

Curlcrawler Optimization: A Framework For Crawling The Web With URL

Tracking And Canonicalization.
Ashok Kumar#

#Banasthali University,Banasthali(Raj.)-India

Dr. Saurabh Mukherjee
$

Banasthali University,Banasthali(Raj.)-India

Manisha Garhwal
@

W3technosoft, Jaipur-302018, India

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

Abstract

Information is a vital role playing versatile thing from availability at church level to web through trends of

books. WWW is now the huge, exposed, up-to-date, interoperable and dynamic repository of information available to

everyone, everywhere and every time. In addition to the size of information available on the web its scheme, authority,

dynamism, appearance and interoperability are the attributes that are growing and adopted exponentially[7,10]. These

attributes are the directing one to coin a new term web 2.0 that is an evolution of web from its embryo. Search engines

are the striking one to sail the web for several purposes because moreover information on the web is voyaged using

search engines like AltaVista, WebCrawler, Hot Boat etc. Owing to the directing factors of its ever -growing

exponential growth with the availability of endless pool of information, optimization of its design blueprint is the thrust

arena of engineering endeavor.

This paper is an experimental strives to develop and implement an extended framework with extended

architecture to make search engines more efficient using local resource utilization features of the programming. This

work is an implementation experience for use of focused and path oriented approach to provide a cross featured

framework for search engines with human powered approach. In addition to curl programming, personalization of

information, caching and graphical perception, main features of this framework are cross platform, cross architecture,

url tracking, focused, path oriented, human powered and url canonicalization[7,21.

The first part of the paper covers related work that has been done mostly in the field of general search engine

in over ongoing research project for crawling the web. The second part defines architecture and functioning of

developed framework and compares it to search engine optimization for web pages. The third part provides an overview

and critical analysis of developed framework like experimental results, pseudo code, data structure etc.

Keywords and Phrases: Path String, Indexing Agent, Filtering Agent, Presentation Module, Seolinktool, Thumb,

Whois, CachedDatabase, IECapture, Searchcon.

1. Introduction
The aim of this paper is to raffle a framework, which will elevate search engine’s dexterity to surmount the way

the Internet can be used to snag more and more information and services even with the directing factors of its

exponentially growing endless pool of information. Finally, an age has come, where information has become an instrument, a

tool that can be used to solve and mean to many problems. Moreover information on web is navigated using search engines

like AltaVista, WebCrawler, Hot Boat etc [1,7] that deploys a software module called crawler. Optimization of search

engine functioning is a raptorial field to address a state of fast growing rate, nature and state of amount of information

on the web. A typical web crawler starts by parsing a specified web page and noting any hypertext links and other

information relevant to result optimization on that page that point to other web pages. The crawler then parses those

pages for new links, and so on, recursively. All the crawler really does is to automate the process of following links [10].
This is the basic concept behind implementing web crawler, but implementing this concept is not merely a bunch of

programming. Large volume and other directing factors on web pages are the important characteristics of the web that

generate a scenario in which efficient web crawling is very difficult. Another problem of dynamic world is that web

pages on the Internet change very frequently, as a result, by the time the crawler is downloading the last page from a

site, the page may change or a new page has been placed to the site or same information is authored by more than on

url. First problem is addressed by devising the concept of url tracking and second one is addressed with url

canonicalization[11]. Url tracking is the process to implement the indexed database created by index agent of the

crawler as a vertex while starting from seed url and finally a graph having internal links as an in-degree and external

links as an out-degree of the current vertex. Url tracking can be applied in both direction that is forward tracking and

backward tracking. Url canonicalization is the normalization process of transforming URL strings into canonical form.

After normalization, identically transformed URLs are regarded as equivalent URLs. Basically, the URL normalization

determines whether two URLs are equivalent prior to access to the corresponding web pages[7,21].
 The difficulties in implementing efficient web crawler clearly state that crawling is not the only function of

search engine to be optimized up to next extent but guidelines for reduced chaffing result as well.

The growing popularity of search engine has emerged as a handy tool for information retrieval and a preferred

media for advertising. The benefit of getting top rankings from popular search engines includes online presence and

sales boost [11] resulting the strategy of pay per click. Listing in top search results is desirable as most of the users

conclude their search in one or two pages of search results or pay per click area [6, 10]. This behavior of user has

necessitated a need for ranking friendly crawler and webmasters to modify their web pages with a goal to improve their

search ranks.

This paper presents extended design and implementation of optimizing CurlCrawler, featured with cross

platform, cross architecture, focused, path oriented, ranking friendly, localization, result ranking optimization,

outsourcing and human powered in addition to locally resource utilization capacity to mouth more personalized,

graphical and cached driven information from the web. This crawler is destining to present a framework, which will

convince the chaffing and marketing experience while rendering the Web [6, 7,11].

2. Related work

A search engine robot's action is called spidering, as it resembles the multiple legged spiders. The spider's job is

to go to a web page, read the contents and other info like user behavior, connect to any other pages on that web site

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

through links, and bring back the information. From one page it will travel to several pages and this proliferation follows

several parallel and nested paths simultaneously.

Although release about the functioning issues of professional search engines is merely available and if available

then it is only up to the concept level [6,11]. This is a business driven scenario owing to which we find out only about

basic modules of search engine functioning and these essential modules are (see Fig.1)[9,10].

Fig.1 Components of standard Information Retrieval System [6, 10]

Storage: It stores the crawled pages. Its main functions are:

 To check whether a page has already been created

 To store the contents of crawled pages

 To keep track of some relevant information about its stored pages.

Scheduler: This component deals with the retrieval of new pages. Its main functions are:

 To keep track of the URLs that has to be crawled.

 To actually fetch the content of the URL to be crawled

 To parse the retrieved URL.

Downloader: This component is responsible to download the corresponding URL as per priority in the queue scheduled

by scheduler component and then to fetch metadata from considered html page. Output of this component becomes an

input to storage module.

Controller: It overseas all the communications between agents and works as a reliable crash failure detector. The

reliability refers to the fact that a crashed agent will eventually be distrusted by every active agent. It also determines

through delegation function as to which agent is responsible for each single URL. The delegation function also partitions

the web domain in such a way that every running agent is assigned approximately the same number of URLs.

3. Extended Framework
Building an effective web crawler to solve your purpose is not a difficult task, but choosing the right strategies

and building an effective architecture will lead to implementation of highly featured web crawler application [10]. The

minimal scheme outlined above for crawling demands several modules that fit together are (see Fig.2).

Fig.2 Architecture of different modules of Crawler [11]

1. The URL frontier, containing URLs yet to be fetched in the current crawl (in the case of continuous crawling, a

URL may have been fetched previously but is back in the frontier for re-fetching).

2. A DNS resolution module that determines the web server from which to fetch the page specified by a URL

3. A fetch module that uses the http protocol to retrieve the web page at a URL.

4. A parsing module that extracts the text and set of links from a fetched web page.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

5. A duplicate elimination module (Indexing module) that determines whether an extracted link is already in the

URL frontier or has recently been fetched.

3.1 Extended Framework with URL Tracking
Url tracking is the process to implement the indexed database created by index agent of the crawler as a vertex

while starting from seed url and finally a graph having internal links as an in-degree and external links as an out-degree

of the current vertex. This is a logical mapping between meta info of web pages and their graph representation weighted

with values of ToUrl, FromUrl, ContextKeyword and sever location. This is a module embedded with searching module

of a crawler to be started with initial Url (see Fig.3). Pseudocode for this module is described below:
Ask user or automation module to specify the seed URL that crawler should crawl.

Add the URL to the empty list of URLs to search.

While not empty (the list of URLs to search)

{ Take the first URL in from the list of URLs.

 If the URL protocol is not HTTP then

 break;

 go back to while;

 If robots.txt file exist on site then

 If file includes .Disallow. statement then

 break;

 go back to while;

 Open the URL;

 If the opened URL is not HTML file and not explicitly requested file then

 Break;

 Go back to while;

 Iterate the HTML file;

 While the html text contains another link

 {

 If robots.txt file exist on URL/site then

 If file includes .Disallow. statement then

 break;

 go back to while;

If the opened URL is HTML file or explicitly requested file then

If the URL isn't marked as searched then

Mark this URL as already searched URL.

Insert new record to the table while maintaining internal links, external links and context weight associated with keyword.

 Else

Update existing record in the list.

}

 }

Fig.3 Crawler with URL Tracking Module

3.1.1 User Presentation Module

User Presentation Module is the subprogram that is responsible to fetch and represent the result on the bases of

keywords directed by user’s query from indexed database of search engine (see Fig.4). Pseudocode for this module is

described below:
Ask user presentation module to specify the query.

Split query in the sets of keywords excluding stop words.

Add these sets to the empty list of keywords to search.

While not empty (the list of keywords to search)

{ Take the one set from the list and search in indexed database.

 If there is record matching to set then

 Fetch the record in output buffer.

}

If output buffer is NOT empty then

 Assemble result page with priority assigned on weights and display.

Else

No Result page is displayed.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.4 Crawler with User Presentation Module

3.2 Framework with URL Canonicalization

The URL canonicalization is a process that transforms a URL into a canonical form that is normal form (see Fig.5).

Where URL is a composed of five components: the scheme, authority, path, query, and fragment components (see

Fig.6). During the URL normalization, syntactically different URLs that are equivalent should be transformed into a

syntactically identical URL (see Fig.7)[10,21].

Fig.5 Crawler with URL Canonicalization Module

Modified pseudocode for tracking module with this module is described below:
Ask user or automation module to specify the seed URL that crawler should crawl.

Perform all possible normalizations to the seed URL

Add the normalized URL to the empty list of URLs to search.

While not empty (the list of URLs to search)

{ Take the first URL in from the list of URLs.

 If the URL protocol is not HTTP then

 break;

 go back to while;

 If robots.txt file exist on site then

 If file includes .Disallow. statement then

 break;

 go back to while;

 Open the URL;

 If the opened URL is not HTML file and not explicitly requested file then

 Break;

 Go back to while;

 Iterate the HTML file;

 While the html text contains another link

{

 If robots.txt file exist on URL/site then

 If file includes .Disallow. statement then

 break;

 go back to while;

 If the opened URL is HTML file or explicitly requested file then

 If the URL isn't marked as searched then

 Mark this URL as already searched URL.

Insert new record to the table while maintaining internal links, external links and context weight associated with keyword.

 Else

Update existing record in the list.

 }

 }

On the basis of the identical meaning of the URL components, normalization can be categorized as follows:

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig.6 URL Components

Fig.7 URL Canonicalization

4. Architecture
Software Architecture is the set of structures needed to

reason about the system, which encompasses the set of

significant decisions about the organization of the

developed framework including the selection of the

structural elements and their interfaces by which the

system is composed and an architectural style that

guides this organization. Software architecture of

developed framework employs different software

elements as described below (see Fig. 8) [6, 7,11].The

abstraction (architecture of fetching module and

presentation logic)of the developed architecture with

extended features is detailed as stated further (see Fig.

9, Fig. 10).

Fig.8 Framework with extended features

4.1 Architecture of Fetching Module

An agent that crawls the web for information

of URL of the website, Title of the website, Meta

keyword used up to three or four levels for website,

Meta keyword description used up to three or four

levels for website, Website keywords with one word

pattern, Website keywords with two word pattern,

Website keywords with three word pattern, Website

context, Links on website, Links visited on website,

Content to be cached, Date and time on which cached

by, Information about hosting server, Information of

registrant, Additional information about website owner,

Additional information about website, Website link

filed anywhere else in our database, Total number of

visitors, Website created on, Website updated on and

already crawled or not. All of this info is indexed and

stored to database using indexing software agent

deployed (see Fig. 9) [6,7].

Fig. 9 Architecture of Fetching Module[16]

4.2 Presentation Logic Architecture

Fig. 10 Architecture of Interacting Agent

URL example http://mypunia.com:8065/apnasearch/result?rid=r102#d1

URL

components

Scheme Authority Path Query Fragment

URL

Components example

http mypunia.com:8065 apnasearch/result rid=r102 d1

Normalization URL example before normalization Identical URL after normalization

Path String http://mypunia.com http://mypunia.com/
Fragment http://mypunia.com/search.php#d1 http://mypunia.com/search.php
Default Port http://mypunia.com:80 http://mypunia.com

Case HTTP://Mypunia.com http://mypunia.com

Percent Encoding http://mypunia.com/%7Eroot http://mypunia.com/~root

Path Segment http://mypunia.com/p1//p3.php http://mypunia.com/p1/p3.php

Deemed Value http://mypunia.com/p1/p2/./../p3.php http://mypunia.com/p1/p3.php

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Presentation Logic: An interacting agent that gets

keyword(s) to search indexed database and expel result

page (see Fig.10)[11].

5. Performance
 An estimated and approximate performance

analysis can be done to compare the existing search

strategies with the developed one. With the increase in

availability of web pages on the Internet, the major

problem faced by the present search engine is difficulty

in information retrieval [11]. It is problematic to

identify the desired information amongst the large set

of web pages resulted by the search engine. With

further increase in the size of the Internet, the problem

grows exponentially (see Fig. 11). The number of web

pages given as the result of a user initiated will

definitely grow up to an extent.

Quantity Vs Internet Size

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Download Quantity

Internet Size

Fig. 11 Download Quantity vs. Internet Size.

This increase in the quantity on one hand,

leads to decrease in the quality (see Fig. 12) on the

other. The framework given in this work, effectively

takes into consideration the above mentioned issues.

Being a context driven search strategy, use of local

resources i.e. curl programming features, reduced

chaffing owing to more information like thumb,

caching the framework is a key step for search

mechanism with less degree of chaffing.

Quality Vs Internet Size

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Download Quality

Internet Size

Fig. 12 Download Quality vs. Internet Size

 In terms of performance parameters like

quantity, quality, relevance with the keyword searched

and the network traffic; developed framework holds an

edge above the conventional search strategies. The

results are more pertinent to the user’s interest owing to

more focused, relevant, personalized, cached, path-

oriented, cross architecture, cross platform and

graphical.

5.1 Experimental Screenshots

A series of user interfaces of developed framework

with deployed Extended CurlCrawler(see Fig. 13, Fig.

14, Fig. 15, Fig. 16) while rendering for a keyword

“song” is shown below:

Fig. 13 Home Interface

Fig. 14 Thumb Created Result

Fig. 15 WhoIs Info Result

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig. 16 Cache Result

5.2 Analysis
This optimized framework is running on an

acer machine, a workstation with 685MHz processor,

12 GB of RAM,840 GB of local disk, 100 Mbit/sec

Speed Internet, Windows Server 2003,IIS 7.5,Tomcat

7.0.23,Asp.Net run time framework 4.0,SQL Server

2008 and XAMPP 1.7.3.

In this paper, experimental statistics are

presented of 9 days only owing to compare with other

existing search systems like Google and previous

developed framework called CurlCrawler, about these

requests issued are published in literature. The Google

crawler is reported to have issued 26 millions HTTP

requests over 9 days i.e. on an average 33.5 docs/sec

and 200KB/sec[14,15] and CurlCrawler made 67.3

millions HTTP requests in 9 days, achieving an average

download rate of 87.52 docs/sec and 376.45 KB/sec.

Performance of any information retrieval system can be

analyzed using parameters like coverage, user

perception that are presented below:

5.2.1 Coverage

Coverage of a search engine points towards a

search engine’s crawl speed and index size. In case of

developed framework, optimized CurlCrawler made

70.6 millions HTTP requests in 9 days, achieving an

average download rate of 89.97 docs/sec and 396.35

KB/sec. Hence, this work with local resource

utilization features of URL tracking and normalization

is a forward step in the process of considerable

optimization mark and represented as below (see Fig.

17):

Coverage Chart

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9

Days(no

R
e
q

u
e
s
ts

 M
a
d

e
(M

il
li
o

n
s
)

Google CurlCrawler Optimized CurlCrawler

Fig. 17 Coverage Chart

5.2.2 User Perception

User perception points towards user

experience with developed framework. In this work,

key points towards user perception are:

GUI perception

Out of 70.6 million requests made, 2.51

millions requests do not return thumb i.e.3.5552% and

1.47 millions requests return a thumb that is not clear

up to the identifying mark i.e. 2.0821%(see Fig. 18).

0

10

20

30

40

50

60

70

80

GUI Perception Chart

Statics(Millions) 70.6 2.51 1.47

Requests Made Without Thumb Unreadable

Fig. 18 GUI Perception Chart

Personalization degree

Out of 70.6 million requests made, 2.35 millions

requests do not return personalization of information

like registrant, hosting info etc i.e. 3.3286 %(see Fig.

19).

0

10

20

30

40

50

60

70

80

Personalization Chart

Statics(Millions) 70.6 68.25 2.35

Requests Made Personalized Without WhoIs

Fig. 19 Personalization Chart

Hence, these are the wrinkled points of this

work that were not expected to be happened.

6. Conclusion
In addition to the information like thumb,

cache, registrant and higher degree of context to

provide more interesting perception from users

interacting with, this optimized framework renders the

web with forward-backward tracking and URL

normalization oriented approach to provide a cross

architecture framework for search engines. This is a

part of ongoing research work, to utilize advance

features of programming in the web crawling up to

maximum extent of efficiency. Owing to the lengthy

size of coding work, this is not possible to present

coding or technical details of all the modules of

developed framework. But work is incomplete without

functioning details of the basic modules i.e. index

module and fetching module.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

6.1 Index
 Basic technical details like pseudo code and data

structures are given below:

Individual Data Structures Used:

Name Type Usage
SearchFrm Form To create result page
SearchTxt Textbox To enter query
SearchBtn Submit Button To search result from

database
D1 Div To store corresponding

keyword from database

to implement AJAX

while rendering
Cache Link Button To print cache result
WhoIs Link Button To print personalized

result
Thumb Link Button To display thumb result

Pseudo code:

6.2 Fetch
 Basic technical details like pseudo code and data

structures are given below:

Individual Data Structures Used:

Name Type Usage
url String To store url value
responseTitle String To store fetched title

corresponding to url value
metaContent String To store fetched meta tags

corresponding to url value
urlContents String To store fetched url

contents corresponding

to url value
keyContent String To store fetched

keywords corresponding

to url value

whoIsInfo String To store fetched whois

information

corresponding to url value

registrantInfo String To store fetched registrant

information

corresponding to url value

thumbName String To store path of created

thumb corresponding to

url value

Common Data Structures Used:

Pseudo code:

read url;

urlNormalization(url);

if(validateApproach(url))

{

getAllDetailsInDb(url);

}

function getAllDetailsInDb(url)

{

 responseTitle = getTitle(url);

 metaContent = get_meta_tags(url);

 urlContents =

getURLcontents(url);

 if(count(trim(urlContents)) <=

200)

 {

 urlContents =

file_get_contents(url);

 stripContents = urlContents;

 }

 stripContents =

strip_tags(urlContents);

 keyContent =

fetchKeywordContents(url,stripContents)

;

 oneWordTexts = "";

 foreach(keyContent["_1"])

 {

 oneWordTexts =Val;

 }

 twoWordTexts = "";

 foreach(keyContent["_2"])

 {

 twoWordTexts=val;

 }

 $threeWordTexts = "";

 foreach($keyContent["_3"])

 {

 threeWordTexts =Val;

 }

 whoIsInfo = getWhoIsInfo(url);

 thumbName = makeThumbnel(url);

 whoIsNServer = "";

 foreach(whoIsInfo['regrinfo']['do

main']['nserver'])

 {

 whoIsNServer=value;

 }

 registrantInfo

=whoIsInfo['regyinfo']['registrar'];

 whoIsFullInfo = "";

 foreach(whoIsInfo['rawdata']=>

value)

 {whoIsFullInfo=value;}

 parsedDate = date("Y-m-d H:i:s");

Name Type Usage Degree

web_contents Table To store

Complete

information

24

Create header;

Create form with one textbox, one

submit button, one cache and one

thumb link button;

if(type == 'whois')

{

 call functions of module

'whois.php';

}

if(type == 'cache')

{

 call functions of module

'cache.php';

}

if(type == 'searchbtn')

{

 call functions of module

'searchcon.php';

}

Create footer;

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

9www.ijert.org

IJ
E
R
T

IJ
E
R
T

 rsAlreadyQuery =

mysql_query(AlreadyQuery);

 if(rowAlreadyQuery =

mysql_fetch_assoc(rsAlreadyQuery))

 {Update existing record;}

 else

 {Insert new record;}

}

 Finally, the complete optimized framework

along with implementation details of various modules

used is discussed. An optimized crawler executing in a

Multi-Agent environment is designed and developed to

expel a search that is more focused, path-oriented,

relevant, personalized, cached and GUI driven. An

extension to the developed framework is also going on

that uses an additional agent named URL mining and

ontology with features of reference or knowledge

discovery, which could observe, analyze and imitate

the user. It could formulate the right set of keywords

and proactively trigger a new query on its behalf [6,11].

7. References
[1].Heydon, A. and Najork, M., 1999. Mercator: A Scalable,

Extensible Web Crawler, International Journal of WWW, Vol.

2. No. 4. (1999) 219-229

[2].Berners-Lee, T., Fielding, R., and Masinter, L.: Uniform

Resource Identifiers(URI):GenericSyntax , (2005)

[3].Kim, S.J. and Lee, S.H.: An Empirical Study on the

Change of Web Pages, Springer-Verlag Lecture Notes in

Computer Science, Vol. 3399. (2005) 632-642

[4].Lee, S.H., Kim, S.J. and Hong, S.: On URL

Normalization, Springer-Verlag Lecture Notes in

Computer Science, Vol. 3481. (2005) 1076-1085

[5].Burner, M.: Crawling Towards Eternity: Building an

Archive of the World Wide Web, Web Techniques

Magazine, Vol. 2. No. 5. (1997) 37-40

[6].Ela Kumar, Ashok Kumar al,(IJCSIT)International

Journal of Computer Science and Information Technologies,

Vol. 2 (4) , 2011, 17001705(ISSN: 0975-9646).

[7].Ela Kumar, Ashok Kumar al, (IJCTT) International

Journal of Computer Trends and Technology- Vol. 3(3)-

2012,342-350 (ISSN: 2231-2803).

[8].M. Henzinger. Finding near-duplicate web pages: a

large-scale evaluation of algorithms. In SIGI '06:

Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information

retrieval, pages 284{291, August 2006.

[9].G. S. Manku, A. Jain, and A. D. Sarma. Detecting

near-duplicates for web crawling. In WWW '07:

Proceedings of the 16th international conference on

World Wide Web, pages 141{150, May 2007.

[10].Ashok Kumar al, (IJSECT)International Journal of

Science, Engineering and Computer Technology- Vol. 2(3)-

2012,33-38 (ISSN: 2229-4937).

[11].Ashok Kumar al, (IJSECT)International Journal of

Science, Engineering and Computer Technology- Vol. 2(3)-

2012,43-47 (ISSN: 2229-4937).

[12].Dr. Ela Kumar et al. /International Journal of

Engineering and Technology Vol.2 (2), 2010, 38-44.

[13].Kim, S.J. and Lee, S.H.: Implementation of a Web Robot

and Statistics on the Korean Web, Springer-Verlag Lecture

Notes in Computer Science, Vol.2713. (2003) 341-350

[14] A. C. Carvalho, E. S. Moura, A. S. Silva, K. Berlt,

And A. Bezerra. A cost-effective method for detecting web

site replicas on search engine databases. Data Knowl.

Eng.,62(3):421–437, 2007.

[15] A. Chowdhury, O. Frieder, D. A. Grossman, and M.

C.McCabe. Collection statistics for fast duplicate document

detection. TOIS, 20(2):171–191, 2002.

[16] A. Dasgupta, R. Kumar, and A. Sasturkar. De-duping

URLs via rewrite rules. In KDD, pages 186–194,2008.

[17] M. Najork. Systems and methods for inferring Uniform

resource locator (URL) normalization rules.US Patent

Application Publication, 2006/0218143,Microsoft

Corporation, 2006.

[18].Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not

crawl in the dust: di®erent urls with similar text. In

WWW '07: Proceedings of the 16t international

conference on World Wide Web, pages 111{120, May

2007.

[19].Shkapenyuk, V. and Suel, T.: Design and

Implementation of a High-performance Distributed

Web Crawler, In Proceedings of 18th Data Engineering

Conference, (2002) 357-368

[20] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl

in the dust: different URLs with similar text.In WWW, pages

111–120, 2007.

[21] Sung Jin Kim, Hyo Sook Jeong, Sang Ho Lee. Reliable

Evaluations of URL.Journal of Security Engineering,Vol. 2,

No. 1, November, 2005.

[22] A. Broder, S. C. Glassman, M. Manasse, and G. Zweig.

Syntactic clustering of the Web. Computer Networks, 29(8–

13):1157–1166, 1997.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

10www.ijert.org

IJ
E
R
T

IJ
E
R
T

