

.

 Data Embedding in JPEG Bitstream

 by Code Mapping

G.Narahari, M. Tech Student, and Mr. D. Sharath Babu Rao, Faculty

Department of Electronics & Communication Engineering

Jawaharlal Nehru Technological University

Anantapur, India

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

 Abstract

 We propose an algorithm to embed data

directly in the bitstream of JPEG imagery. The

motivation for this aproach is that images are seldom

available in uncompressed form. Algorithms that

operate in spatial domain, or even in coefficient domain,

require full (or at best) partial decompression. Our

approach exploits the fact that only a fraction of JPEG

code space is actually used by available encoders. Data

embedding is performed by mapping a used variable

length code (VLC) to an unused VLC. However,

standard viewers unaware of the change will not

properly display the image.We address this problem by

a novel error concealment technique. Concealment

works by remapping run/size values of marked VLCs

so that standard viewers do not lose synchronization

and displays the image with minimum loss of quality. It

is possible for the embedded image to be visually

identical to the original even though the two files are

bitwise different. The algorithm is fast and transparent

and embedding is reversible and file-size preserving.

Under certain circumstances, file size may actually

decrease despite carrying a payload.

Index Terms—Code mapping, data embedding, JPEG,

VLC,

watermarking.

 I. INTRODUCTION

Data embedding describes a general framework

where a payload is embedded within a cover image

for authentication, fingerprinting or ownership

verification (watermarking), covert communications

(steganography) or simply as a vehicle to attach

metadata to a cover image (data embedding). All

three attempt to exploit an unused communication

channel in the cover image but, depending on the

application, there are different approaches and

requirements. In digital watermarking, the payload

does not have to be large but embedding must be

robust, or semi-fragile, and secure. In steganography,

the payload can be substantial while the cover image

is secondary. Robustness and security are still

important but transparency is critical to hide the

presence of a covert channel. Digital watermarking of

images has traditionally been implemented either in

spatial domain [1] or transform domain [2].

However, multimedia signals are seldom available in

uncompressed form because compressed media is

often the first generation signalavailable from digital

cameras. It is, therefore, highly desirable to develop

watermarking algorithms that work entirely in

compressed domain. There has been substantial work

in embedding watermarks in JPEG compressed

imagery. Examples include classical transform

domain watermarking algorithms where the

watermark is embedded in appropriately selected

transform coefficients. However, we do not consider

these algorithms strictly “compressed domain”

watermarking because partial decompression is

required to gain access to transfrom coefficients.

Examples are JSTEG [3], F5 [4], OutGuess [5], and

J-Mark [6]. The term JPEG-to-JPEG watermarking

has also been used [7], although the proposed

algorithm is still not truly compressed domain

watermarking. What is desirable is the ability to

embed the watermark directly in the bitstream of

compressed media with no transcoding or

decompression. Bitstreamwatermarking is nowa

recognized research subarea in watermarking.

Compressed domain is a particularly challenging

environment for data embedding. The reason is that

embedding relies on redundancy in the cover media.

Compressed domain, by definition, has little

redundancy. One proposed approach is a form of

LSB watermarking whereby levels representing a

VLC carry the watermark. The algorithm has been

applied to MPEG-2 streams [8]. Another similar

method proposed for compressed domain is done by

modulating DCT coefficient levels [9]. The drawback

of both of these algorithms is that they are lossy. A

lossless JPEG watermarking scheme appears in [10].

This algorithm is still not strictly “compressed

domain”, as it needs partial decompression of DCT

coefficients. In [11], a bitstream-level MPEG-2

watermarking is proposed. The approach is in fact

implemented in the bitstream and embeds data in the

LSB of the VLCs representing the DC differential of

a block. Both approaches can be grouped under code

mapping. Watermark embedding and recovery has

also been formulated as problem in channel coding

and error control [12]. More recently, attempts have

been made to embed a watermark in the bitstream of

H.264/AVC stream by intraprediction mode

modification [13]. Embedding in the bitstream of

open compression standards carries two limitations:

fragility and weak security. For example, re-encoding

at a different compression ratio may erase the

watermark by replacing the code space. LSBs of

VLCs in [8] and [11] are vulnerable to such attacks.

This vulnerability is specifically mentioned in [6].

Embedding in an open standard such as JPEG or

MPEG creates security holes. First, the bitstream

must remain syntax compliant to remain viewable by

standard viewers. Second, because the embedding

rule is public, the attacker can erase the watermark

and replace it using the same rule. Although the

watermark is often encrypted, we believe bitstream

embedding is not strictly appropriate as a digital

watermarking tool. As a result we position our

algorithm as a data embedding tool, and not

necessarily a watermarking tool, that is best used in

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

environments where “attacks” in the conventional

sense are not relevant or likely. Such applications

desire to exploit the unused capacity of the bitstream

to embed metadata to save bandwidth and keep the

metadata attached to the cover image. For example,

the medical community has recently recognized the

possibilities of watermarking medical imagery [14].

For example, embedding Electronic Patient

Records(EPR), saves storage in Hospital Information

Systems, enhances confidentiality and saves

transmission bandwidth [15]. In addition, it is

envisioned that doctors’ notes can be embedded in

EPR and be available for browsing by medical

professionals. Since bitstream embedding keeps the

stream syntax-compliant, embedded imagery will

conform to the DICOM standard [16].

 In this paper, we expand upon a recently published

approach to compressed domain watermarking [17]

and apply it to specific bitstream as defined by the

JPEG standard [18]. Results reported here expand

upon the work in [19], as well. The additional work

includes a more systematic approach to code

mapping in JPEG bitstream, substantially more

experimental verification, application to color and

satellite imagery, comparison with other compressed

domain watermarking and discussions about

robustness, transparency, and security. In the process,

we have achieved six, at times conflicting, goals: 1)

compressed domain implementation, 2) reversibility,

3) syntax-compliance, 4) file-size preservation, 5) no

visual impact, and 6) blind decoding. The rest of the

paper is organized as follows. Section II introduces

data embedding through code mapping. Section III

introduces run/size remapping of VLCs to hide or

minimize the impact of embedding. Section IV

presents arguments on transparency, robustness, and

security as they relate specifically to bitstream

embedding. Section V describes watermark recovery

and Section VI presents experimental results.

 II. DATA EMBEDDING BY CODE MAPPING

 A. Analysis of the Code Space

The proposed data embedding in compressed

bitstream is accomplished by mapping eligible codes

in the entropy portion of the bitstream to appropriate

regions of the code space. To make this idea work,

the JPEG code space needs to be explored further.

The entropy-coded portion of a compressed bitstream

consists of individual VLCs that can be classified

into four categories: 1) valid, 2) invalid, 3) used, and

4) unused but valid. A valid code word is a VLC that

is generated by the specific source coding algorithm

adopted by the compression algorithm. In JPEG,

Tables K. 5 and K. 6 list all valid luminance and

chrominance VLCs [18]. An invalid code word is a

code thatis either outside the valid code space or

violates the prefix condition. Then there is the case of

used versus unused code words. The code space of an

optimally coded bitstream is full. This means that any

bit flip at any location of any VLC will generate a

code word that violates the prefix condition or simply

Fig. 1. Code tree for variable length codes. Leaf nodes represent

used VLCs.

Branch nodes are transition nodes and cannot be valid VLCs
themselves. Available nodes define legal code words and are

candidates for mapping. The entire right half of the tree is

available for code mapping. For example, 010 can be mapped to
any of the four nodes but not to 011 because it will violate the

prefix condition. Since codes are mapped to nodes at the same

level, there is no change in code length or file size.

becomes another code. This situation may cause

synchronization failure or simply lead to undetectable

errors. Majority of JPEG encoders, however, do not

fully utilize the code space. What this means is that a

large segment of valid VLCs simply are not needed

and, hence, go unused. More importantly, except for

custom coded JPEGs, the header of most images

mistakenly communicate to the decoder that the code

space is in fact fully occupied. This results in a

situation where there is a considerable void between

the valid code space and the used code space. The

reason for this is that JPEG encoders, in general, are

not optimized for any specific image. It is simply

assumed that the entire code space will be used. The

core idea introduced in [17] and illustrated in [19]

embeds data by pushing valid VLCs to unused

portions of the code space. See Fig. 1. If the entire

code space were occupied, code mappingwould not

be possible. The decoderwould have noway of telling

a mapped VLC from the original. To identify the

available code space for embedding, the used portion

of code space is mapped to a binary tree whose leaf

nodes define the VLCs. Mapping of a VLC is

accomplished by flipping one (or possibly more)

bit(s) at appropriate locations. Flipping a bit is

equivalent to mapping the VLC to another node at

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

the same level (since the length does not change).

However, not all nodes are available for this

mapping. Only those mappings that do not cause

collisions are eligible. Collision occurs when the

mapped VLC coincides with a used VLC, prefixes a

used VLC or another used VLC prefixes it. We will

now demonstrate how code mapping is applicable to

JPEG code space.

 B. JPEG Code Space

The entropy-coded portion of JPEG can either be

Huffman or arithmetic coded. Because most images

use Huffman encoding, that is the focus of our

discussion. The JPEG standard does not require that a

specific Huffman table be used for every image.

Instead, to maximize compression, the standard

encourages customizing the Huffman table based on

the specific run/size occurrences for each individual

image. However, most commercial JPEG encoders

bypass this customization step and instead use

example tables provided in the standard itself. These

standard tables include VLC assignments for all 162

possible run/size combinations. The VLC

assignment to each of the 162 possible run/sizes was

determined based on a large library of images,

approximately 100 000 according to the standard.

However, for a specific image, the default code space

is not optimized leaving a large portion of the code

space unused. For a code word to be successfully

mapped, at least one bit must be changed without

causing a collision. For the default Huffman table, it

is not possible to flip a bit without violating the

prefix property of the code table. However, it may be

possible to map a VLC to the outside of the used

code space. It is not unusual to find a natural image

that uses only 40 to 60 of the possible 162 run/size

combinations. The mapped VLC will still belong to

the default Huffman table but is not used in the

image. To maintain lossless embedding, once a VLC

is mapped to an unused VLC, the unused VLC must

be considered “used.” Essentially, this keeps two

used VLCs from being mapped to the same unused

VLC (it would be impossible to know which was the

original in this case). For security purposes, the hash

of the message is then embedded in the header of the

JPEG file. This step is further explained in Section

IV. Embedding rule is summarized below.

 Embedding

1. Parse the bitstream, extract VLCs.

2. Build the code tree, identify used and unused code

space.

3. Identify qualified VLC pairs for mapping.

4. To embed a 1, map one used VLC to its unused

counterpart.

5. Remap run/size of the unused VLC to minimize or

eliminate visual impact.

6. To embed a 0, do not map a qualified VLC.

7. Embed a hash of the message in the header.

 III. ERROR CONCEALMENT IN CODE MAPPING

The concept of error concealment is generally

associated with MPEG video. The idea is to replace

corrupted macroblocks with some form of

replenishment, through a variety of ways including

inter or intra prediction or simple repetition of the

corresponding data from previous frames. In this

section we point out that error concealment is also

relevant in the context of JPEG when embedding is

treated as forced bit errors. One of the key objectives

in this work is that embedded JPEG stream must be

viewable by any JPEG viewer. Therefore, we define

two classes of viewers, 1) embedding-aware viewer,

meaning that the viewer is also an authorized decoder

and 2) standard viewer, meaning all other publicly

available JPEG viewers. By mapping a used VLC to

an unused VLC, not only the VLC will change, so

will its run/size assignment. This remapping of the

run/size would most likely result in catastrophic loss

of synchronization in a standard viewer. The reason

standard viewers are handicapped is because every

VLC is a legal VLC. Therefore, a mapped VLC will

be displayed with a run/size different from the

original. Whereas, for embedding-aware viewers,

mapped VLCs are “illegal” VLCs, illegal for that

image that is, and are recognized as such. Note that

the way JPEG decoders actually produce a visual

image is unrelated to the VLCs themselves. The

VLCs are simply pointers to run/sizes. It is the

run/size pair that recreates the quantized

Fig. 2. In many JPEG images, a large number of VLCs are defined

but never used in the image. This diagram illustrates the
difficulties a standard viewer might have with a watermarked

image. Watermarked VLCs are incorrectly parsed because

watermarking may violate the prefix rule. The solution is to
redefine the original Huffman table.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

Fig. 3. Mapped VLC appears as another VLC of the same length.
The new size S2 must be remapped to S1 to maintain

synchronization. Also, r2 = r1 .

DCT coefficients. Therefore, if a VLC is mapped to a

new runs/size, then the value of run/size affects only

the manner in which standard decoders interpret the

mapped VLCs. What needs to be done at this point is

a clever way to redefine the run/size values of the

mapped VLCs to make standard viewers interpret the

embedded VLC as close to its original as possible.

A. Error Concealment by Run/Size Remapping

 Since mapped VLCs are only mapped to unused

VLCs, modifying their runs/sizes will only affect how

the image is displayed. No other part of the image is

affected by this modification. Ideally, run/size should

be changed to match the original run/size. However,

this cannot be done in all cases. The interpreted length

of the mapped VLC may be equal to, shorter, or

longer than the length of the original VLC. Fig. 3

shows the first case. A mapped VLC with a run/size

r1/s1 appears as anotherVLC with run/size r2/s2 but the

same length. The viewer then expects the beginning of

the next VLC to be S2 bits later. In reality, the next

VLC begins S1 bits later. If nothing is done,

synchronization will be lost. The solution is to

redefine the run/size values of the mapped VLC to

match the original one. This can be done directly in

the Huffman table definition of the JPEG file. Two

other cases are shown in Figs. 4 and 5. In both

cases,the run of the interpreted VLC must

Fig. 4. Valid, but unused, VLC appears as a prefix in a mapped
VLC. S2 must

be redefined as shown to maintain synchronization.

Fig. 5. Interpreted length of the mapped VLC is now a longer
VLC. � must

be redefined as shown to maintain synchronization.

Match the original and the size is redefined to make

the overall length (VLC length plus appended bits)

the same as the original VLC. It is illustrative to

establish the application of this concept to actual

JPEG code space.

B. Run/Size Remapping for JPEG VLCs

Case 1: Interpreted VLC Length is Equal to the

Mapped VLC

Length: Ideally, the lengths of the original VLC and

the mapped version are the same, but this is not

guaranteed. If they are the same, then this is the most

favorable case. In this case, it is always possible to

replace the run/size of the interpreted, but unused

VLC with the run/size of the original VLC. The run

of the interpreted VLC can always be modified

because it never appears in the image. This makes

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

mapping of this particular group of VLCs completely

invisible since nothing is changed for display

purposes. The VLC to be mapped is number 43 in

Table K. 5 [18] and is represented by

run/size/length/total length of 4/2/10/12 and shown in

Fig. 6. Flipping the LSB maps this VLC to number

112 represented by 11/1/10/11 for a total length of 11

bits. This VLC does not appear anywhere in the

image.If the size of the interpreted VLC is not

changed, the viewer will parse a total of 11 bits,

causing synchronization failure. Instead, we change

the run/size from 11/1 to 4/2 in the appropriate

Huffman table. Total length of the interpreted VLC

will then be 12 and the run remains unchanged.

Therefore, embedding will have zero visual impact.

Fig. 6. Embedding-unaware decoder mistakenly decodes a marked
VLC as an

unmarked, valid but unused VLC of the same length. Run/size of

the interpreted VLC must be changed to maintain synchronization.

Fig. 7. Mapped VLC may become a prefix to several unused

VLCs. Embedding- unaware decoder mistakenly decodes a marked

VLC as an unmarked valid but unused VLC of the same length.
Run/size of the interpreted VLC must be changed to maintain

synchronization.

Case 2: Interpreted VLC Length Longer Than

Mapped VLC

Length: In this case, there is the possibility that a

single VLC when mapped becomes a prefix to two or

more VLCs. See Fig. 7. The run can always be made

identical but the size will have to be changed to keep

synchronization. This means that if the length

difference is one, then the size must be modified to

be one less than the original. Since the lengths of the

mapped versions are longer than the original VLC,

what will determine how the mapped versions are

displayed will be the appended bits. Also, since the

decoder could interpret the mapped version as

multiple different VLCs, each of the possible

interpreted VLCs run/size combinations must be

altered. They will all be modified to the same new

run/size. The difference between this case and Case 1

is that changing the size of the VLC will also change

the number of appended bits and how the VLC is

displayed. If this change is deemed too much, that

particular VLC should not be mapped.

Case 3: Interpreted VLC Length is Shorter Than

Mapped

VLC Length: The final, and most problematic,

possibility is that the interpreted VLC will be shorter

than the actual length, as shown in Fig. 8. In this

case, it is possible that two or more VLCs when

mapped will be interpreted as the same VLC by an

embedding-unaware decoder. It is important to note

that the mapped VLCs are distinct; however, the first

N bits of each are the same and belong to an unused

VLC. Therefore, an embedding -unaware decoder

will interpret the first N bits of any of these mapped

VLCs as the same valid VLC. Therefore, it would not

be possible to mask the effect of mapping since it is

possible to modify one run/size only. The solution

then is to select only

Fig. 8. Two different VLCs, when mapped, may be interpreted as
another VLC of shorter length. To keep synchronization, run/size

of the interpreted VLC must be changed to match either the first or

the second mapped VLC. In this case, only one of the VLC will
then be selected for embedding. If capacity is important, then the

VLC that occurs more often is the one that should be mapped.

one of the two VLCs. Consider two mapped VLCs

are defined by 5/2/11/13 and 1/5/11/16. The

interpreted VLC is 12/1/10/11. This run/size must be

redefined to either 5/3/10/13 to match the first VLC

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

or 1/16/10/16 to match the second. Notice in both

cases the total length, hence synchronization, is

maintained. The choice of which VLC to map

depends on a number of factors. If embedding rate is

important, then the VLC with a higher occurrence

rate must be selected. Note that the remapping of

run/size value will have a visual impact. So between

the two choices, the one with the smallest deviation

in size must be chosen. In the example of Fig. 8, both

mappings are equivalent because they change the size

by one relative to original VLCs.

IV. ROBUSTNESS TRANSPARENCY, AND SECURITY

Transparency refers to the impact of embedding on

visual and statistical properties of the cover

image.We have identified three code-mapping cases.

Of the three, Case 1 produces zero visual impact on

the cover image. If the embedding rule is limited to

Case 1, the displayed original and embedded image

will remain visually identical. This property is unique

among watermarking algorithms in that two image

files that differ in binary content produce identical

images. The reason for this property can be traced

back to the JPEG standard. Two different code words

project to the same color if their run/size designations

are the same. Cases 2 and 3 do cause visual

degradation but the impact can be kept to a minimum

if the size of the new VLC is kept close to the

original.We have not reassigned sizes by more than

one. The resulting peak signal-to-noise ratio (PSNR)

(Table III) is 50 dB or higher; more than needed for

transparency. PSNR is computed by the mean square

difference of the embedded image and the original

after they are decompressed. Therefore, any

difference is due to embedding, not compression.

Robustness refers to the ability of the detector to

recover embedded data when the cover media is

subjected to malicious attacks as well as ordinary

signal processing operations. Strict compressed

domain embedding is vulnerable to recompression

and transcoding. Recompression is achieved by

scaling the quantization tables. This scaling may

push quantized coefficients to different quantization

bins, overwrite the mapped VLC and, thus, alter code

mapping carefully orchestrated at the embedder.

However, depending on the scaling parameter,

quantized DCT coefficients may not change and,

thus, the corresponding VLCs will not change either.

For example, for lena 30% of nonzero DCT

coefficients remain unchanged using a quantization

scale factor of 1.5. This number is reduced to 18%

for scale factor of 2. So it is possible to choose VLCs

that could survive moderate recompression although

larger scale factors will likely cause full erasure.

Vulnerability to recompression is not unique to code

mapping. Label-carrying VLCs [8], and coefficient

embedding such as F5 and J-Mark are equally

vulnerable to erasure by recompression. Another

issue related to robustness is the occurrence of bit

errors. However, bit errors adversely affect JPEG

decoding as a whole and not just the data recovery

portion. Other than placement of restart markers, the

JPEG standard has little inherent protection against

bit errors. Therefore, it is expected that bit errors are

handled at a higher protocol level. It is in fact rare to

encounter JPEG files today that have been corrupted

by bit errors. Security is declared perfect if repeated

observations of the image does not cause leakage of

the secret key [20]. Secure embedding in compressed

domain of an open standard is a difficult problem

because of the imposed framework. Embedding must

take place in a JPEG bitstream and the stream must

be viewable by standard viewers. The problem is that

every piece of information for decoding a JPEG

stream is in the header and cannot be concealed or

encrypted. Data hiding is often tied to some form of

secret key that is exchanged with the decoder. In our

approach, the key is the pair of (used VLC, unused

embedded VLC). This association, however, cannot

be kept secret if the bitstream is to remain syntax-

compliant and viewable by standard viewers. To

remain viewable, the modified Huffman table must

be stored in the header portion and remain in the

clear. If it is in the clear, then modified run/size

values and the knowledge of the algorithm can be

used to detect the watermark, much like what the

authorized decoder does. Any attempt to conceal or

encrypt the modified Huffman table will make the

image unviewable by standard viewers. The most

serious concern, for example in medical applications,

is privacy and forgery. Attackers may erase the

embedded data by re-encoding and replacing it with

someone else’s. To identify this attack, we rely on

computing MIC(Message Integrity Code) and storing

it in the header section of the image. MIC is

computed by hashing, using MD2 for example, the

concatenation of the embedded data with a secret

key, MD2(key,). The secret key can be unique to the

image and/or owner. MD2 is a 128-bit hash and is

considered secure.

 Most images contain user fields that can be used to

store the 16 byte hash. The attack scenario is as

follows. The attacker identifies mapped VLCs and

either strips the embedded data and/or inserts his

own. The owner cannot identify tampering because

VLCs are legally marked according to the algorithm.

However, an MIC check can resolve this matter.

Authorized decoder recovers the forged data ,

appends the secret key and computes its MIC,

MD2(key,). This MIC will not match what is stored

in the header and, thus, signals authentication failure.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

 V. DATA RECOVERY

 The most important piece of information for the

decoder is the list of mapped VLCs. This list is easily

generated at the encoder side by parsing the image.

However, the decoder cannot inspect the image in the

same way as the embedder because VLCs have

already been changed. The easy way would have

been to include this table as an additional Huffman

table in the header. Even though this addition would

have minimally increased the file size, we chose not

to do so. Instead, we have developed a procedure by

which the decoder, in an indirect way, builds the

VLC pairs (original and corresponding mapped

VLCs) from existing Huffman tables that are always

included in the image. Here we examine how the

decoder handles the three cases covered in the

previous section. First, the decoder merges the

publicly available standard Huffman table with the

Huffman table extracted from the embedded image.

The merged table is then sorted by run/size. An

examination of this table reveals the following. For

Case 1, the decoder will see duplicate run/sizes for

pairs of VLCs of the same length. This would not

happen in an unmarked image. Since we know what

the true run/size is for any VLC, the VLC with the

modified run/size must have been a mapped one.

Similar logic holds for Case 2 and 3. The decoder

identifies pairs of VLCs with the same run/size. In

this case, they will be of different length but that does

not matter. Of the two VLCs the one with modified

run/size is the marked one. By comparing the original

and modified run/size and knowing what the encoder

had to do to maintain synchronization, it is possible

to arrive at the run/size of the original VLC and,

hence, the VLC itself, prior to embedding. The

decoder has now established one VLC pair. This

knowledge can be used to completely reverse the

embedding after extraction. Once the VLCs have

been linked, the decoder then parses through the

image data looking for VLC pairs. Once a VLC is

located, the decoder checks to see if it is a marked

VLC, or a VLC that could have been mapped. If the

VLC could have been mapped but is not, then it must

be carrying a data bit 0. Otherwise it carries a 1.

A. Data Extraction Summary

1. Parse the image.

2. Extract used VLCs.

3. Compare run/size of used VLCs with run/size of

the standard Huffman table.

4. Work backward to identify corresponding

 {original,mapped} VLC.

5. Build{origina,mapped} VLC pairs list.

6. Extract a 1 if eligible VLC pair appears in the

image.

7. Extract a 0 if eligible VLC pair appears

unchanged.

8. Using secret key, compute MIC of extracted data

and compare with the stored copy.

9. If two MICs match authentication succeeds.

VI. RESULTS

The algorithm was tested across ten images obtained

from the online image database of the University of

Southern California [21]. Selected images are in 512

X 512 TIFF format and were converted to grayscale

and compressed by varying JPEG Q-factors. Testing

involved embedding each image with the maximum

allowable capacity. PSNR was used as a measure of

quality by computing the mean square difference

between the embedded image and original after they

are decompressed. Therefore, any difference is due to

embedding, not compression.

Fig. 9. Number of VLCs versus JPEG Q-factor. As Q decreases

(compression
increases), the number of VLCs also decrease.

Fig. 10. Number of used AC VLCs versus JPEG Q-factor. These
numbers are each out of the default 162 defined in the JPEG

standard. Since these numbers are far less than nominal, there exist

redundancies in the code space which will be used for embedding.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

A. Pre-Embedding Statistics

 Prior to embedding several statistics were recorded

which aided in identifying key issues regarding

embedding capacity and PSNR. Fig. 9 shows the

number of VLCs that actually occur in each image

versus Q-factor. This verifies that as Q increases so

does the total number of VLCs. However, the

number of unique AC VLCs was found to be far less

than the maximum 162. This supports the claim that

there is indeed unused code space within the JPEG

images. As shown in Fig. 10, the number of AC

VLCs used in each image never exceeds 70,

corresponding to code space occupancy of 70/162 =

43.2%. The final pre-embedding statistic is the

number of qualifying VLCs, i.e., VLCs that can be

mapped to an unused VLC, versus Q-factor. Results

are shown in Table I. From the data collected, it is

clear that increasing compression will reduce the

number of VLCs used within any given image. The

number of unique AC VLCs, however, is image

dependent since different images will use different

VLCs. With this in mind, it can be concluded that the

number of qualifying VLCs is more influenced by

image content than the Q-factor.

 TABLE I

NUMBER OF QUALIFYING VLCS VERSUS JPEG Q-FACTOR

 10 20 30 40 50 60 70 80

90

Baboon 12 12 16 15 17 19 19 19

16

Boat 10 10 13 17 20 18 19 25

25

Bridge 11 11 12 15 19 17 22 22

24

Elaine 7 10 8 6 7 6 8 8

11

F16 8 8 9 17 18 20 23 27

32

Gray21 6 11 15 15 16 14 17 22

29

Lena 10 6 8 9 9 9 10 18

18

Peppers 9 11 13 17 18 23 24 27

26

Splash 9 11 10 13 15 20 23 25

31

Tiffany 12 10 13 16 21 22 28 32

33

 TABLE II

 EMBEDDING CAPACITY(BITS) VERSUS JPEG Q-FACTOR

 10 20 30 40 50 60 70 80

90

Baboon 792 2035 1071 1342 820 887 953 317

195

Boat 476 350 457 355 439 514 231 270

528

Bridge 719 554 469 583 683 244 283 161

188

Elaine 111 130 139 200 249 79 92 146

339

F16 545 400 310 367 401 298 259 210

222

Gray21 152 261 488 292 333 310 752 934

1152

Lena 263 197 235 259 317 94 99 86

152

Peppers 350 247 338 242 278 357 164 144

378

Splash 284 369 261 296 378 547 383 359

296

Tiffany 226 348 222 310 332 391 534 332

279

B. Post-Embedding Statistics

 Results for embedding capacity in bits versus JPEG

Q-factor are shown in Table II.With the exception of

baboon, the overall capacity did not vary much with

changing Q-factor. Data suggests that the Q-factor

weakly affects overall embedding capacity. From the

data collected, PSNR is not directly related to the

number of embedded bits. Instead, any change in

PSNR is a result of a run/size remapping. Table III

shows PSNR versus JPEG Q-factor versus capacity.

The only connection Q-factor has to PSNR is that it

regulates the number of VLCs which occur in the

image and, hence, the resulting number of qualifying

VLCs. It does not, however, influence the mapping

of used VLCs to unused VLCs which ultimately will

alter the visual quality of the image. After applying

the algorithm to several images using the standard

VLC tables, it is clear that the remapping of VLCs is

not consistent from image to image. Therefore, in

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

9www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

order to maintain sufficient PSNR, only VLC re-

mappings that minimize visual distortions should be

used. This approach may reduce capacity though the

amount by which it is reduced is strictly image-

dependent. Note that it is generally accepted that

PSNR of 35 dB and above is visually

indistinguishable from the original.

 TABLE III

AVERAGE CAPACITY AND PSNR ACROSS ALL JPEG Q

Image AverageCapacity(bits) Across All Q Average

PSNR(db)

Baboon 934.67 50.39

Boat 402.22 55.42

Bridge 431.56 54.41

Elaine 165.00 62.25

F16 334.67 53.46

Gray21 519.33 50.82

Lena 189.11 58.05

Peppers 277.56 57.63

Splash 352.56 57.83

Tiffany 330.44 57.55

 TABLE IV
 CONTRIBUTION OF CHROMINANCE (Q = 50)

Image LumaCapacity(bits) ChromaCapacity(bits) Payload

Contribit of Cromi

Nance

lena 314 86 400
21.5%

baboon 821 160 981

16.31%

f16 376 115 491

23.42%

peppers 282 274 556

49.28%

Earth 366 505 871

57.97%

splash 366 245 611

40.10%

sailboat 370 243 613

39.64%

louse 572 220 792

27.78%

tiffany 328 387 715

54.12%

C. Embedding in the Chrominance Band

Most watermarking algorithms stop at the luminance

band.

Code mapping, however, is equally applicable to the

chrominance band. JPEG standard supports up to

four

Huffman AC tables; two for luminance and two for

chrominance. The chrominance VLCs are defined in

Table K. 6 of the standard. There are 162

chrominance VLCs, equal to the luminance

component. The VLCs themselves are in fact shared

between the two tables. The difference is that same

VLCs are assigned to different run/sizes. Therefore,

it is not possible to distinguish between chrominance

and luminance VLCs based solely on the bit string.

What are of most interest at this stage is howthe two

code spaces compare and how much capacity

increases by embedding in chrominance band, as

well. Table IV illustrates the contribution of

luminance to the total capacity for Q = 50 . Because

JPEG color model uses YUV with 4 : 2 : 0

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

10www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

component sampling, adding chrominance means

increasing image blocks by 50% compared to

grayscale. Stated differently, chrominance blocks

account for 1/3 of total blocks. Data shows that

chrominance VLCs, depending on the image, account

for less or more than 1/3 embedding capacity. The

percentage is different across images depending on

the content, population of qualifying VLCs and the

frequency they occur in the image. Nevertheless,

there is a substantial increase in payload by

embedding in the color band, as well.

D. Computational Benchmarking

One of the promises of data embedding applied

directly in the bitstream is fast execution time. To test

this property, we applied the algorithm to satellite

scale images of sizes close to 1000
2

Fig. 11. Original (left) and embedded color image (right). In this

case, chrominance band accounts for close to 50% of embedding

capacity. Run/size mapping makes the two images visually, and
numerically, identical.

Fig. 12. 3000�3000 image of San Francisco Bay collected by

IKONOS. This image carries 180 000 bits of information at zero

loss in quality. This is achieved by using only equal length VLC

pairs and mapping their runs/sizes accordingly.

pixel shown in Fig. 12. Such image sizes have

seldom been tried in watermarking literature. Our

algorithm embedded 180 000 bits with zero loss in

visual quality. This goal was achieved by limiting

VLC mapping to Case 1 mapping. Higher embedding

rates are possible by including other cases. For

benchmarking we chose F5 [4]. F5 is arguably the

best known JPEG watermarking algorithm that

comes closest to compressed domain

implementation. Data in Table V shows that our

algorithm runs five to seven times faster than F5. For

sizes bigger than 1552 X 1552, F5 simply hangs.

 VII. CONCLUSION

In this paper, we have advanced the state of the art in

JPEG data embedding on several fronts. The data is

embedded directly in the bitstream and executes

considerably faster than existing techniques, which

require full or partial decompression. Embedding is

lossless in the sense that once the data is removed,

the image can be restored to its original state with no

changes. The stream, despite carrying a payload,

remains syntax-compliant and, hence, viewable by

standard viewers. Notably, marked images can be

made mathematically and, thus, visually identical to

the original image. File size increase is only due to

the 16-byte hash value. In most cases there are

redundant fields in the JPEG header that can be

removed to offset this addition. Therefore, no file

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

11www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

size increase is experienced. In fact, we have

observed that marking a VLC may negate the need

for zero pads and, thus, may actually reduce the file

size.

 REFERENCES

[1] F. Hartung and B. Girod, “Digital watermarking of
uncompressed and compressed video,” Signal Process., vol. 66,

pp. 283–301, May 1998.

[2] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure
spread spectrum watermaking for multimedia,” IEEE Trans. Image

Process., vol. 6, no. 12, pp. 1673–1687, Dec. 1997.

[3] Steganography Software for Windows [Online]. Available:

http://www.stegoarchive.com

[4] A. Westfeld and A. Pfitzmann, I. S. Moskowitz, Ed., “High

capacity despite better steganalysis (F5-a steganographic
algorithm),” in Proc.

Information Hiding 4th Int. Workshop, New York, 2001, vol.

2137, pp. 289–302, Springer-Verlag.
[5] N. Provos, “Defending against statistical steganalysis,”

presented at the 10th USENIX Security Symp., Washington, DC,

2001.
[6] P. H. W. Wong, O. C. Au, and J. W. C. Wong, “A data hiding

technique in JPEG compressed domain,” in Proc. SPIE Security

and Watermarking of Multimedia Contents III, 2001, vol. 4314,
pp. 309–320.

[7] P. H. W. Wong and O. C. Au, “A capacity estimation technique

for JPEG-to-JPEG image watermarking,” IEEE Trans. Image
Process., vol. 13, no. 8, pp. 746–752, Aug. 2003.

[8] G. C. Langelaar et al., “Watermarking digital image and video

data,” IEEE Signal Process. Mag., vol. 17, no. 5, pp. 20–46, Sep.
2000.

[9] L. Chun-Shien, J. Chen, H. Liao, and K. Fan, “Real-time

mpeg-2 video watermarking in the vlc domain,” in Proc. Int. Conf.
Pattern Recognition, 2002, vol. 2, pp. 552–555.

[10] J. Fridrich et al., “Lossless data embedding with file size

preservation,” in Proc. EI SPIE, Security and Watermarking of
Multimedia Contents VI, San Jose, 2004, vol. 5306, pp. 354–365.

[11] H. Liu, F. Shao, and J. Huang, “A MPEG-2 video

watermarking algorithm with compensation in bit stream,” in
Proc. DRMTICS, 2005, pp. 123–134.

[12] P. Loo and N. Kingsbury,“Watermark detection based on the

properties of error control codes,” IEEE Proc. Vis. Image Signal
Process., vol. 150, no. 2, pp. 115–121, Apr. 2003.

[13] Z. D. Zou and J. A. Bloom, “H.264/AVC stream replacement

technique for video watermarking,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, 2008, pp. 1749–1752.

[14] B. M. Planitz and A. J. Maeder, “A study of block-based

medical image watermarking using a perceptual similarity metric,”
in Proc. Digital Image Computing: Techniques and Applications,

2005, pp. 70–77.
[15] K. Navas, M. Sasikumar, and S. Sreevidya, “A benchmark for

medical image watermarking,” in Proc. 14th Int. Workshop on

Systems, Signals and Image Processing, and 6th EURASIP Conf.
Focused on Speech and Image Processing,Multimedia

Communications and Services, Jun. 2007, pp. 237–240.
966 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4,

APRIL 2010

[16] The DICOM Homepage [Online]. Available:

http://medical.nema.org
[17] B. G. Mobasseri and R. J. Berger, II, “A foundation for

watermarking in compressed domain,” IEEE Signal Process. Lett.,

vol. 12, no. 5, pp. 339–402, May 2005.
[18] Int. Telecommunication Union, CCITT Recommendation

T.81, Information Technology-Digital Compression and Coding of

Continuoustone Still Images-Requirements and Guidelines 1992.

[19] R. J. Berger, II and B. G. Mobasseri, E. J. Delp, III and P. W.

Wong, Eds., “Watermarking in JPEG bitstream,” in Proc. Security,
Steganography, andWatermarking of Multimedia Contents VII,

2005, vol. 5681, pp. 539–548, SPIE.

[20] F. Cayre, C. Fontaine, and T. Furon, “Watermark security:
Theory and practice,” IEEE Trans. Signal Process., vol. 53, no.

10, pp. 3976–3987, Oct. 2005.

[21] The USC-SIPI Image Database [Online]. Available:
http://sipi.usc.edu/ database

Bijan G. Mobasseri (M’75–SM’01) received the B.S., M.S., and

Ph.D. degrees from Purdue University, West Lafayette, IN, in
1973, 1974, and 1978, all in electrical engineering.

He is a professor of electrical and computer engineering at

Villanova University, Villanova, PA. His research interests are in
the areas of communications and signal processing, information

embedding for authentication and steganography, digital

watermarking, time-frequency analysis, image and video
compression, and pattern recognition. He has been funded by the

AFOSR and AFRL to develop compressed domain digital

watermarking algorithms for images and video. He is currently
funded by the ONR and NUWC to develop data embedding

algorithms in undersea signal authentication applications.

Robert J. Berger, II, photograph and biography not available at
the time of publication.

Michael P. Marcinak, photograph and biography not available at

the time of publication.
Yatish J. NaikRaikar received the B.E. degree in ECE from Goa

University,
India, in 2003, and the M.S. degree in EE from Villanova

University, Villanova, PA, in 2006.

He is currently a Senior Engineer in the Media Processing Group
at Ittiam Systems, Ltd. From 2007-2009, he was a member of the

Core Technologies Group at Ingenient Technologies, Ltd. His

areas of interest include video compression, video processing,
watermarking, multimedia communication systems, and embedded

systems.

 Authors Profile

 G.Narahari received B.Tech

Degree in Electronics&Instrumentation Engineering

from SrinivasaInstitute of Technology and

Management Studies, Chittoor, India. Presently he is

pursuing his M. Tech in Digital Systems & Computer

Electronics specialization in the Department of

Electronics & Communication Engineering from

Jawaharlal Nehru Technological University,

Anantapur, India. His research interests include Data

Embbeding In JPEG Bitstream By Code Mapping ,

 Mr. D. Sharath Babu received his B.Tech

Degree in Electronics & Communication

Engineering from Sri Krishna Devaraya Engineering

college, gooty, India. And he received his Master of

Engineering (ME) from Osmania University,

Hyderabad. Presently he is pursuing his Ph.D in

"VLSI Implementation of Gigabit Ethernet MAC" in

the Department of ECE, from JNTU Anantapur,

India. He is presently working as a Lecturer in the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

12www.ijert.org

IJ
E
R
T

IJ
E
R
T

.

Department of Electronics & Communication

Engineering, JNTU University, Anantapur. His

research interests include VLSI and Wireless

Communications.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, Januaryr- 2013
ISSN: 2278-0181

13www.ijert.org

IJ
E
R
T

IJ
E
R
T

