

Abstract— Discrete Fourier Transform (DFT) is a very useful

algorithm, playing an important role in various digital signal

processing (DSP) applications from radar, sonar,

telecommunication, image processing etc. The fast Fourier

transform (FFT) is a class of algorithms for efficiently computing

DFT. So, the FFT is also widely used in many DSP applications.

The computation complexity of DFT is drastically reduced by

using FFT. The multiplications as plain rotation in the DFT/FFT

algorithm, it is possible to apply a pipelined coordinate rotation

digital computer (CORDIC) algorithm for the implementation of

DFT/FFT. Hence, the CORDIC technique is applied for

calculating a vector rotated through a given angle for

computation of FFT. Further by exploiting some trigonometric

identities in the DFT/FFT computation CORDIC rotators are

effectively used. Here, the implementation of CORDIC based 16-

point DFT on FPGA for various DSP applications is presented.

The data rate of the DFT is depends only on carry look ahead

adder used and number of pipelining stages used. With the

advent of VLSI Technology, it is possible to perform each

pipeline step is less than 2-5ns and also increases the throughput

as per the input data rate. In this we simulate and implement a

pipelined CORDIC DFT using FFT algorithm on FPGA for DSP

applications. By rewriting the DFT, for 𝑵 = 𝟐𝒏 point DFT, it

requires 𝟐𝒏−𝟐 𝟑𝐧 − 𝟏𝟑 + 𝟒𝐧 – 𝟐 real multiplications and

𝟐𝒏−𝟐 𝟕𝐧 − 𝟐𝟗 + 𝟔𝐧 + 𝟐 real Additions for a real data. The

computation of multiplications in DFT is done as plane rotations.

So, it is possible to apply a pipelined CORDIC algorithm in a

hardware implementation of a long-point DFT using of a single

CORDIC pipeline.

Keywords— CORDIC, DFT, DSP, FFT etc.

 I. INTRODUCTION

Discrete Fourier transform (DFT) and Inverse Discrete Fourier

transform (IDFT) are used in a wide range of applications,

such as, signal processing, image processing, data

compression, etc., for transforming signals from time domain

to frequency domain and vice-versa. Exponential increase in

networking bandwidth and storage capacity has created a need

for high throughput DFT/IDFT circuits. Further, low

complexity circuits are preferable over high complexity

circuits, since, in general, they consume less power and are

less expensive from the silicon real-estate perspective. Hence,

low complexity DFT/IDFT circuits that have a high

throughput are desirable. The Discrete Fourier Transform

(DFT) is a very useful algorithm, playing an important role in

various digital signal processing (DSP) applications.

According to the definition, for 𝑁 - point DFT/IDFT, 4𝑁2
real

multiplications are needed. To reduce the computational

complexity of DFT, it is required to reduce the number of

multiplications and additions in the DFT. The fast Fourier

Transform (FFT) algorithm is the best solution why because it

uses 2𝑛+1 + n + s real multiplications for 𝑁 = 2𝑛 - point

FFT. In addition to software realizations of FFT, various

hardware implementation of FFT have been designed to meet

the high speed real-time requirements of DFT applications.

Briefly, an FFT is an algorithm which provides a relatively

fast means of computing a DFT by reducing the number of

operations from approximately 𝑁2 to 2𝑁 𝑙𝑜𝑔2𝑁 as compared

to a DFT; this is generally accomplished by reducing the

redundant operations and of course also provides a

corresponding decrease in computation processing

time[1],[12].

Fig.1 Signal flow graph (SFG) of the computation of 8-point FFT

The inputs, 𝑠(0) through 𝑠(7) and generally 𝑠(𝑛), are a

time series of discrete samples. The corresponding outputs are

frequency components i.e 𝑆(0) to 𝑆(7).

Fig.2 The basic building block of an FFT

The basic building block of an FFT as shown in Figure. 2 is a

vector rotation by a complex weighting coefficient, 𝑊𝑛 , and a

sum and difference of the result with another vector. If the un-

rotated vector is A = 𝑅1 + j𝐼1, the rotated vector is

CORDIC Based DFT on FPGA for DSP

Applications

Padma. V
1

PG Scholar, Department of E.C.E

SKIT College

Srikalahasti, India

Sudhakara Reddy. P
2

Member IEEE
Associate Professor, Department of E.C.E

SKIT college

Srikalahasti, India

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071310

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1575

B = 𝑅2 + j𝐼2, and 𝑤𝑛 = 𝑒−𝑗𝜃 , the output of the basic building

block is given

𝐴′ = 𝑅1 + 𝑅2𝑐𝑜𝑠𝜃 + 𝐼2𝑠𝑖𝑛𝜃 + 𝑗[𝐼1 + 𝐼2𝑐𝑜𝑠𝜃 − 𝑅2𝑠𝑖𝑛𝜃]
𝐵′ = 𝑅1 − 𝑅2𝑐𝑜𝑠𝜃 + 𝐼2𝑠𝑖𝑛𝜃 + 𝑗[𝐼1 − 𝐼2𝑐𝑜𝑠𝜃 − 𝑅2𝑠𝑖𝑛𝜃]
 (1)

As can be seen from the equation above, A' and B' can be

calculated in a digital computer by a combination of four

multiplies and six adds in addition to looking up the

trigonometric values in a table 1. Recently, the coordinate

rotation digital computer (CORDIC) technique was introduced

as a method of calculating a vector rotated through a given

angle. This technique has also been applied to FFT's.

Table.1 Trigonometric values in a Look up table

However, there is still a need for a CORDIC unit and a digital

processor in general wherein increased throughputs can be

realized. Furthermore, some applications require that an FFT

processor with a high throughput rate also have the capability

to be programmable such that FFT's of different numbers of

points can be performed. In CORDIC, The plane rotations are

involve mainly two trigonometric factors of the expression

𝐴 𝑘 = 𝑎 𝑛 𝑐𝑜𝑠
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0 (2)

 𝐵 𝑘 = 𝑏 𝑛 𝑠𝑖𝑛
2𝜋

𝑁
𝑘𝑛 𝑁−1

𝑛=0 (3)

are allowing the sums to be split in halves and recombined

recursively. The resulting recursive equations are fairly

simple, employing plane rotations applied to terms referenced

by indices obtained by reversing certain bit patterns. Because

of the way multiplications and additions are organized as

plane rotations in our DFT algorithm, it is possible efficiently

to apply a pipelined CORDIC algorithm in a hardware

implementation of the long-point DFT. [11]

 In section II mathematical representation of DFT/IDFT

for both real and complex data are shown. Section III

discusses CORDIC based DFT/IDFT and possible hardware

implementations, In section IV are explained the results

analysis and implementation. Finally, Section V gives

conclusion.

II. MATHEMATICAL REPRESENTATION OF DFT/IDFT

A. REAL DATA DFT/IDFT TRANSFORMATIONS

The 𝑁 = 2𝑛 real data DFT/IDFT transformations are defined

as follows:

 𝐹 𝑘 =
1

𝑁
 𝑓 𝑛 𝑒−𝑗

2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

=
1

𝑁
 𝑓 𝑛 𝑐𝑜𝑠

2𝜋

𝑁

𝑁−1

𝑛=0
𝑘𝑛 − 𝑗

1

𝑁
 𝑓 𝑛 𝑠𝑖𝑛

2𝜋

𝑁

𝑁−1

𝑛=0
𝑘𝑛, (4)

𝑓 𝑛 = 𝐹 𝑘 𝑒 𝑗
2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑘=0

= 𝐹𝑟(𝑘) 𝑐𝑜𝑠
2𝜋

𝑁

𝑁−1

𝑘=0
𝑘𝑛 − 𝐹𝑟(𝑘) 𝑠𝑖𝑛

2𝜋

𝑁

𝑁−1

𝑘=0
𝑘𝑛, (5)

Where all 𝑓(𝑛) are real data and then 𝐹 𝑘 are complex,

𝐹 𝑘 = 𝐹𝑟 𝑘 + 𝑗𝐹𝑖 𝑘 ; 𝑘, 𝑛 = 0,1,2, …… . . 𝑁 − 1 (6)

for the computation DFT/IDFT we shall only discuss the

following expressions

𝐴 𝑘 = 𝑎 𝑛 𝑐𝑜𝑠
2𝜋

𝑁

𝑁−1
𝑛=0 𝑘𝑛,

𝐵 𝑘 = 𝑏 𝑛 𝑠𝑖𝑛
2𝜋

𝑁

𝑁−1
𝑛=0 𝑘𝑛,

𝑘, 𝑛 = 0,1,2, …… . . 𝑁 − 1
 According to DFT/FFT properties, the symmetry

property further reduces the computational complexity, that

means 𝐴 𝑁 − 𝑘 = 𝐴(𝑘) and 𝐵 𝑁 − 𝑘 = −𝐵(𝑘), 𝑘 can be

limited to the interval 0 to 𝑁
2 . So, the 𝐴 𝑘 and 𝐵 𝑘

𝑘 = 0,1,2, …… . .
𝑁

2
− 1 are

𝐴 𝑘 = [𝑎 𝑛 + 𝑎(𝑁 − 𝑛)]𝑐𝑜𝑠
2𝜋

𝑁

𝑁/2−1
𝑛=1 𝑘𝑛 + 𝑎

𝑁

2
 𝑐𝑜𝑠𝜋𝑘 +

 𝑎(0) (7)

𝐵 𝑘 = [𝑏 𝑛 + 𝑏(𝑁 − 𝑛)]𝑠𝑖𝑛
2𝜋

𝑁

𝑁/2−1
𝑛=1 𝑘𝑛 (8)

To continue the splitting, finally for each 𝐿, then 𝐴(𝑘) and

𝐵(𝑘) for 𝑘 = 𝐿, 3𝐿, 5𝐿, … ,
𝑁

2
− 𝐿 are shown as

𝐴 (𝑘) = 𝑝𝐿

𝑁

8𝐿(𝑁𝑘), (9)

𝐵 (𝑘) = 𝑞𝐿

𝑁

8𝐿
𝑁

8𝐿
− 𝑁𝑘 . (10)

The above computations are iterated until =
𝑁

8𝐿
 , this

containing trigonometric factors and compute 𝐴(𝑘) and 𝐵(𝑘),

𝑘 = 0,2𝐿, 4𝐿. It is observed that, the above expressions

containing trigonometric factors in the form of plane rotations,

which can be realized by the CORDIC algorithm.

For the DFT: 𝑎 𝑛 = 𝑏 𝑛 = 𝑓 𝑛

𝐹(𝑘) = 𝐴(𝑘) − 𝑗𝐵(𝑘),

𝐹(𝑁 − 𝑘) = 𝐴(𝑘) + 𝑗𝐵(𝑘) (11)

For IDFT: 𝑎(𝑘) = 𝐹𝑟(𝑘) ,
𝑏(𝑘) = 𝐹𝑖(𝑘)

𝑓(𝑛) = 𝐴(𝑛) – 𝐵(𝑛) ,
𝑓(𝑁 − 𝑛) = 𝐴(𝑛) + 𝐵(𝑛). (12)

A diagram of the computations for 𝑁 = 64 DFT using the

above expressions is shown in Figure 1. Now we can calculate

how many multiplications and additions are needed for an

𝑁 = 2𝑛DFT/IDFT. For any value of L, the number of

CORDIC operations for computing 𝐴(𝑘) is

 1 +
𝑁

16𝐿
𝑙𝑜𝑔2

𝑁

8𝐿
 . (13)

When 𝐿 runs through the values 1,2,4, … , 𝑁/8, the total

number of all CORDIC operations is then

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071310

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1576

 1 +
𝑁

16𝐿
𝑙𝑜𝑔2

𝑁

16𝐿
 =

𝑁

8
𝑙𝑜𝑔2

𝑁

16
+𝑙𝑜𝑔2

𝑁

2𝐿 (14)

All A(n) and B(n) values can be split to find an equivalent

number of additions and multiplications:

 2(
𝑁

8
𝑙𝑜𝑔2

𝑁

16
+𝑙𝑜𝑔2

𝑁

2
) = [2𝑛−2(𝑛 − 5) + 2(𝑛 − 1)] +

 [2𝑛−2 − 2(𝑛 − 2) + 2(𝑛 − 2)] (15)

In which each of 2(𝑛 − 2) CORDIC operations computing

 𝑝𝐿
1(0) and 𝑝𝐿

1(
𝑁

8𝐿
) need 1 multiplication and 2 additions, each

of 2𝑛−2 − 2(𝑛 − 2) CORDIC operations whose angle is just

equal to
𝜋

4
 need only2 multiplications and 2 + 4 additions , and

each of 2𝑛−2(n − 5) + 2(n − 1) CORDIC operations can

be realized by using 3 multiplications and 3 + 4 additions.

Therefore the total number of real multiplications required

2𝑛−2(3n − 13) + 4n − 2 , and the number of real additions

required is 2𝑛−2(7n − 29) + 6n + 2. The traditional Fast

Fourier Transform (FFT) uses 2n2𝑛 real multiplications and

3n2𝑛 additions. The complex multiplication is realized by 3

real multiplication and 3 real additions. We need only

2𝑛−1(n − 3) + 2 multiplications and 2𝑛−1(3n − 5) +
 4 additions. Table 1 shows a comparison between these and

our method for different values of 𝑁. From the table we see

that for large values of N our method use a few more

multiplications, but fewer additions. But the total number of

operations is lower, which is important if addition and

multiplication take the same time, as in many DSP Processors.

In the above we have just discussed the DFT/IDFT for real

data.
Table 2. Number of real multiplications in FFT and CORDIC based FFT for

DFT algorithms.

Table 3. Number of real additions in FFT and CORDIC based FFT for DFT
algorithms.

B. Complex data DFT/IDFT transformations:

For complex data

 f(n) = 𝑓𝑟 𝑛 + 𝑗𝑓𝑖 𝑛 ,

 we have , F(k) =
1

𝑁
 f n e−𝑗

2𝜋

𝑁
 𝑘𝑛

𝑁−1

𝑛=0

 =
1

𝑁
 fr n + jfi n cos

2𝜋

𝑁
 𝑘𝑛

𝑁−1

𝑛=0
 +

1

𝑁
 fi n − jfr n sin

2𝜋

𝑁
 𝑘𝑛,

𝑁−1

𝑛=0
 (16)

F n = F k e𝑗
2𝜋

𝑁
 𝑘𝑛

𝑁−1

𝑘=0
+

 Fr k + jFi k cos
2𝜋

𝑁
 𝑘𝑛 −

𝑁−1

𝑘=0

 Fi k + jFr k sin
2𝜋

𝑁
 𝑘𝑛.

𝑁−1

𝑘=0
 (17)

So for complex data, using the new algorithm, the number of

real multiplications and real additions is twice the number of

operations for real data. Compared to the traditional FFT/IFFT

algorithm, the new algorithm requires more data address

computations, as shown in equations (2),(3), (4) and (5).

However, it is easy to realize these data address computations

in Hardware or by table look-up, noting that aj2
𝑀−1−𝑗

𝑀−1

𝑗 =1

in binary is just a part of the reversed bit pattern of the binary

representation for 𝑘 = aj2
𝑗

𝑀−1

𝑗=0
 .

 III. CORDIC BASED DFT/IDFT

In CORDIC based DFT/IDFT using FFT/IFFT algorithm, it is

found that, the number of real multiplications and real

additions is respectively reduced to 2𝑛−2(3𝑛 − 13) + 4𝑛 − 2

and 2𝑛−2(7𝑛 − 29) + 6𝑛 + 2 for real data DFT. The main

advantage of this proposed algorithm is to reduce the total

number of floating point operations is very less and smaller.

Hence, first it is required to rewrite the DFT in terms of FFT

either in decimation-in-time (DIT) or decimation-in-frequency

(DIF) secondly, expresses the FFT computations in terms of

the plane rotations. The number of such rotations are

2𝑛−2(𝑛 − 4) + 2(𝑛 − 1) needed for 𝑁 = 2𝑛 - point FFT. The

number of additions and multiplications quoted above

corresponds to the implementation of each rotation as a

complex multiplication.

 Table 4. Comparison of some performance parameters

We iteratively use 16 butterfly processors. Figure 3

shows one butterfly processor architecture. Finally all

F(k) are calculated(Note actually only 32 values of

𝐹(𝑘) = 𝐴(𝑘) − 𝑗𝐵(𝑘) are calculated, since 𝐹(𝑁 − 𝑘) =
𝐴(𝑘) + 𝑗𝐵(𝑘), the other 32 values are easily obtained).

Considering all types of butterfly processors

computations, it is possible to design a butterfly processor

based on standard multipliers as shown in Figure 3.

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071310

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1577

Where c1, sl, s2 are used to control the computations.

Of the 16 butterfly processors, 6 needs five multipliers

and the other 10 need four multipliers.

Fig.3.The structure of a butterfly processor

For IDFT, 𝐹𝑟 𝑘 = 𝐹𝑟 𝑁 − 𝑘 and 𝐹𝑖 𝑘 = −𝐹𝑖 𝑁 − 𝑛

Because 𝑓(𝑛) = 𝐴(𝑛) − 𝐵(𝑛) and 𝑓(𝑁 − 𝑛) = 𝐴(𝑛) +
𝐵(𝑛) for IDFT, an extra step is needed at the end for

those computations. The remaining computations are

the same as for the DFT. In order to conveniently

construct a long point DFT/IDFT by using a pipelined

CORDIC processors. It is better design comparatively

standard form of DFT/IDFT. A CORDIC computation

performs a vector rotation:

𝑋′

𝑌′
 =

𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼

𝑋
𝑌
 , (18)

by a number of micro rotations using a predetermined set

of angles Ø𝑖 derived from α. CORDIC processors would

be needed to achieve that input rates.

Fig.4 64-point CORDIC based DFT computing algorithm

 Fig.5 Circular rotation mode

 Fig.6 Hyperbolic rotation mode

The realization of CORDIC based DFT can be

obtained by using hyperbolic rotation mode as shown in

figure 6.

 Fig.7 . A Pipelined CORDIC s t ruc ture

The pipelined CORDIC structure is shown in Figure 7, in

which the leftmost part is controlled by

𝑇0 , 𝑇1 , …

, 𝑇𝑝−𝑖

performs the equivalent of four multiplications, one

addition and one subtraction. But using the CORDIC

algorithm, the results must be multiplied by a constant

1

𝐾𝑒
≈ 1.6467603,

It is approximated as

1

𝐾𝑒
≈

1

2
(1 +

1

4
)(1 −

1

32
)

(1 +
1

256
)(1 −

1

1024
)

We can see from the above analysis that the DFT/IDFT

can be calculated using CORDIC computations and

additions/subtractions. This was actually our main

motivation for the derivation of CORDIC based

method. It is quite efficient for a high speed long-

point DFT/IDFT.

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071310

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1578

Fig.9 Simulation results

Initially the DFT was decomposed in terms of COS and SINE

terms by using Euler’s formula, then for the computation of

these trigonometric components we used pipelined CORDIC

processor. For hardware implementation, we written Verilog

code and compiled by using ModelSim software. Further

simulated and synthesized by using Xilinx ISE design suite

version 12.0 and implemented on Spartan 6.0 FPGA. Finally

synthesis report and delay report are noted down. From the

results it is observed that, the total real time taken for

execution is 1.00secs, the total CPU time taken for execution

is 0.94 secs. The macro statistics of CORDIC requires only

single ROM, one 4x8-bit ROM, 20-adders and subtractions,

three 8-bit adders, one 8-bit subtraction, 32 registers, eight 2-

bit registers, 24 8-bit registers and 2 – multiplexers.

 V. CONCLUSIONS

By exploiting some trigonometric identities in the DFT

computation, the number of multiplications needed for

DFT/IDFT has been reduced compared to the

traditional FFT. One way to realize the new algorithm

in hardware, which is more efficient for a long-point DFT,

is to use a pipelined CORDIC algorithm, which

simultaneously completes four multiplications. In the

pipelined CORDIC structure, the data rate of the

DFT/IDFT depends only on one carry look-ahead adder as

the critical component in the pipeline. At present

integration technology, it is possible to perform each

pipeline step is as minimum as possible.

REFERENCES

[1] FENG ZHOU,―A New Fast Discrete Fourier Transform‖ ,Dept. of

Information and Electronic Engineering, Zhejiang University,
Hangzhov,P.R.China. PETER KORNERUP,‖Dept. of Mathematics and

Computer Science, Odense University, 2002,Odense, Denmark

[2] H. L. Groginsky et al., "A Pipeline Fast Fourier Transform", IEEE
Trans. on Computers, vol. C-19, No. 11, Nov. 1970, pp. 1015-1019.

[3] J. E. Volder, "The Cordic Trigonometric Computing Technique", IEEE

Trans. on Elect. Computers, vol. EC-B, Sep. 1959, pp. 330-334.
[4] Y.H. Hu5 "CORDIC-Based VLSI Architecture for Digital Signal

Processing," IEEE Signal Processing Magazine, pp.lό-July 1992

[5] R. Sarmineto, F. Tobajas, et.al, "A CORDIC Processor for
FFTComputations and Its Implementation Using Gallium Arsenide

Technology," IEEE Trans, on VLSI Systems, pp.18-30, vol.6, no.l,

March 1998
[6] C. Ying, S.Chen and J. Chih, "Efficient CORDIC Designs for Multi-

Mode OFDM FFT," ICASSP Page(s): 1036 -1039, vol.3, May 2006

[7] B . Heyne, J. Gotze, "A Pure CORDIC based FFT for Reconfigurable
Digital Signal Processing, " 12th European Signal Processing

Conference (EUSIPCO2004), Vienna, Austria, 2004

[8] B . Heyne, J. Gotze, "CORDIC-Based algorithms for software defined
Radio (SDR) baseband Processing, " Adv. Radio Sci. , 4, 179-184,

2006

[9]Kulkarni et al., "Reconfigurable Vector-FFT/IFFT, Vector-
Multiplier/Divider, " Patent US 7,082,45 1 B2 HEYNE B ET AL: "A

Pure Cordic Based FFT for Reconfigurable Digital Signal Processing"

PROCEEDINGS OF THE EUROPEAN SIGNAL PROCESSING
CONFERENCE, 6 September 2004 (2004-09-06), pages 1513-1516,

[10] KATSUTOSHI SEKI ET AL: "A Cordic-Based Reconfigrable

Systolic Array Processor for MIMO-OFDM Wireless
Communications" SIGNAL PROCESSING SYSTEMS, 2007 IEEE

WORKSHOP ON, IEEE, PI, 1 October 2007 (2007-10-01), pages 639-

644, XP031164039 ISBN: 978-1-4244-1221-1
[11] Ayan Banerjee Anindya Sundar dhar, "FPGA realization of a

CORDIC based FFT processor",Micro Processor and Micro system,

vol. 25, Issue 3, May. 2001, pp. 131-142.
[12]T.Tran,B.Liu,―Fixed-point fast Fourier transform error analysis‖, IEEE

Trans. on ASSP, 1976, vol.24(6), pp. 563–573.

[13]W.-H. Chang and T. Nguyen, ―On the Fixed-Point Accuracy Analysis
of FFT Algorithms,‖ IEEE Transactions On Signal Processing, Vol. 56,

No. 10, pp. 4673-4682, October 2008.

[14], A.M. Despain, "Fourier Transform Computers Using Cordic
Iterations", IEEE Trans. on Computers, vol. C-23, No. 10, Oct. 1974,

pp. 993-1001.

[15] . Karthick S, Priya P, valarmathy S, ―CORDIC based FFT for Signal
processing systems‖, ISSN 2278-8875, IJAREEIE, Vol.1, Issue 6 Dec

2012.

[16].Choudary P, Karmakar A, ― CORDIC based Implementation of FFT‖,
ICCCT, Sept 2011.

[17]. Ajay S P, S.s. Belsare, ― Radix – 4 FFT Architecture ‖ IJARCSSE,
Vol.4, Issue 5, May 2014.

[18]. Thanuja, Sarada, ― CORDIC based 16-point FFT processor‖, IJRIT,

Vol 1 Issue 1, APR 2014.
[19].Dhar A s, Swapna Banerjee, ― FPGA realization of CORDIC based

FFT processor for biomedical signal processing‖, Dept ECE,IIT

Kharagpur, India.

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071310

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1579

