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Abstract: - Xmodem protocol is a widely used asynchronous file transfer protocol. By using Xmodem protocol we 

can implement the CRC algorithm with 16-bit data. Here we studied the implementation of CRC algorithm by LFSR 

using FPGA. This paper studies of implementation of CRC algorithm of 16-bit and 32-bit by single -byte and multi-

byte parallel circuit. We can achieve the synthesis design using Verilog language.   
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I. INTRODUCTION 

       
XMODEM, like most file transfer protocols, 

breaks up the original data into a series of "packets" 

that are sent to the receiver, along with additional 

information allowing the receiver to determine 

whether that packet was correctly received. Xmodem 

is divided as Xmodem and 1k-Xmodem, Xmodem 

transmits the data as 128-bytes block form and 1k-

Xmodem transmits as1024 bytes block form. These 

Xmodem supports the CRC and Checksum 

verification methods. The Xmodem CRC checksum 

requires the 128 bytes for the data packets. When the 

packet is received by the receiver, it sends 

conformation character if checksum is correct. It send 

the negative conformation character if error occurs. 

The Xmodem protocol of data is depends on 

efficiency of transmitted data check time.  The Cyclic 

redundancy Check code (abbrivated as "CRC") is 

used to check the errors in the data. It is applicable to 

verify the data in Xmodem protocol, RFID protocol, 

USB communication protocol etc.   

 XMODEM-1K was an expanded version of 

XMODEM-CRC, which indicated the longer block 

size in the sender by starting a packet with the 

<STX> character instead of <SOH>. Like other 

backward-compatible XMODEM extensions, it was 

intended that a -1K transfer could be started with any 

implementation of XMODEM on the other end, 

backing off features as required. 

XMODEM-1K was originally one of the 

many improvements to XMODEM introduced by  

Chuck Forsberg in his YMODEM protocol. Forsberg 

suggested that the various improvements were 

optional, expecting software authors to implement as 

many of them as possible. Instead they generally 

implemented the bare minimum, leading to a 

profusion of semi-compatible implementations, and 

eventually, the splitting out of the name "YMODEM" 

into "XMODEM-1K" and a variety of YMODEMs. 

Thus XMODEM-1K actually post-dates YMODEM, 

but remained fairly common anyway. 

A backwards compatible extensions of 

XMODEM with 32k and 64k block lengths was 

created by Adontec for better performance on high-

speed error free connections like ISDN or TCP/IP 

networks.  

CRC Xmodem is very similar to Checksum 

Xmodem. The protocol initiation has changed and the 

8 bit checksum has been replaced by a 16 bit CRC. 

Only theses changes are presented. 

One of the earliest and most persistent 

problems with Xmodem was transmission errors 

which were not caught by the checksum algorithm. 

Assuming that there is no bias in asynchronous 

communications errors, we would expect that 1 out of 

every 256 erroneous complete or oversized Xmodem 

packets to have a valid checksum. With the same 

assumption, if the checksum were 16 bits, we would 

expect 1 out of every 65,536 erroneous complete or 

oversized packets would have a valid checksum.  

Considerable theoretical research has shown 

that a 16 bit cyclical redundancy check character 

(CRC/16) will detect a much higher percent of errors 

such that it would only allow 1 undetected bit in error 

for every 10
14

 bits transmitted. That's 1 undetected 

error per 30 years of constant transmission at 1 

megabit per second. However, my personal 

experience indicates that something around 10
9
 to 

10
10

 is more realistic. Why such a vast improvement 

over the checksum algorithm? It is caused by the 
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unique properties that prime numbers have when 

being divided into integers. Simply stated, if an 

integer is divided by a prime number, the remainder 

is unique. The CRC/16 algorithm treats all 1024 data 

bits in an Xmodem packet as an integer, multiples 

that integer by 2^16 and then divides that 1040 bit 

number by a 17 bit prime number. The low order 16 

bits of the remainder becomes the 16 bit CRC. 

 The 17 bit prime number in CRC Xmodem 

is 2
16

 + 2
12

 + 2
5
 + 1 or 65536 + 4096 + 32 + 1 = 

69665. So calculating the CRC is simple, just 

multiply the 128 byte data number by 65536, divide 

by 69665 and the low order 16 bits of the remainder 

are the CRC. The only problem is, I've never seen a 

computer which has instructions to support 130 byte 

integer arithmetic! Fortunately for us, Seephan 

Satchell, Satchell Evaluations, published a 

specification a very efficient algorithm to calculate 

the CRC without either 130 byte arithmetic or bit 

manipulation. Appendix A contains the source code, 

in IBM/PC BASIC, for the calculation of a CRC.   

The initiation of CRC Xmodem was designed to 

provide for automatic fall back to Checksum 

Xmodem if the transmitter does not support the CRC 

version. The receiver requests CRC Xmodem by 

sending the letter C (decimal 67) instead of a NAK. If 

the transmitter supports CRC Xmodem, it will begin 

transmission of the first Xmodem packet upon receipt 

of the C. If the transmitter does not support CRC 

Xmodem, it will ignore the C. The receiver should 

timeout after 3 seconds and repeat sending the C. 

After 3 timeouts, the receiver should fall back to the 

checksum Xmodem protocol and send a NAK. 

 

II ALGORITHM PRINCIPLES OF CRC: 

The following is the specify CRC implementation 

principle: 

                   The k-bit binary number is about    using 

M(X)    is    

M (X) = Ck-1   X
k – 1

  + Ck-2   X
k – 2

  + ….+ Ci   X
i
  + 

……+ C1   X
  
 +  C0       ……                  (1) 

Let G (X) = Generated polynomial, r = highest power 

of sequence data   then 

M (X) * x
r 
 = Ck-1   X 

k+r  – 1
  + Ck-2   X

k+r – 2
  + …+ C1   

X
 k-1 

 +  C0    X
k
 ………                          (2) 

The result is divided by generated polynomial   G(x)  

(M(X)..X
r
) / G(x) = Q(X) +R( X) ) / G(X) …(3)

          
 

    

Here   R(X) is remainder and it is CRC. 

    R(X) is expressed as   

R (X) = dr-1. x 
r-1

 +…+ d1 x
1
  + r0 ………….(.4) 

The final data is transmitted as 

M
1 
  =   (CK-1,……… C0, d r-1, ….d1,d0  ) …… (5) 

Figure 1 is a typical circuit, if the generator 

polynomial G (x) is 1, the output of the D flip-flop 

connects to the output of the XOR gate; if it is 0, and 

the output of the D flip-flop connects to the output of 

the superior flip-flop. Therefore, this figure can be 

greatly simplified in the case of a fixed generator 

polynomial. 

 

            There are some standard generator 

polynomials in the practical applications, as follows: 

 

CRC 8 :  X
8 
+ X

5
 + X

4
 + 1   with number  0x131; 

CRC 12: X
12 

+ X
11

 + X
3
 + X

2
 +1  

with number 0x180D; 

CRC 16: X
16 

+ X
12

 + X
5
 + 1 with number 0x11021; 

ANSI CRC 16: X
16 

+ X
15

 + X
2
 + 1 

with number 0x18005; 

CRC 32: X 
32

+ X
26 

+ X
23 

+ X
22 

+ X
16 

+ X 
12 

+X
11 

+ 

X
10 

+X
8 
+ X

7
+ X

5 
+ X

4 
+X

2 
+X

1
+1, 

with number 0x104C11DB7. 

To develop a hardware circuit for computing the 

CRC checksum, we reduce the polynomial division 

process to its essentials. The process employs a shift 

register, which we denote by CRC. This is of length r 

(the degree of G) bits, not as you might expect. When 

the subtractions (exclusive or’s) are done, it is not 

necessary to represent the high-order bit, because the 

high-order bits of G and the quantity it is being 

subtracted from are both 1. The division process 

might be described informally as follows: 

Initialize the CRC register to all 0-bits. Otherwise, 

just shift CRC and m left 1 position. If there are more 

message bits, go back to get the next one. It might 

seem that the subtraction should be done first, and 

then the shift. It would be done that way if the CRC 

register held the entire generator polynomials, which 

in bit form are bits. Instead, the CRC register holds 

only the low-order r bits of G, so the shift is done 

first, to align things properly. 

 Get first/next message bit m.  If the high-order bit of 

CRC is 1,   Shift CRC and m together left 1 position, 

and XOR the result with the low-order r bits of G. 

Below is shown the contents of the CRC register for 

the generator G = X
3
 + X + 1 and the message 

M =X
7
 + X

6
 + X

5
 + X

2
 + X  

 Expressed in binary, G = 1011 and M = 11100110. 

000 Initial CRC contents. High-order bit is 0, so just 

shift in first message bit. 

001 High-order bit is 0, so just shift in second 

message bit, giving: 
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011 High-order bit is 0 again, so just shift in third 

message bit, giving: 

111 High-order bit is 1, so shift and then XOR with 

011, giving: 

101 High-order bit is 1, so shift and then XOR with 

011, giving: 

001 High-order bit is 0, so just shift in fifth message 

bit, giving: 

011 High-order bit is 0, so just shift in sixth message 

bit, giving: 

111 High-order bit is 1, so shift and then XOR with 

011, giving: 

101 There are no more message bits, so this is the 

remainder. 

 

In the Xmodem protocol, we use the standard CCITT 

(Consultative Committee for International Telephony 

and Telegraphy) method, CRC16:  X 
16

+ X 
12

+ X 
5
+ 1 

Implementation of the CRC hardware circuit: 

1) We first clear the flip-flop by CR, and move the 

upper 16 bits (2 bytes) which need to be verified into 

16 of the trigger.  The upper 16 bits of the data 

stream will not be changed as the trigger has been 

cleared;  

2) Then we continue flow the data into the trigger, it 

just  need right 1-bit if the output of the r15 trigger is 

0; and it need  right 1-bit after the modulo 2 operation 

if the output is 1;  

3) At last we need continuous move into 16-bit 0 

after the data stream M (x) all into the trigger, and 

end the calculation of this group data CRC  

Figure 2 the process of the circuit is summarized as 

follows:  

The above circuit using the general process of the 

modulo 2 division operation, its biggest drawback is 

need continuous input 16 "0" after the data stream M 

(x) and the CRC of the trigger need to more 16 times 

calculation. 

III. THE IMPLEMENTATION OF CRC 

PARALLEL COMPUTING 

In the Xmodem protocol, each packet is 128 bytes 

(1024 bits). We need 1040 (1024 + 6) cycles to figure 

out the CRC using the Figure 2. This design uses a 

parallel computing and hardware implementations in 

order to improve the real-time.  

We main narrative the 8-bit CRC parallel computing. 

The state of the flip-flop is the remainder of the CRC 

as shown in Figure 1. The remainder of the CRC is 

just concerned with the former input and the 

remainder of the previous state when the serial 

operation. The calculation of 8-bit parallel operation 

as follows: 

Supposed rji as the value of the trigger, i = 1, 2... n, 

as the  input code sequence, j = 0, 1, ..., k-1, as the 

trigger coding, 

 .........   

    The input data is 8-bit, so the maximum of i is 8. 

We can   transitive launch     by 

CCITT CRC16 (the polynomial is G(X) = X
16

 + X
12

 

+X
2
 + 1, that is, k = 16) and the equation (6).  

We need 24-clock to calculate the CRC of the 8-bit 

data. In the first 16-clock, we move the 8-bit data into 

the high trigger and the low 8-bit is zeros. And this is 
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the initial moment, we can get the CRC of the 8-bit 

data after 8 clocks and the input data is zeros. Then 

the initial moment of the trigger values are:  

 If   is represent the value after 8 clocks, we 

substituted the into equation (6) and get the final 

expression of   

We can derive from other similar items: 

 

    Fig3 8-bit parallel CCITT CRC16 hardware circuit 

 

 

IV    PACKETS 

A method of transferring data by breaking it up into 

small chunks called packets.  Packet data is how 

most data travels over the Internet, and, in recent 

years, over all cell phone networks as well. With 

packet-switched data, each user only consumes 

network resources when they are actually transferring 

data. This is often superior to circuit-switched data, 

where an open data connection must be maintained, 

which uses network resources even when idle. 

Packet-switched is the more modern type, and 

usually faster. .In a mobile phone, data is used for 

functions involving the Internet, as well as most 

kinds of streaming video and audio. 

    There are many 

different types of packet data for mobile phones, with 

different maximum speeds. A packet is the unit of 

data that is routed between an origin and a destination 

on the Internet or any other packet-switched network.  

When any file is sent from one place to another on 

the Internet, the Transmission Control Protocol 

(TCP) layer of TCP/IP divides the file into "chunks" 

of an efficient size for routing. Each of these packets 

is separately numbered and includes the Internet 

address of the destination. The individual packets for 

a given file may travel different routes through the 

Internet. When they have all arrived, they are 

reassembled into the original file 

         The packet was prefixed by a simple 3-byte 

header containing a <SOH> character, a "block 

number" from 0-255, and the "inverse" blocks 

number—255 minus the block number. Block 

numbering starts with 1 for the first block sent, not 0.  

                                                 The packet was also 

suffixed with a single-byte checksum of the data 

bytes. The checksum was the sum of all bytes in the 

packet modulo 256. The modulo operation was easily 

computed by discarding all but the eight least 

significant bits of the result, or alternatively on an 

eight bit machine, ignoring arithmetic overflow 

which would produce the same effect automatically. 

In this way the checksum was restricted to an eight 

bit quantity which was able to be expressed using a 

single byte. For example, if this checksum method 

was used on a tiny data packet containing only two 

bytes carrying the values 130 and 130, the total of 

these codes is 260 and the resulting checksum is 4. 

The complete packet was thus 132 bytes long, 

containing 128 bytes of data, for a total channel 

efficiency of about 97%. 
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   The file was marked 

"complete" with a <EOT> character sent after the last 

block. This character was not in a packet, but sent 

alone as a single byte. Since the file length was not 

sent as part of the protocol, the last packet was 

padded out with a "known character" that could be 

dropped. In the original specification this defaulted to 

<SUB> or 26 decimal, which CP/M used as the end-

of-file marker inside its own disk format. The 

standard suggested any character could be used for 

padding, but there was no way for it to be changed 

within the protocol itself – if an implementation 

changed the padding character, only clients using the 

same implementation would correctly interpret the 

new padding character. 

V. IMPLEMENTATION AND RESULTS 

The proposed system is designed using Verilog 

hardware description language and structural form of 

coding. The basic blocks of scan based test structure are 

completely synthesized using Xilinx XST and implemented 

on device family Spartan 3e, device XC3S500E, and 

package FG320 with speed grade 4. 

 
Fig 4 Simulation Results for CRC16 

 

 
 

Fig 5 Simulation Results for CRC32 

   

 

VI. CONCLUSION 
 

This paper analysis the principle of the CRC 

calculation, redesign the per-byte parallel computing 

to the checksum of CCITT CRC16 and CRC 32, 

present a general method of parallel computing of 

CRC and the CRC algorithm solution of the data 

packet. We implement the Xmodem protocol with 

CRC check use FPGA based on the above method. 
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