 105.405 0.033194 

17 2 2.5 30 47 25 90.347 89.418 1.028258 

18 2 5 10 42 26 104.18 104.019 0.15454 

19 2 5 20 41 25 112.271 112.693 -0.37588 

20 2 5 30 46 24 98.266 98.6478 -0.38854 

21 2 7.5 10 40 26 111.18 112.016 -0.75193 

22 2 7.5 20 39 25 118.164 118.393 -0.1938 

23 2 7.5 30 45 24 106.062 106.752 -0.65056 

24 2 10 10 47 32 115.232 115.346 -0.09893 

25 2 10 20 43 25 121.191 121.019 0.141925 

26 2 10 30 45 27 113.495 112.567 0.817657 

% TR* - % Thickness Reduction    % LVF** - % liquid Volume Fraction 
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Table6. Comparison of ANN & hybrid RNN for hardness prediction using 5-9-6-1 architecture 

  Input Output 
% DIFFERENCE 

OVER ANN 

VALUE 

Sr. No. Mat / 

Process 
% TR

* 
%LVF

** 
Grain Sizes Hardness 

        large Small ANN RNN 

1 1 0 0 50 50 67.9705 69.231 -1.85448 

2 1 2.5 10 62 27 89.7614 93.22 -3.8531 

3 1 2.5 20 58 33 103.16 101.879 1.24176 

4 1 2.5 30 66 37 86.0228 87.2178 -1.38917 

5 1 5 10 54 25 99.6521 101.178 -1.53123 

6 1 5 20 51 31 111.04 112.874 -1.65166 

7 1 5 30 55 32 96.483 96.8224 -0.35177 

8 1 7.5 10 62 32 107.059 106.62 0.410054 

9 1 7.5 20 48 26 115.966 116.751 -0.67692 

10 1 7.5 30 53 27 102.586 102.287 0.291463 

11 1 10 10 49 29 115.246 117.323 -1.80223 

12 1 10 20 47 30 120.33 119.63 0.581734 

13 1 10 30 54 26 107.765 108.413 -0.60131 

14 2 0 0 52 28 57.2824 58.824 -2.69123 

15 2 2.5 10 43 27 95.179 98.8946 -3.9038 

16 2 2.5 20 42 26 106.801 105.267 1.436316 

17 2 2.5 30 47 25 90.3766 91.543 -1.2906 

18 2 5 10 42 26 103.904 104.088 -0.17709 

19 2 5 20 41 25 113.233 112.989 0.215485 

20 2 5 30 46 24 98.7331 97.684 1.062562 

21 2 7.5 10 40 26 111.772 110.56 1.08435 

22 2 7.5 20 39 25 118.619 117.936 0.575793 

23 2 7.5 30 45 24 106.473 105.934 0.506232 

24 2 10 10 47 32 115.947 115.17 0.670134 

25 2 10 20 43 25 120.866 119.493 1.135969 

26 2 10 30 45 27 112.755 114.811 -1.82342 

% TR* - % Thickness Reduction    % LVF** - % liquid Volume Fraction 

2. To test if the given population has standard 

normal distribution using one sample 

Kolmogorov – Smirnov test. 

3. Testing if the two populations belong to the 

same continuous distribution using two 

samples Kolmogorov – Smirnov test. 

K-s test for single sample and two samples were 

used to test the normality of the distribution of errors 

in prediction of grain sizes (Large and Small grain 

sizes) and hardness as predicted by ANN and HRNN 

with different architectures mentioned at 3.1 and 3.2 

above. The errors were calculated between the 

predicted values obtained from ANN and actual 
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values and also between the predicted values 

obtained from HRNN and actual values. A third type 

of error was calculated between the values predicted 

by HRNN and ANN. Further to this, two sample 

student_t – test was performed for testing the equality 

of means of populations representing the errors 

between ANN and HRNN predictions for large grain 

size, small grain size and hardness. To be able to 

analyze the data more meaningfully, the population 

of errors was divided into errors in predictions for as 

cast Al-4.5Cu-5TiB2 composite and pre hot rolled       

Al-4.5Cu-5TiB2 composite. For the purpose of 

statistical analysis of the performance of HRNN with 

the parent ANN, the following terminology of errors 

is defined. 

a. Error (a): Error in prediction of large grain 

size and small grain size by ANN with 4-7-

4-2 architecture over the target values. 

b. Error (b); Error in prediction of large grain 

size and small grain size by HRNN with 4-7-

4-2 architecture over the target values. 

c. Error(c); Error in prediction of large grain 

size and small grain size by ANN with 4-9-

9-2 architecture over the target values. 

d. Error (d); Error in prediction of large grain 

size and small grain size by HRNN with 4-9-

9-2 architecture over the target values. 

e. Error (e); Error in prediction of hardness by 

ANN with 5-5-3-1 architecture over the 

target values. 

f. Error (e); Error in prediction of hardness by 

HRNN with 5-5-3-1 architecture over the 

target values. 

g. Error (e); Error in prediction of hardness by 

ANN with 5-9-6-1 architecture over the 

target values. 

h. Error (e); Error in prediction of hardness by 

HRNN with 5-9-6-1 architecture over the 

target values. 

4.3.1  Testing of equality of means: 

Table: 7 gives the results of the two sample 

student_t test performed on the population deduced 

from the predictions of HRNN and ANN with 

different architectures. It can be seen that the means 

of the HRNN prediction populations are comparable 

to the mean values of populations obtained from 

ANN predictions for similar architectures. 

Furthermore, the standard deviation values also are 

comparable for similar architectures of ANN and 

HRNN. 

In testing of hypothesis, the strength of the 

conclusion is decided by level of significance α. The 

popular value of α is 0.05. The decision about the test 

is based on the value of the test statistics obtained 

from the sample and the benchmark value of 

appropriate test statistics obtained from the tables, 

using α and degrees of freedom (which can always be 

obtained from the size of sample). 

However, while reporting the conclusion, the 

value of test statistic obtained is never reported. As a 

result, closeness of this test value obtained from the 

sample and the bench mark value of appropriate test 

statistic also does not get reported. 

This difficulty is overcome when p value of test is 

indicated. The p value indicates the probability of 

obtaining a test statistic as extreme as the one 

actually observed, assuming that the null hypothesis 

is true. 

4.3.2  Testing errors for standard normal 

distribution : 

Testing of the error distribution of ANN and 

HRNN predictions over target values of large grain 

sizes, small grain sizes and hardness was carried out 

using one sample Kolmogorov – Smirnov test. For 

this purpose, the various errors as defined in section 

4.3 were considered. The results of the test are 

tabulated in Table 8. It can be seen that with a 

confidence of 5% (α = 0.05), used for the test, all the 

error distributions i.e. Error (a) to Error (h) are 

accepted as standard normal distributions. Table 8 

gives the p values for all the error distributions. H0 

indicates that the error population has normal 

distribution, while H1 indicates that the error 

population does not have normal distribution. 

 

4.3.3 Testing for equality of continuous 

distributions using Two Sample 

Kolmogorov – Smirnov test. 

Here the distribution of errors between ANN 

predicted values for grain sizes using 4-7-4-2 and 4-

9-9-2 architectures over target values of grain sizes 

were checked with their counterparts predicted by 

HRNN with similar architectures, for equality. The 

same test was carried out to check the equality of 

similar error distributions obtained using HRNN and 

ANN for hardness using 5-5-3-1 and 5-9-6-1 
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architectures. The results of this test are presented in 

Table 9. H0 indicates that the two error distributions 

under test are equal, while H1 indicates that they are 

not equal. 
 

TABLE7. Results of two sample student_t test 

Architecture 

Large grain size / hardness (HRNN) 

Population 1 

Small grain size/hardness (ANN) 

Population 2 

As cast Pre hot rolled As cast Pre hot rolled 

4-7-4-2 
Mean: -0.0334 0.0034 -0.0136 0.0047 

Stdv: 0.0401 0.0068 0.0244 0.0026 

4-9-9-2 
Mean: -0.0201 -0.0134 -0.0053 0.0052 
Stdv: 0.0099 0.0073 0.0022 0.0015 

5-5-3-1 
Mean: 0.8248 

 

1.2176 
Stdv: 2.8327 2.0481 

5-9-6-1 
Mean: -1.9638 -2.6684 

Stdv: 2.3999 2.1505 

 

TABLE8. Results of one sample Kolmogorov – Smirnov test. 

Test No. α Errors p value Conclusion 

Large grain size / 

hardness 

Small grain size  

A  0.05 Error(a)  0.7366 0.8174 H0: Accepted 

B 0.05 Error(b) 0.8174 0.0940 H0: Accepted 

C 0.05 Error(c) 0.1879 0.1860 H0: Accepted 

D 0.05 Error(d) 0.1983 0.1901 H0: Accepted 

E 0.05 Error(e) 0.5502  H0: Accepted 

F 0.05 Error(f) 0.2993 H0: Accepted 

G 0.05 Error(g) 0.3258 H0: Accepted 

H 0.05 Error(h) 0.1499 H0: Accepted 

TABLE9. Results of two sample Kolmogorov – Smirnov test. 

Test No. Population of errors tested α 

p value 

Conclusion Large grain size 

/ hardness 
Small grain size 

A Error(a) v/s Error(b) 0.05 0.9999 0.1094 H0: Accepted 
B Error(a) v/s Error(b) 0.05 0.9999 0.9999 H0: Accepted 
C Error(a) v/s Error(b) 0.05 0.2581 

 
H0: Accepted 

D Error(a) v/s Error(b) 0.05 0.8922 H0: Accepted 

 

5. Conclusions: 

1. It is seen that the Simple Elman Recurrent 

Network does not necessarily converge for 

all the applications, as is seen in the present 

case. The SRN modeled for the predictions 

of grain sizes and hardness failed to 

converge despite all possible architectures 

being tried with various combinations of 

learning rate parameter (η) and momentum 

factor (α). 

2. The slight modification in the network 

architecture with the neurons in the hidden 

layers giving feed back to itself resulted in 
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slightly better convergence, but the learning 

was not good enough to do correct 

mappings. 

3. A Hybrid Recurrent Network constructed by 

borrowing weights form a partially trained 

FFNN with similar architecture is found to 

excellently converge and is able to predict 

the outputs comparable with those predicted 

by the parent FFNN / ANN. The Network 

training time is drastically reduced by 

employing such Hybrid Recurrent Neural 

Networks as have been demonstrated by the 

four cases considered. 

4. The test on normality of the errors justifies 

the stability of the model. Secondly, the test 

on the two means confirms that the HRNN 

and the parent FFNN are not significantly 

different in behavior. Likewise, the 

distribution of errors obtained with parent 

FFNN and HRNN also confirm that they 

have equivalent performance capabilities. 

This equivalent performance coupled with 

the reduced learning time provides a strong 

potential for use of HRNN in real time 

process control applications. 
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1. Fig. 1: Schematic diagram of FFNN. 

2. Fig. 2: A simple RNN. 

3. Fig. 3: An extended simple RNN. 

4. Fig.4: Plot showing comparison of ANN and Hybrid RNN for hardness prediction when 

as cast Al-4.5Cu-5TiB2 composite is rolled from mushy state with various thickness 

reductions. 

5. Fig. 5: Plot showing comparison of ANN and Hybrid RNN for hardness prediction when 

pre hot rolled Al -4.5Cu-5TiB2 composite is rolled from mushy state with various 

thickness reductions. 
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