
CRC Algorithm Implementation in FPGA by

Xmodem protocol

T.V.A. Bhanuprakash
1
, K. Kameswar reddy

2
 S. Mahaboob Basha

3

1
M.Tech student, AVR &SVR Engg College, Kurnool

2
 Assistant Professor, Dept of ECE, AVR &SVR Engg College, Kurnool

3
 Associate Professor and HOD, Dept of ECE, AVR &SVR Engg College, Kurnool

Abstract: - Xmodem protocol is a widely used asynchronous file transfer protocol. By using Xmodem protocol we

can implement the CRC algorithm with 16-bit data. Here we studied the implementation of CRC algorithm by LFSR

using FPGA. This paper studies of implementation of CRC algorithm of 16-bit and 32-bit by single -byte and multi-

byte parallel circuit. We can achieve the synthesis design using Verilog language.

Keywords: Xmodem , CRC , Checksum , packet, LFSR

I. INTRODUCTION

XMODEM, like most file transfer protocols,

breaks up the original data into a series of "packets"

that are sent to the receiver, along with additional

information allowing the receiver to determine

whether that packet was correctly received. Xmodem

is divided as Xmodem and 1k-Xmodem, Xmodem

transmits the data as 128-bytes block form and 1k-

Xmodem transmits as1024 bytes block form. These

Xmodem supports the CRC and Checksum

verification methods. The Xmodem CRC checksum

requires the 128 bytes for the data packets. When the

packet is received by the receiver, it sends

conformation character if checksum is correct. It send

the negative conformation character if error occurs.

The Xmodem protocol of data is depends on

efficiency of transmitted data check time. The Cyclic

redundancy Check code (abbrivated as "CRC") is

used to check the errors in the data. It is applicable to

verify the data in Xmodem protocol, RFID protocol,

USB communication protocol etc.

 XMODEM-1K was an expanded version of

XMODEM-CRC, which indicated the longer block

size in the sender by starting a packet with the

<STX> character instead of <SOH>. Like other

backward-compatible XMODEM extensions, it was

intended that a -1K transfer could be started with any

implementation of XMODEM on the other end,

backing off features as required.

XMODEM-1K was originally one of the

many improvements to XMODEM introduced by

Chuck Forsberg in his YMODEM protocol. Forsberg

suggested that the various improvements were

optional, expecting software authors to implement as

many of them as possible. Instead they generally

implemented the bare minimum, leading to a

profusion of semi-compatible implementations, and

eventually, the splitting out of the name "YMODEM"

into "XMODEM-1K" and a variety of YMODEMs.

Thus XMODEM-1K actually post-dates YMODEM,

but remained fairly common anyway.

A backwards compatible extensions of

XMODEM with 32k and 64k block lengths was

created by Adontec for better performance on high-

speed error free connections like ISDN or TCP/IP

networks.

CRC Xmodem is very similar to Checksum

Xmodem. The protocol initiation has changed and the

8 bit checksum has been replaced by a 16 bit CRC.

Only theses changes are presented.

One of the earliest and most persistent

problems with Xmodem was transmission errors

which were not caught by the checksum algorithm.

Assuming that there is no bias in asynchronous

communications errors, we would expect that 1 out of

every 256 erroneous complete or oversized Xmodem

packets to have a valid checksum. With the same

assumption, if the checksum were 16 bits, we would

expect 1 out of every 65,536 erroneous complete or

oversized packets would have a valid checksum.

Considerable theoretical research has shown

that a 16 bit cyclical redundancy check character

(CRC/16) will detect a much higher percent of errors

such that it would only allow 1 undetected bit in error

for every 10
14

 bits transmitted. That's 1 undetected

error per 30 years of constant transmission at 1

megabit per second. However, my personal

experience indicates that something around 10
9
 to

10
10

 is more realistic. Why such a vast improvement

over the checksum algorithm? It is caused by the

2751

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100794

unique properties that prime numbers have when

being divided into integers. Simply stated, if an

integer is divided by a prime number, the remainder

is unique. The CRC/16 algorithm treats all 1024 data

bits in an Xmodem packet as an integer, multiples

that integer by 2^16 and then divides that 1040 bit

number by a 17 bit prime number. The low order 16

bits of the remainder becomes the 16 bit CRC.

 The 17 bit prime number in CRC Xmodem

is 2
16

 + 2
12

 + 2
5
 + 1 or 65536 + 4096 + 32 + 1 =

69665. So calculating the CRC is simple, just

multiply the 128 byte data number by 65536, divide

by 69665 and the low order 16 bits of the remainder

are the CRC. The only problem is, I've never seen a

computer which has instructions to support 130 byte

integer arithmetic! Fortunately for us, Seephan

Satchell, Satchell Evaluations, published a

specification a very efficient algorithm to calculate

the CRC without either 130 byte arithmetic or bit

manipulation. Appendix A contains the source code,

in IBM/PC BASIC, for the calculation of a CRC.

The initiation of CRC Xmodem was designed to

provide for automatic fall back to Checksum

Xmodem if the transmitter does not support the CRC

version. The receiver requests CRC Xmodem by

sending the letter C (decimal 67) instead of a NAK. If

the transmitter supports CRC Xmodem, it will begin

transmission of the first Xmodem packet upon receipt

of the C. If the transmitter does not support CRC

Xmodem, it will ignore the C. The receiver should

timeout after 3 seconds and repeat sending the C.

After 3 timeouts, the receiver should fall back to the

checksum Xmodem protocol and send a NAK.

II ALGORITHM PRINCIPLES OF CRC:

The following is the specify CRC implementation

principle:

 The k-bit binary number is about using

M(X) is

M (X) = Ck-1 X
k – 1

 + Ck-2 X
k – 2

 + ….+ Ci X
i
 +

……+ C1 X

 + C0 …… (1)

Let G (X) = Generated polynomial, r = highest power

of sequence data then

M (X) * x
r
 = Ck-1 X

k+r – 1
 + Ck-2 X

k+r – 2
 + …+ C1

X
 k-1

 + C0 X
k
 ……… (2)

The result is divided by generated polynomial G(x)

(M(X)..X
r
) / G(x) = Q(X) +R(X)) / G(X) …(3)

Here R(X) is remainder and it is CRC.

 R(X) is expressed as

R (X) = dr-1. x
r-1

 +…+ d1 x
1
 + r0 ………….(.4)

The final data is transmitted as

M
1
 = (CK-1,……… C0, d r-1, ….d1,d0) …… (5)

Figure 1 is a typical circuit, if the generator

polynomial G (x) is 1, the output of the D flip-flop

connects to the output of the XOR gate; if it is 0, and

the output of the D flip-flop connects to the output of

the superior flip-flop. Therefore, this figure can be

greatly simplified in the case of a fixed generator

polynomial.

 There are some standard generator

polynomials in the practical applications, as follows:

CRC 8 : X
8
+ X

5
 + X

4
 + 1 with number 0x131;

CRC 12: X
12

+ X
11

 + X
3
 + X

2
 +1

with number 0x180D;

CRC 16: X
16

+ X
12

 + X
5
 + 1 with number 0x11021;

ANSI CRC 16: X
16

+ X
15

 + X
2
 + 1

with number 0x18005;

CRC 32: X
32

+ X
26

+ X
23

+ X
22

+ X
16

+ X
12

+X
11

+

X
10

+X
8
+ X

7
+ X

5
+ X

4
+X

2
+X

1
+1,

with number 0x104C11DB7.

To develop a hardware circuit for computing the

CRC checksum, we reduce the polynomial division

process to its essentials. The process employs a shift

register, which we denote by CRC. This is of length r

(the degree of G) bits, not as you might expect. When

the subtractions (exclusive or’s) are done, it is not

necessary to represent the high-order bit, because the

high-order bits of G and the quantity it is being

subtracted from are both 1. The division process

might be described informally as follows:

Initialize the CRC register to all 0-bits. Otherwise,

just shift CRC and m left 1 position. If there are more

message bits, go back to get the next one. It might

seem that the subtraction should be done first, and

then the shift. It would be done that way if the CRC

register held the entire generator polynomials, which

in bit form are bits. Instead, the CRC register holds

only the low-order r bits of G, so the shift is done

first, to align things properly.

 Get first/next message bit m. If the high-order bit of

CRC is 1, Shift CRC and m together left 1 position,

and XOR the result with the low-order r bits of G.

Below is shown the contents of the CRC register for

the generator G = X
3
 + X + 1 and the message

M =X
7
 + X

6
 + X

5
 + X

2
 + X

 Expressed in binary, G = 1011 and M = 11100110.

000 Initial CRC contents. High-order bit is 0, so just

shift in first message bit.

001 High-order bit is 0, so just shift in second

message bit, giving:

2752

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100794

011 High-order bit is 0 again, so just shift in third

message bit, giving:

111 High-order bit is 1, so shift and then XOR with

011, giving:

101 High-order bit is 1, so shift and then XOR with

011, giving:

001 High-order bit is 0, so just shift in fifth message

bit, giving:

011 High-order bit is 0, so just shift in sixth message

bit, giving:

111 High-order bit is 1, so shift and then XOR with

011, giving:

101 There are no more message bits, so this is the

remainder.

In the Xmodem protocol, we use the standard CCITT

(Consultative Committee for International Telephony

and Telegraphy) method, CRC16: X
16

+ X
12

+ X
5
+ 1

Implementation of the CRC hardware circuit:

1) We first clear the flip-flop by CR, and move the

upper 16 bits (2 bytes) which need to be verified into

16 of the trigger. The upper 16 bits of the data

stream will not be changed as the trigger has been

cleared;

2) Then we continue flow the data into the trigger, it

just need right 1-bit if the output of the r15 trigger is

0; and it need right 1-bit after the modulo 2 operation

if the output is 1;

3) At last we need continuous move into 16-bit 0

after the data stream M (x) all into the trigger, and

end the calculation of this group data CRC

Figure 2 the process of the circuit is summarized as

follows:

The above circuit using the general process of the

modulo 2 division operation, its biggest drawback is

need continuous input 16 "0" after the data stream M

(x) and the CRC of the trigger need to more 16 times

calculation.

III. THE IMPLEMENTATION OF CRC

PARALLEL COMPUTING

In the Xmodem protocol, each packet is 128 bytes

(1024 bits). We need 1040 (1024 + 6) cycles to figure

out the CRC using the Figure 2. This design uses a

parallel computing and hardware implementations in

order to improve the real-time.

We main narrative the 8-bit CRC parallel computing.

The state of the flip-flop is the remainder of the CRC

as shown in Figure 1. The remainder of the CRC is

just concerned with the former input and the

remainder of the previous state when the serial

operation. The calculation of 8-bit parallel operation

as follows:

Supposed rji as the value of the trigger, i = 1, 2... n,

as the input code sequence, j = 0, 1, ..., k-1, as the

trigger coding,

 The input data is 8-bit, so the maximum of i is 8.

We can transitive launch by

CCITT CRC16 (the polynomial is G(X) = X
16

 + X
12

+X
2
 + 1, that is, k = 16) and the equation (6).

We need 24-clock to calculate the CRC of the 8-bit

data. In the first 16-clock, we move the 8-bit data into

the high trigger and the low 8-bit is zeros. And this is

2753

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100794

the initial moment, we can get the CRC of the 8-bit

data after 8 clocks and the input data is zeros. Then

the initial moment of the trigger values are:

 If is represent the value after 8 clocks, we

substituted the into equation (6) and get the final

expression of

We can derive from other similar items:

 Fig3 8-bit parallel CCITT CRC16 hardware circuit

IV PACKETS

A method of transferring data by breaking it up into

small chunks called packets. Packet data is how

most data travels over the Internet, and, in recent

years, over all cell phone networks as well. With

packet-switched data, each user only consumes

network resources when they are actually transferring

data. This is often superior to circuit-switched data,

where an open data connection must be maintained,

which uses network resources even when idle.

Packet-switched is the more modern type, and

usually faster. .In a mobile phone, data is used for

functions involving the Internet, as well as most

kinds of streaming video and audio.

 There are many

different types of packet data for mobile phones, with

different maximum speeds. A packet is the unit of

data that is routed between an origin and a destination

on the Internet or any other packet-switched network.

When any file is sent from one place to another on

the Internet, the Transmission Control Protocol

(TCP) layer of TCP/IP divides the file into "chunks"

of an efficient size for routing. Each of these packets

is separately numbered and includes the Internet

address of the destination. The individual packets for

a given file may travel different routes through the

Internet. When they have all arrived, they are

reassembled into the original file

 The packet was prefixed by a simple 3-byte

header containing a <SOH> character, a "block

number" from 0-255, and the "inverse" blocks

number—255 minus the block number. Block

numbering starts with 1 for the first block sent, not 0.

 The packet was also

suffixed with a single-byte checksum of the data

bytes. The checksum was the sum of all bytes in the

packet modulo 256. The modulo operation was easily

computed by discarding all but the eight least

significant bits of the result, or alternatively on an

eight bit machine, ignoring arithmetic overflow

which would produce the same effect automatically.

In this way the checksum was restricted to an eight

bit quantity which was able to be expressed using a

single byte. For example, if this checksum method

was used on a tiny data packet containing only two

bytes carrying the values 130 and 130, the total of

these codes is 260 and the resulting checksum is 4.

The complete packet was thus 132 bytes long,

containing 128 bytes of data, for a total channel

efficiency of about 97%.

2754

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100794

 The file was marked

"complete" with a <EOT> character sent after the last

block. This character was not in a packet, but sent

alone as a single byte. Since the file length was not

sent as part of the protocol, the last packet was

padded out with a "known character" that could be

dropped. In the original specification this defaulted to

<SUB> or 26 decimal, which CP/M used as the end-

of-file marker inside its own disk format. The

standard suggested any character could be used for

padding, but there was no way for it to be changed

within the protocol itself – if an implementation

changed the padding character, only clients using the

same implementation would correctly interpret the

new padding character.

V. IMPLEMENTATION AND RESULTS

The proposed system is designed using Verilog

hardware description language and structural form of

coding. The basic blocks of scan based test structure are

completely synthesized using Xilinx XST and implemented

on device family Spartan 3e, device XC3S500E, and

package FG320 with speed grade 4.

Fig 4 Simulation Results for CRC16

Fig 5 Simulation Results for CRC32

VI. CONCLUSION

This paper analysis the principle of the CRC

calculation, redesign the per-byte parallel computing

to the checksum of CCITT CRC16 and CRC 32,

present a general method of parallel computing of

CRC and the CRC algorithm solution of the data

packet. We implement the Xmodem protocol with

CRC check use FPGA based on the above method.

REFERENCES

[1] YU Xun The 32-bit cyclic redundancy check

parallel algorithm and hardware

implementation[J].Information Technology, 2007.

[2] LI You-zhong The generic parallel CRC

calculation principle and its hardware

implementation[J]. Northwest Minorities University

(NaturalScience) 2002.

[3] LI You-mou, FANG Ding-yi. CRC coding

algorithm research and Realization[J]. Journal of

Northwest University(Natural Science Edition),

2006.

[4] JI Shang-man, LI Wei, SHEN Ke-jie, YAO Hui,

TAO Zhi-jie. Improved CRC Arithmetic and

Implementation by SCM[J]. Industrial Control

Computer. 2009.

[5] ZHU Rong-hua. The Principle and

Implementation of a Parallel CRC Computing[J].

Acta Electronica Sinica, 1997.

[6] ZHANG Shu-gang,ZHANG Sui-nan,HUANG

Shi-tan. CRC Parallel Computation Implementation

on FPGA[J]. Computer Technology And

Development, 2007.

2755

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100794

