
 
 

 
  

 

  

 

 
  

   

 

  

 

 

Abstract— Discrete Fourier Transform (DFT) is a very useful 

algorithm, playing an important role in various digital signal 

processing (DSP) applications from radar, sonar, 

telecommunication, image processing etc. The fast Fourier 

transform (FFT) is a class of algorithms for efficiently computing 

DFT. So, the FFT is also widely used in many DSP applications. 

The computation complexity of DFT is drastically reduced by 

using FFT. The multiplications as plain rotation in the DFT/FFT 

algorithm, it is possible to apply a pipelined coordinate rotation 

digital computer (CORDIC) algorithm for the implementation of 

DFT/FFT. Hence, the CORDIC technique is applied for 

calculating a vector rotated through a given angle for 

computation of FFT. Further by exploiting some trigonometric 

identities in the DFT/FFT computation CORDIC rotators are 

effectively used. Here, the implementation of CORDIC based 16-

point DFT on FPGA for various DSP applications is presented. 

The data rate of the DFT is depends only on carry look ahead 

adder used and number of pipelining stages used. With the 

advent of VLSI Technology, it is possible to perform each 

pipeline step is less than 2-5ns and also increases the throughput 

as per the input data rate. In this we simulate and implement a 

pipelined CORDIC DFT using FFT algorithm on FPGA for DSP 

applications. By rewriting the DFT, for 𝑵 = 𝟐𝒏 point DFT, it 

requires 𝟐𝒏−𝟐 𝟑𝐧 − 𝟏𝟑 +  𝟒𝐧 –  𝟐  real multiplications and 

𝟐𝒏−𝟐 𝟕𝐧 − 𝟐𝟗 +  𝟔𝐧 +  𝟐 real Additions for a real data. The 

computation of multiplications in DFT is done as plane rotations. 

So, it is possible to apply a pipelined CORDIC algorithm in a 

hardware implementation of a long-point DFT using of a single 

CORDIC pipeline. 

 

Keywords— CORDIC, DFT, DSP, FFT etc.                                         

              I.   INTRODUCTION 

Discrete Fourier transform (DFT) and Inverse Discrete Fourier 

transform (IDFT) are used in a wide range of applications, 

such as, signal processing, image processing, data 

compression, etc., for transforming signals from time domain 

to frequency domain and vice-versa. Exponential increase in 

networking bandwidth and storage capacity has created a need 

for high throughput DFT/IDFT circuits. Further, low 

complexity circuits are preferable over high complexity 

circuits, since, in general, they consume less power and are 

less expensive from the silicon real-estate perspective. Hence, 

low complexity DFT/IDFT circuits that have a high 

throughput are desirable. The Discrete Fourier Transform 

(DFT) is a very useful algorithm, playing an important role in 

various digital signal processing (DSP) applications. 

According to the definition, for 𝑁 - point DFT/IDFT, 4𝑁2  
real 

multiplications are needed. To reduce the computational 

complexity of DFT, it is required to reduce the number of 

multiplications and additions in the DFT. The fast Fourier 

Transform (FFT) algorithm is the best solution why because it 

uses  2𝑛+1 + n + s real multiplications for 𝑁 = 2𝑛  - point 

FFT. In addition to software realizations of FFT, various 

hardware implementation of FFT have been designed to meet 

the high speed real-time requirements of DFT applications. 

Briefly, an FFT is an algorithm which provides a relatively 

fast means of computing a DFT by reducing the number of 

operations from approximately 𝑁2 to 2𝑁 𝑙𝑜𝑔2𝑁 as compared 

to a DFT; this is generally accomplished by reducing the 

redundant operations and of course also provides a 

corresponding decrease in computation processing 

time[1],[12].  

 
Fig.1 Signal flow graph (SFG) of the computation of 8-point FFT 

 

The inputs, 𝑠(0) through 𝑠(7) and generally 𝑠(𝑛), are a 

time series of discrete samples. The corresponding outputs are 

frequency components i.e 𝑆(0) to 𝑆(7). 

 
Fig.2 The basic building block of an FFT 

 

The basic building block of an FFT as shown in Figure. 2 is a 

vector rotation by a complex weighting coefficient, 𝑊𝑛 , and a 

sum and difference of the result with another vector. If the un-

rotated vector is A = 𝑅1  + j𝐼1, the rotated vector is  
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B = 𝑅2 + j𝐼2, and 𝑤𝑛 = 𝑒−𝑗𝜃 , the output of the basic building 

block is given  

𝐴′ = 𝑅1 +  𝑅2𝑐𝑜𝑠𝜃 + 𝐼2𝑠𝑖𝑛𝜃 + 𝑗[𝐼1 +  𝐼2𝑐𝑜𝑠𝜃 − 𝑅2𝑠𝑖𝑛𝜃 ] 
𝐵′ = 𝑅1 −  𝑅2𝑐𝑜𝑠𝜃 + 𝐼2𝑠𝑖𝑛𝜃 + 𝑗[𝐼1 −  𝐼2𝑐𝑜𝑠𝜃 − 𝑅2𝑠𝑖𝑛𝜃 ]                  
                                                                                            (1) 

As can be seen from the equation above, A' and B' can be 

calculated in a digital computer by a combination of four 

multiplies and six adds in addition to looking up the 

trigonometric values in a table 1. Recently, the coordinate 

rotation digital computer (CORDIC) technique was introduced 

as a method of calculating a vector rotated through a given 

angle. This technique has also been applied to FFT's. 

 
Table.1 Trigonometric values in a Look up table  

 
However, there is still a need for a CORDIC unit and a digital 

processor in general wherein increased throughputs can be 

realized. Furthermore, some applications require that an FFT 

processor with a high throughput rate also have the capability 

to be programmable such that FFT's of different numbers of 

points can be performed. In CORDIC, The plane rotations are 

involve mainly two trigonometric factors of the expression 

𝐴 𝑘 =  𝑎 𝑛 𝑐𝑜𝑠
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0                                          (2)                      

 𝐵 𝑘 =  𝑏 𝑛 𝑠𝑖𝑛
2𝜋

𝑁
𝑘𝑛 𝑁−1

𝑛=0                                               (3) 

are allowing the sums to be split in halves and recombined 

recursively. The resulting recursive equations are fairly 

simple, employing plane rotations applied to terms referenced 

by indices obtained by reversing certain bit patterns. Because 

of the way multiplications and additions are organized as 

plane rotations in our DFT algorithm, it is possible efficiently 

to apply a pipelined CORDIC algorithm in a hardware 

implementation of the long-point DFT. [11] 

   In section II mathematical representation of DFT/IDFT 

for both real and complex data are shown. Section III 

discusses CORDIC based DFT/IDFT and possible hardware 

implementations, In section IV are explained the results 

analysis and implementation. Finally, Section V gives 

conclusion. 

II. MATHEMATICAL REPRESENTATION OF DFT/IDFT 

A. REAL DATA DFT/IDFT TRANSFORMATIONS 

The 𝑁 = 2𝑛  real data DFT/IDFT transformations are defined 

as follows: 

 𝐹 𝑘 =
1

𝑁
 𝑓 𝑛 𝑒−𝑗

2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

 

=  
1

𝑁
 𝑓 𝑛 𝑐𝑜𝑠

2𝜋

𝑁

𝑁−1

𝑛=0
𝑘𝑛 − 𝑗

1

𝑁
 𝑓 𝑛 𝑠𝑖𝑛

2𝜋

𝑁

𝑁−1

𝑛=0
𝑘𝑛,      (4) 

𝑓 𝑛 =  𝐹 𝑘 𝑒 𝑗
2𝜋
𝑁

𝑘𝑛  

𝑁−1

𝑘=0

 

=   𝐹𝑟(𝑘) 𝑐𝑜𝑠
2𝜋

𝑁

𝑁−1

𝑘=0
𝑘𝑛 −  𝐹𝑟(𝑘) 𝑠𝑖𝑛

2𝜋

𝑁

𝑁−1

𝑘=0
𝑘𝑛,            (5) 

 

Where all 𝑓(𝑛) are real data and then 𝐹 𝑘  are complex, 

 

𝐹 𝑘 = 𝐹𝑟 𝑘 + 𝑗𝐹𝑖 𝑘 ; 𝑘, 𝑛 = 0,1,2, …… . . 𝑁 − 1               (6) 

 

for the computation DFT/IDFT we shall only discuss the 

following expressions 

 

𝐴 𝑘 =  𝑎 𝑛 𝑐𝑜𝑠
2𝜋

𝑁

𝑁−1
𝑛=0 𝑘𝑛,                                                                   

𝐵 𝑘 =  𝑏 𝑛 𝑠𝑖𝑛
2𝜋

𝑁

𝑁−1
𝑛=0 𝑘𝑛,                                                             

𝑘, 𝑛 = 0,1,2, …… . . 𝑁 − 1 
                According to DFT/FFT properties, the symmetry 

property further reduces the computational complexity, that 

means  𝐴 𝑁 − 𝑘 = 𝐴(𝑘) and 𝐵 𝑁 − 𝑘 = −𝐵(𝑘), 𝑘 can be 

limited to the interval 0 to 𝑁
2  . So, the 𝐴 𝑘  and 𝐵 𝑘  

𝑘 = 0,1,2, …… . .
𝑁

2
− 1 are 

𝐴 𝑘 =  [𝑎 𝑛 + 𝑎(𝑁 − 𝑛)]𝑐𝑜𝑠
2𝜋

𝑁

𝑁/2−1
𝑛=1 𝑘𝑛 + 𝑎  

𝑁

2
 𝑐𝑜𝑠𝜋𝑘 +

                            𝑎(0)                                                               (7)  

𝐵 𝑘 =  [𝑏 𝑛 + 𝑏(𝑁 − 𝑛)]𝑠𝑖𝑛
2𝜋

𝑁

𝑁/2−1
𝑛=1 𝑘𝑛                        (8) 

To continue the splitting, finally for each 𝐿, then 𝐴(𝑘) and 

𝐵(𝑘) for 𝑘 = 𝐿, 3𝐿, 5𝐿, … ,
𝑁

2
− 𝐿 are shown as 

𝐴 (𝑘)  =  𝑝𝐿

𝑁

8𝐿(𝑁𝑘),                                                               (9) 

𝐵 (𝑘)  =  𝑞𝐿

𝑁

8𝐿  
𝑁

8𝐿
− 𝑁𝑘 .                          (10) 

The above computations are iterated until =  
𝑁

8𝐿
 , this 

containing trigonometric factors and compute 𝐴( 𝑘) and 𝐵(𝑘), 

𝑘 = 0,2𝐿, 4𝐿.  It is observed that, the above expressions 

containing trigonometric factors in the form of plane rotations, 

which can be realized by the CORDIC algorithm.  

For the DFT:  𝑎 𝑛 =  𝑏 𝑛 =  𝑓 𝑛  

𝐹(𝑘)  =  𝐴(𝑘) − 𝑗𝐵(𝑘),                                                                 

𝐹(𝑁 − 𝑘)  =  𝐴(𝑘) + 𝑗𝐵(𝑘)                                                (11) 

For IDFT:  𝑎(𝑘)  =  𝐹𝑟(𝑘) ,  
𝑏(𝑘)  =  𝐹𝑖(𝑘)  

𝑓(𝑛)  =  𝐴(𝑛) –  𝐵(𝑛) , 
𝑓(𝑁 − 𝑛)  =  𝐴(𝑛)  +  𝐵(𝑛).                                              (12) 

A diagram of the computations for 𝑁 = 64 DFT using the 

above expressions is shown in Figure 1. Now we can calculate 

how many multiplications and additions are needed for an 

𝑁 = 2𝑛DFT/IDFT. For any value of L, the number of 

CORDIC operations for computing 𝐴(𝑘) is 

 1 +
𝑁

16𝐿
𝑙𝑜𝑔2

𝑁

8𝐿
 .                                                                  (13) 

When 𝐿 runs through the values 1,2,4, … , 𝑁/8, the total 

number of all CORDIC operations is then      
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  1 +
𝑁

16𝐿
𝑙𝑜𝑔2

𝑁

16𝐿
 =  

𝑁

8
𝑙𝑜𝑔2

𝑁

16
+𝑙𝑜𝑔2

𝑁

2𝐿                         (14) 

All A(n) and B(n) values can be split to find an equivalent 

number of additions and multiplications: 

 2(
𝑁

8
𝑙𝑜𝑔2

𝑁

16
+𝑙𝑜𝑔2

𝑁

2
)  = [2𝑛−2(𝑛 − 5) +  2(𝑛 − 1)]  +

 [2𝑛−2 − 2(𝑛 − 2)  +  2(𝑛 − 2)]                                        (15) 

In which each of 2(𝑛 − 2) CORDIC operations computing 

 𝑝𝐿
1(0) and 𝑝𝐿

1(
𝑁

8𝐿
) need 1 multiplication and 2 additions, each 

of  2𝑛−2 − 2(𝑛 − 2) CORDIC operations whose angle is just 

equal to 
𝜋

4
 need only2 multiplications and 2 + 4 additions , and 

each of  2𝑛−2(n − 5)  +  2(n − 1)  CORDIC operations can 

be realized by using 3 multiplications and 3 + 4 additions. 

Therefore the total number of real multiplications required 

2𝑛−2(3n − 13)  +  4n − 2 , and the number of real additions 

required is   2𝑛−2(7n − 29)  +  6n + 2. The traditional Fast 

Fourier Transform (FFT) uses 2n2𝑛  real multiplications and 

3n2𝑛  additions. The complex multiplication is realized by 3 

real multiplication and 3 real additions. We need only 

2𝑛−1(n − 3)  +  2 multiplications and 2𝑛−1(3n − 5)  +
 4 additions. Table 1 shows a comparison between these and 

our method for different values of 𝑁. From the table we see 

that for large values of N our method use a few more 

multiplications, but fewer additions. But the total number of 

operations is lower, which is important if addition and 

multiplication take the same time, as in many DSP Processors. 

In the above we have just discussed the DFT/IDFT for real 

data.  
Table 2. Number of real multiplications in FFT and CORDIC based FFT for 

DFT algorithms. 

 
Table 3. Number of real additions in FFT and CORDIC based FFT for DFT 
algorithms. 

 
 

B. Complex data DFT/IDFT transformations: 

For complex data  

                  f(n)  = 𝑓𝑟 𝑛 +  𝑗𝑓𝑖 𝑛 ,  

              we have , F(k) =
1

𝑁
 f n e−𝑗

2𝜋

𝑁
 𝑘𝑛

𝑁−1

𝑛=0
 

         =  
1

𝑁
  fr n + jfi n  cos

2𝜋

𝑁
 𝑘𝑛

𝑁−1

𝑛=0
 + 

        
1

𝑁
  fi n − jfr n  sin

2𝜋

𝑁
 𝑘𝑛,

𝑁−1

𝑛=0
                 (16) 

                      

F n =   F k e𝑗
2𝜋

𝑁
 𝑘𝑛

𝑁−1

𝑘=0
+                                      

                       Fr k + jFi k  cos
2𝜋

𝑁
 𝑘𝑛 −

𝑁−1

𝑘=0

                           Fi k + jFr k  sin
2𝜋

𝑁
 𝑘𝑛.

𝑁−1

𝑘=0
                  (17) 

So for complex data, using the new algorithm, the number of 

real multiplications and real additions is twice the number of 

operations for real data. Compared to the traditional FFT/IFFT 

algorithm, the new algorithm requires more data address 

computations, as shown in equations (2),(3), (4) and (5). 

However, it is easy to realize these data address computations 

in Hardware or by table look-up, noting that  aj2
𝑀−1−𝑗

𝑀−1

𝑗 =1
 

in binary is just a part of the reversed bit pattern of the binary 

representation for  𝑘 =  aj2
𝑗

𝑀−1

𝑗=0
 .                         

 

                   III. CORDIC BASED DFT/IDFT 

In CORDIC based DFT/IDFT using FFT/IFFT algorithm, it is 

found that, the number of real multiplications and real 

additions is respectively reduced to 2𝑛−2(3𝑛 − 13) + 4𝑛 − 2 

and 2𝑛−2(7𝑛 − 29) + 6𝑛 + 2 for real data DFT. The main 

advantage of this proposed algorithm is to reduce the total 

number of floating point operations is very less and smaller. 

Hence, first it is required to rewrite the DFT in terms of FFT 

either in decimation-in-time (DIT) or decimation-in-frequency 

(DIF) secondly, expresses the FFT computations in terms of 

the plane rotations. The number of such rotations are 

2𝑛−2(𝑛 − 4)  + 2(𝑛 − 1) needed for 𝑁 = 2𝑛 - point FFT. The 

number of additions and multiplications quoted above 

corresponds to the implementation of each rotation as a 

complex multiplication. 

  Table 4. Comparison of some performance parameters

We iteratively use 16 butterfly processors. Figure 3 

shows one butterfly processor architecture. Finally all 

F(k) are calculated(Note actually only 32 values of 

𝐹(𝑘) = 𝐴(𝑘) − 𝑗𝐵(𝑘) are calculated, since 𝐹(𝑁 − 𝑘) =
𝐴(𝑘) + 𝑗𝐵(𝑘),  the other 32 values are easily obtained). 

Considering all types of butterfly processors 

computations, it is possible to design a butterfly processor 

based on standard multipliers as shown in Figure 3. 
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Where c1, sl, s2 are used to control the computations. 

Of the 16 butterfly processors, 6 needs five multipliers 

and the other 10 need four multipliers.  

 
Fig.3.The structure of a butterfly processor 

For IDFT, 𝐹𝑟 𝑘 = 𝐹𝑟 𝑁 − 𝑘  and 𝐹𝑖 𝑘 = −𝐹𝑖 𝑁 − 𝑛  

Because 𝑓(𝑛) = 𝐴(𝑛) − 𝐵(𝑛) and 𝑓(𝑁 − 𝑛) = 𝐴(𝑛) +
𝐵(𝑛) for IDFT, an extra step is needed at the end for 

those computations. The remaining computations are 

the same as for the DFT. In order to conveniently 

construct a long point DFT/IDFT by using a pipelined 

CORDIC processors. It is better design comparatively 

standard form of DFT/IDFT. A CORDIC computation 

performs a vector rotation: 

                    
𝑋′

𝑌′
 =  

𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼

  
𝑋
𝑌
   ,                    (18) 

by a number of micro rotations using a predetermined set 

of angles  Ø𝑖  derived from α. CORDIC processors would 

be needed to achieve that input rates. 

Fig.4 64-point CORDIC based DFT computing algorithm 

 

 

 

             

 

             Fig.5 Circular rotation mode

 

 

 

 

 

                          

  

  

 

 

 

 

              

 

             

 

            Fig.6 Hyperbolic rotation mode

 

                                                                                                   

 

 

The realization of CORDIC based DFT can be 

obtained by using hyperbolic rotation mode as shown in 

figure 6.

 

 

          Fig.7 .  A Pipelined  CORDIC s t ruc ture

 

The pipelined CORDIC structure is shown in Figure 7, in 

 

which the leftmost part is controlled by

 

𝑇0 , 𝑇1 , …

 

, 𝑇𝑝−𝑖

 

performs the equivalent of four multiplications, one 

addition and one subtraction. But using the CORDIC 

algorithm, the results must be multiplied by a constant

 

1

𝐾𝑒
≈ 1.6467603,

 

It is approximated as 

 

 

1

𝐾𝑒
≈

1

2
(1 +

1

4
)(1 −

1

32
)

 

(1 +
1

256
)(1 −

1

1024
)

 

  

 

We can see from the above analysis that the DFT/IDFT 

can be calculated using CORDIC computations and 

additions/subtractions. This was actually our main 

motivation for the derivation of CORDIC based 

method. It is quite  efficient  for a high speed long-

point DFT/IDFT. 
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Fig.9 Simulation results 

 

Initially the DFT was decomposed in terms of COS and SINE 

terms by using Euler’s formula, then for the computation of 

these trigonometric components we used pipelined CORDIC 

processor. For hardware implementation, we written Verilog 

code and compiled by using ModelSim software. Further 

simulated and synthesized by using Xilinx ISE design suite 

version 12.0 and implemented on Spartan 6.0 FPGA. Finally 

synthesis report and delay report are noted down. From the 

results it is observed that, the total real time taken for 

execution is 1.00secs, the total CPU time taken for execution 

is 0.94 secs. The macro statistics of CORDIC requires only 

single ROM, one 4x8-bit ROM, 20-adders and subtractions, 

three 8-bit adders, one 8-bit subtraction, 32 registers, eight 2-

bit registers, 24 8-bit registers and 2 – multiplexers.                                                    

                V.     CONCLUSIONS 

By exploiting some trigonometric identities in the DFT 

computation, the number of multiplications needed for 

DFT/IDFT has been reduced compared to the 

traditional FFT. One way to realize the new algorithm 

in hardware, which is more efficient for a long-point DFT, 

is to use a pipelined CORDIC algorithm, which 

simultaneously completes four multiplications. In the 

pipelined CORDIC structure, the data rate of the 

DFT/IDFT depends only on one carry look-ahead adder as 

the critical component in the pipeline. At present 

integration technology, it is possible to perform each 

pipeline step is as minimum as possible. 
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