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                                         Abstract 
 

                We propose an algorithm to embed data 

directly in the bitstream of JPEG imagery. The 

motivation for this aproach is that images are seldom 

available in uncompressed form. Algorithms that 

operate in spatial domain, or even in coefficient domain, 

require full (or at best) partial decompression. Our 

approach exploits the fact that only a fraction of JPEG 

code space is actually used by available encoders. Data 

embedding is performed by mapping a used variable 

length code (VLC) to an unused VLC. However, 

standard viewers unaware of the change will not 

properly display the image.We address this problem by 

a novel error concealment technique. Concealment 

works by remapping run/size values of marked VLCs 

so that standard viewers do not lose synchronization 

and displays the image with minimum loss of quality. It 

is possible for the embedded image to be visually 

identical to the original even though the two files are 

bitwise different. The algorithm is fast and transparent 

and embedding is reversible and file-size preserving. 

Under certain circumstances, file size may actually 

decrease despite carrying a payload. 

 

Index Terms—Code mapping, data embedding, JPEG, 

VLC, 

watermarking. 

             

             I. INTRODUCTION 

Data embedding describes a general framework 

where a payload is embedded within a cover image 

for authentication, fingerprinting or ownership 

verification (watermarking), covert communications 

(steganography) or simply as a vehicle to attach 

metadata to a cover image (data embedding). All 

three attempt to exploit an unused communication 

channel in the cover image but, depending on the 

application, there are different approaches and 

requirements. In digital watermarking, the payload 

does not have to be large but embedding must be 

robust, or semi-fragile, and secure. In steganography, 

the payload can be substantial while the cover image 

is secondary. Robustness and security are still 

important but transparency is critical to hide the 

presence of a covert channel. Digital watermarking of 

images has traditionally been implemented either in 

spatial domain [1] or transform domain [2]. 

However, multimedia signals are seldom available in 

uncompressed form because compressed media is 

often the first generation signalavailable from digital 

cameras. It is, therefore, highly desirable to develop 

watermarking algorithms that work entirely in 

compressed domain. There has been substantial work 

in embedding watermarks in JPEG compressed 

imagery. Examples include classical transform 

domain watermarking algorithms where the 

watermark is embedded in appropriately selected 

transform coefficients. However, we do not consider 

these algorithms strictly “compressed domain” 

watermarking because partial decompression is 

required to gain access to transfrom coefficients. 

Examples are JSTEG [3], F5 [4], OutGuess [5], and 

J-Mark [6]. The term JPEG-to-JPEG watermarking 

has also been used [7], although the proposed 

algorithm is still not truly compressed domain 

watermarking. What is desirable is the ability to 

embed the watermark directly in the bitstream of 

compressed media with no transcoding or 

decompression. Bitstreamwatermarking is nowa 

recognized research subarea in watermarking. 

Compressed domain is a particularly challenging 

environment for data embedding. The reason is that 

embedding relies on redundancy in the cover media. 

Compressed domain, by definition, has little 

redundancy. One proposed approach is a form of 

LSB watermarking whereby levels representing a 

VLC carry the watermark. The algorithm has been 

applied to MPEG-2 streams [8]. Another similar 

method proposed for compressed domain is done by 

modulating DCT coefficient levels [9]. The drawback 

of both of these algorithms is that they are lossy. A 

lossless JPEG watermarking scheme appears in [10]. 

This algorithm is still not strictly “compressed 

domain”, as it needs partial decompression of DCT 

coefficients. In [11], a bitstream-level MPEG-2 

watermarking is proposed. The approach is in fact 

implemented in the bitstream and embeds data in the 

LSB of the VLCs representing the DC differential of 

a block. Both approaches can be grouped under code 

mapping. Watermark embedding and recovery has 

also been formulated as problem in channel coding 

and error control [12]. More recently, attempts have 

been made to embed a watermark in the bitstream of 

H.264/AVC stream by intraprediction mode 

modification [13]. Embedding in the bitstream of 

open compression standards carries two limitations: 

fragility and weak security. For example, re-encoding 

at a different compression ratio may erase the 

watermark by replacing the code space. LSBs of 

VLCs in [8] and [11] are vulnerable to such attacks. 

This vulnerability is specifically mentioned in [6]. 

Embedding in an open standard such as JPEG or 

MPEG creates security holes. First, the bitstream 

must remain syntax compliant to remain viewable by 

standard viewers. Second, because the embedding 

rule is public, the attacker can erase the watermark 

and replace it using the same rule. Although the 

watermark is often encrypted, we believe bitstream 

embedding is not strictly appropriate as a digital 

watermarking tool. As a result we position our 

algorithm as a data embedding tool, and not 

necessarily a watermarking tool, that is best used in 
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environments where “attacks” in the conventional 

sense are not relevant or likely. Such applications 

desire to exploit the unused capacity of the bitstream 

to embed metadata to save bandwidth and keep the 

metadata attached to the cover image. For example, 

the medical community has recently recognized the 

possibilities of watermarking medical imagery [14]. 

For example, embedding Electronic Patient 

Records(EPR), saves storage in Hospital Information 

Systems, enhances confidentiality and saves 

transmission bandwidth [15]. In addition, it is 

envisioned that doctors’ notes can be embedded in 

EPR and be available for browsing by medical 

professionals. Since bitstream embedding keeps the 

stream syntax-compliant, embedded imagery will 

conform to the DICOM standard [16]. 

   In this paper, we expand upon a recently published 

approach to compressed domain watermarking [17] 

and apply it to specific bitstream as defined by the 

JPEG standard [18]. Results reported here expand 

upon the work in [19], as well. The additional work 

includes a more systematic approach to code 

mapping in JPEG bitstream, substantially more 

experimental verification, application to color and 

satellite imagery, comparison with other compressed 

domain watermarking and discussions about 

robustness, transparency, and security. In the process, 

we have achieved six, at times conflicting, goals: 1) 

compressed domain implementation, 2) reversibility, 

3) syntax-compliance, 4) file-size preservation, 5) no 

visual impact, and 6) blind decoding. The rest of the 

paper is organized as follows. Section II introduces 

data embedding through code mapping. Section III 

introduces run/size remapping of VLCs to hide or 

minimize the impact of embedding. Section IV 

presents arguments on transparency, robustness, and 

security as they relate specifically to bitstream 

embedding. Section V describes watermark recovery 

and Section VI presents experimental results. 

 

      II. DATA EMBEDDING BY CODE MAPPING 

 

        A. Analysis of the Code Space 

 

The proposed data embedding in compressed 

bitstream is accomplished by mapping eligible codes 

in the entropy portion of the bitstream to appropriate 

regions of the code space. To make this idea work, 

the JPEG code space needs to be explored further. 

The entropy-coded portion of a compressed bitstream 

consists of individual VLCs that can be classified 

into four categories: 1) valid, 2) invalid, 3) used, and 

4) unused but valid. A valid code word is a VLC that 

is generated by the specific source coding algorithm 

adopted by the compression algorithm. In JPEG, 

Tables K. 5 and K. 6 list all valid luminance and 

chrominance VLCs [18]. An invalid code word is a 

code thatis either outside the valid code space or 

violates the prefix condition. Then there is the case of 

used versus unused code words. The code space of an 

optimally coded bitstream is full. This means that any 

bit flip at any location of any VLC will generate a 

code word that violates the prefix condition or simply  
 

 
 
Fig. 1. Code tree for variable length codes. Leaf nodes represent 

used VLCs. 

Branch nodes are transition nodes and cannot be valid VLCs 
themselves. Available nodes define legal code words and are 

candidates for mapping. The entire right half of the tree is 

available for code mapping. For example, 010 can be mapped to 
any of the four nodes but not to 011 because it will violate the 

prefix condition. Since codes are mapped to nodes at the same 

level, there is no change in code length or file size. 

  

becomes another code. This situation may cause 

synchronization failure or simply lead to undetectable 

errors. Majority of JPEG encoders, however, do not 

fully utilize the code space. What this means is that a 

large segment of valid VLCs simply are not needed 

and, hence, go unused. More importantly, except for 

custom coded JPEGs, the header of most images 

mistakenly communicate to the decoder that the code 

space is in fact fully occupied. This results in a 

situation where there is a considerable void between 

the valid code space and the used code space. The 

reason for this is that JPEG encoders, in general, are 

not optimized for any specific image. It is simply 

assumed that the entire code space will be used. The 

core idea introduced in [17] and illustrated in [19] 

embeds data by pushing valid VLCs to unused 

portions of the code space. See Fig. 1. If the entire 

code space were occupied, code mappingwould not 

be possible. The decoderwould have noway of telling 

a mapped VLC from the original. To identify the 

available code space for embedding, the used portion 

of code space is mapped to a binary tree whose leaf 

nodes define the VLCs. Mapping of a VLC is 

accomplished by flipping one (or possibly more) 

bit(s) at appropriate locations. Flipping a bit is 

equivalent to mapping the VLC to another node at 
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the same level (since the length does not change). 

However, not all nodes are available for this 

mapping. Only those mappings that do not cause 

collisions are eligible. Collision occurs when the 

mapped VLC coincides with a used VLC, prefixes a 

used VLC or another used VLC prefixes it. We will 

now demonstrate how code mapping is applicable to 

JPEG code space. 

 

 

      B. JPEG Code Space 

The entropy-coded portion of JPEG can either be 

Huffman or arithmetic coded. Because most images 

use Huffman encoding, that is the focus of our 

discussion. The JPEG standard does not require that a 

specific Huffman table be used for every image. 

Instead, to maximize compression, the standard 

encourages customizing the Huffman table based on 

the specific run/size occurrences for each individual 

image. However, most commercial JPEG encoders 

bypass this customization step and instead use  

example tables provided in the standard itself. These 

standard tables include VLC assignments for all 162 

possible run/size  combinations. The VLC 

assignment to each of  the 162 possible run/sizes was 

determined based on a large library of images, 

approximately 100 000 according to the standard. 

However, for a specific image, the default code space 

is not optimized leaving a large portion of the code 

space unused. For a code word to be successfully 

mapped, at least one bit must be changed without 

causing a collision. For the default Huffman table, it 

is not possible to flip a bit without violating the 

prefix property of the code table. However, it may be 

possible to map a VLC to the outside of the used 

code space. It is not unusual to find a natural image 

that uses only 40 to 60 of the possible 162 run/size 

combinations. The mapped VLC will still belong to 

the default Huffman table but is not used in the 

image. To maintain lossless embedding, once a VLC 

is mapped to an unused VLC, the unused VLC must 

be considered “used.” Essentially, this keeps two 

used VLCs from being mapped to the same unused 

VLC (it would be impossible to know which was the 

original in this case). For security purposes, the hash 

of the message is then embedded in the header of the 

JPEG file. This step is further explained in Section 

IV. Embedding rule is summarized below. 

  Embedding 

 

1. Parse the bitstream, extract VLCs. 

2. Build the code tree, identify used and unused code 

space. 

3. Identify qualified VLC pairs for mapping. 

4. To embed a 1, map one used VLC to its unused 

counterpart. 

5. Remap run/size of the unused VLC to minimize or 

eliminate visual impact. 

6. To embed a 0, do not map a qualified VLC. 

7. Embed a hash of the message in the header. 

 

    III. ERROR CONCEALMENT IN CODE MAPPING 

 

The concept of error concealment is generally 

associated with MPEG video. The idea is to replace 

corrupted macroblocks with some form of 

replenishment, through a variety of ways including 

inter or intra prediction or simple repetition of the 

corresponding data from previous frames. In this 

section we point out that error concealment is also 

relevant in the context of JPEG when embedding is 

treated as forced bit errors. One of the key objectives 

in this work is that embedded JPEG stream must be 

viewable by any JPEG viewer. Therefore, we define 

two classes of viewers, 1) embedding-aware viewer, 

meaning that the viewer is also an authorized decoder 

and 2) standard viewer, meaning all other publicly 

available JPEG viewers. By mapping a used VLC to 

an unused VLC, not only the VLC will change, so 

will its run/size assignment. This remapping of the 

run/size would most likely result in catastrophic loss 

of synchronization in a standard viewer. The reason 

standard viewers are handicapped is because every 

VLC is a legal VLC. Therefore, a mapped VLC will 

be displayed with a run/size different from the 

original. Whereas, for embedding-aware viewers, 

mapped VLCs are “illegal” VLCs, illegal for that 

image that is, and are recognized as such. Note that 

the way JPEG decoders actually produce a visual 

image is unrelated to the VLCs themselves. The 

VLCs are simply pointers to run/sizes. It is the 

run/size pair that recreates the quantized 
 

 
 

Fig. 2. In many JPEG images, a large number of VLCs are defined 

but never used in the image. This diagram illustrates the 
difficulties a standard viewer might have with a watermarked 

image. Watermarked VLCs are incorrectly parsed because 

watermarking may violate the prefix rule. The solution is to 
redefine the original Huffman table. 
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Fig. 3. Mapped VLC appears as another VLC of the same length. 
The new size S2 must be remapped to S1  to maintain 

synchronization. Also, r2 = r1  . 
 

DCT coefficients. Therefore, if a VLC is mapped to a 

new runs/size, then the value of run/size affects only 

the manner in which standard decoders interpret the 

mapped VLCs. What needs to be done at this point is 

a clever way to redefine the run/size values of the 

mapped VLCs to make standard viewers interpret the 

embedded VLC as close to its original as possible. 

 

A. Error Concealment by Run/Size Remapping 

  Since mapped VLCs are only mapped to unused 

VLCs, modifying their runs/sizes will only affect how 

the image is displayed. No other part of the image is 

affected by this modification. Ideally, run/size should 

be changed to match the original run/size. However, 

this cannot be done in all cases. The interpreted length 

of the mapped VLC may be equal to, shorter, or 

longer than the length of the original VLC. Fig. 3 

shows the first case. A mapped VLC with a run/size  

r1/s1  appears as anotherVLC with run/size r2/s2 but the 

same length. The viewer then expects the beginning of 

the next VLC to be S2 bits later. In reality, the next 

VLC begins S1 bits later. If nothing is done, 

synchronization will be lost. The solution is to 

redefine the run/size values of the mapped VLC to 

match the original one. This can be done directly in 

the Huffman table definition of the JPEG file. Two 

other cases are shown in Figs. 4 and 5. In both 

cases,the run of the interpreted VLC must 

 
 

 
 

 

Fig. 4. Valid, but unused, VLC appears as a prefix in a mapped 
VLC. S2 must 

be redefined as shown to maintain synchronization. 

 

 

 
 

 
 

 

Fig. 5. Interpreted length of the mapped VLC is now a longer 
VLC. � must 

be redefined as shown to maintain synchronization. 

 

Match the original and the  size is redefined to make 

the overall length (VLC length plus appended bits) 

the same as the original VLC. It is illustrative to 

establish the application of this concept to actual 

JPEG code space. 

 

B. Run/Size Remapping for JPEG VLCs 

 

Case 1: Interpreted VLC Length is Equal to the 

Mapped VLC 

Length: Ideally, the lengths of the original VLC and 

the mapped version are the same, but this is not 

guaranteed. If they are the same, then this is the most 

favorable case. In this case, it is always possible to 

replace the run/size of the interpreted, but unused 

VLC with the run/size of the original VLC. The run 

of the interpreted VLC can always be modified 

because it never appears in the image. This makes 
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mapping of this particular group of VLCs completely 

invisible since nothing is changed for display 

purposes. The VLC to be mapped is number 43 in 

Table K. 5 [18] and is represented by 

run/size/length/total length of 4/2/10/12 and shown in 

Fig. 6. Flipping the LSB maps this VLC to number 

112 represented by 11/1/10/11 for a total length of 11 

bits. This VLC does not appear anywhere in the 

image.If the size of the interpreted VLC is not 

changed, the viewer will parse a total of 11 bits, 

causing synchronization failure. Instead, we change 

the run/size from 11/1 to 4/2 in the appropriate 

Huffman table. Total length of the interpreted VLC 

will then be 12 and the run remains unchanged. 

Therefore, embedding will have zero visual impact. 
 

 

 

 
 

Fig. 6. Embedding-unaware decoder mistakenly decodes a marked 
VLC as an 

unmarked, valid but unused VLC of the same length. Run/size of 

the interpreted VLC must be changed to maintain synchronization. 
 

 

 

 
 
Fig. 7. Mapped VLC may become a prefix to several unused 

VLCs. Embedding- unaware decoder mistakenly decodes a marked 

VLC as an unmarked valid but unused VLC of the same length. 
Run/size of the interpreted VLC must be changed to maintain 

synchronization. 

 

Case 2: Interpreted VLC Length Longer Than 

Mapped VLC 

Length: In this case, there is the possibility that a 

single VLC when mapped becomes a prefix to two or 

more VLCs. See Fig. 7. The run can always be made 

identical but the size will have to be changed to keep 

synchronization. This means that if the length 

difference is one, then the size must be modified to 

be one less than the original. Since the lengths of the 

mapped versions are longer than the original VLC, 

what will determine how the mapped versions are 

displayed will be the appended bits. Also, since the 

decoder could interpret the mapped version as 

multiple different VLCs, each of the possible 

interpreted VLCs run/size combinations must be 

altered. They will all be modified to the same new 

run/size. The difference between this case and Case 1 

is that changing the size of the VLC will also change 

the number of appended bits and how the VLC is 

displayed. If this change is deemed too much, that 

particular VLC should not be mapped. 

 

Case 3: Interpreted VLC Length is Shorter Than 

Mapped 

VLC Length: The final, and most problematic, 

possibility is that the interpreted VLC will be shorter 

than the actual length, as shown in Fig. 8. In this 

case, it is possible that two or more VLCs when 

mapped will be interpreted as the same VLC by an 

embedding-unaware decoder. It is important to note 

that the mapped VLCs are distinct; however, the first 

N bits of each are the same and belong to an unused 

VLC. Therefore, an embedding -unaware decoder 

will interpret the first N bits of any of these mapped 

VLCs as the same valid VLC. Therefore, it would not 

be possible to mask the effect of mapping since it is 

possible to modify one run/size only. The solution 

then is to select only 

 

 
 

Fig. 8. Two different VLCs, when mapped, may be interpreted as 
another VLC of shorter length. To keep synchronization, run/size 

of the interpreted VLC must be changed to match either the first or 

the second mapped VLC. In this case, only one of the VLC will 
then be selected for embedding. If capacity is important, then the 

VLC that occurs more often is the one that should be mapped. 

 

one of the two VLCs. Consider two mapped VLCs 

are defined by 5/2/11/13 and 1/5/11/16. The 

interpreted VLC is 12/1/10/11. This run/size must be 

redefined to either 5/3/10/13 to match the first VLC 
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or 1/16/10/16 to match the second. Notice in both 

cases the total length, hence synchronization, is 

maintained. The choice of which VLC to map 

depends on a number of factors. If embedding rate is 

important, then the VLC with a higher occurrence 

rate must be selected. Note that the remapping of 

run/size value will have a visual impact. So between 

the two choices, the one with the smallest deviation 

in size must be chosen. In the example of Fig. 8, both 

mappings are equivalent because they change the size 

by one relative to original VLCs. 

 

IV. ROBUSTNESS TRANSPARENCY,  AND SECURITY 

 

Transparency refers to the impact of embedding on 

visual and statistical properties of the cover 

image.We have identified three code-mapping cases. 

Of the three, Case 1 produces zero visual impact on 

the cover image. If the embedding rule is limited to 

Case 1, the displayed original and embedded image 

will remain visually identical. This property is unique 

among watermarking algorithms in that two image 

files that differ in binary content produce identical 

images. The reason for this property can be traced 

back to the JPEG standard. Two different code words 

project to the same color if their run/size designations 

are the same. Cases 2 and 3 do cause visual 

degradation but the impact can be kept to a minimum 

if the size of the new VLC is kept close to the 

original.We have not reassigned sizes by more than 

one. The resulting peak signal-to-noise ratio (PSNR) 

(Table III) is 50 dB or higher; more than needed for 

transparency. PSNR is computed by the mean square 

difference of the embedded image and the original 

after they are decompressed. Therefore, any 

difference is due to embedding, not compression. 

Robustness refers to the ability of the detector to 

recover embedded data when the cover media is 

subjected to malicious attacks as well as ordinary 

signal processing operations. Strict compressed 

domain embedding is vulnerable to recompression 

and transcoding. Recompression is achieved by 

scaling the quantization tables. This scaling may 

push quantized coefficients to different quantization 

bins, overwrite the mapped VLC and, thus, alter code 

mapping carefully orchestrated at the embedder. 

However, depending on the scaling parameter, 

quantized DCT coefficients may not change and, 

thus, the corresponding VLCs will not change either. 

For example, for lena 30% of nonzero DCT 

coefficients remain unchanged using a quantization 

scale factor of 1.5. This number is reduced to 18% 

for scale factor of 2. So it is possible to choose VLCs 

that could survive moderate recompression although 

larger scale factors will likely cause full erasure. 

Vulnerability to recompression is not unique to code 

mapping. Label-carrying VLCs [8], and coefficient 

embedding such as F5 and J-Mark are equally 

vulnerable to erasure by recompression. Another 

issue related to robustness is the occurrence of bit 

errors. However, bit errors adversely affect JPEG 

decoding as a whole and not just the data recovery 

portion. Other than placement of restart markers, the 

JPEG standard has little inherent protection against 

bit errors. Therefore, it is expected that bit errors are 

handled at a higher protocol level. It is in fact rare to 

encounter JPEG files today that have been corrupted 

by bit errors. Security is declared perfect if repeated 

observations of the image does not cause leakage of 

the secret key [20]. Secure embedding in compressed 

domain of an open standard is a difficult problem 

because of the imposed framework. Embedding must 

take place in a JPEG bitstream and the stream must 

be viewable by standard viewers. The problem is that 

every piece of information for decoding a JPEG 

stream is in the header and cannot be concealed or 

encrypted. Data hiding is often tied to some form of 

secret key that is exchanged with the decoder. In our 

approach, the key is the pair of (used VLC, unused 

embedded VLC). This association, however, cannot 

be kept secret if the bitstream is to remain syntax-

compliant and viewable by standard viewers. To 

remain viewable, the modified Huffman table must 

be stored in the header portion and remain in the 

clear. If it is in the clear, then modified run/size 

values and the knowledge of the algorithm can be 

used to detect the watermark, much like what the 

authorized decoder does. Any attempt to conceal or 

encrypt the modified Huffman table will make the 

image unviewable by standard viewers. The most 

serious concern, for example in medical applications, 

is privacy and forgery. Attackers may erase the 

embedded data by re-encoding and replacing it with 

someone else’s. To identify this attack, we rely on 

computing MIC(Message Integrity Code) and storing 

it in the header section of the image. MIC is 

computed by hashing, using MD2 for example, the 

concatenation of the embedded data with a secret 

key, MD2(key, ). The secret key can be unique to the 

image and/or owner. MD2 is a 128-bit hash and is 

considered secure. 

 Most images contain user fields that can be used to 

store the 16 byte hash. The attack scenario is as 

follows. The attacker identifies mapped VLCs and 

either strips the embedded data and/or inserts his 

own. The owner cannot identify tampering because 

VLCs are legally marked according to the algorithm. 

However, an MIC check can resolve this matter. 

Authorized decoder recovers the forged data , 

appends the secret key and computes its MIC, 

MD2(key, ). This MIC will not match what is stored 

in the header and, thus, signals authentication failure. 
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      V. DATA RECOVERY 

   The most important piece of information for the 

decoder is the list of mapped VLCs. This list is easily 

generated at the encoder side by parsing the image. 

However, the decoder cannot inspect the image in the 

same way as the embedder because VLCs have 

already been changed. The easy way would have 

been to include this table as an additional Huffman 

table in the header. Even though this addition would 

have minimally increased the file size, we chose not 

to do so. Instead, we have developed a procedure by 

which the decoder, in an indirect way, builds the 

VLC pairs (original and corresponding mapped 

VLCs) from existing Huffman tables that are always 

included in the image. Here we examine how the 

decoder handles the three cases covered in the 

previous section. First, the decoder merges the 

publicly available standard Huffman table with the 

Huffman table extracted from the embedded image. 

The merged table is then sorted by run/size. An 

examination of this table reveals the following. For 

Case 1, the decoder will see duplicate run/sizes for 

pairs of VLCs of the same length. This would not 

happen in an unmarked image. Since we know what 

the true run/size is for any VLC, the VLC with the 

modified run/size must have been a mapped one. 

Similar logic holds for Case 2 and 3. The decoder 

identifies pairs of VLCs with the same run/size. In 

this case, they will be of different length but that does 

not matter. Of the two VLCs the one with modified 

run/size is the marked one. By comparing the original 

and modified run/size and knowing what the encoder 

had to do to maintain synchronization, it is possible 

to arrive at the run/size of the original VLC and, 

hence, the VLC itself, prior to embedding. The 

decoder has now established one VLC pair. This 

knowledge can be used to completely reverse the 

embedding after extraction. Once the VLCs have 

been linked, the decoder then parses through the 

image data looking for VLC pairs. Once a VLC is 

located, the decoder checks to see if it is a marked 

VLC, or a VLC that could have been mapped. If the 

VLC could have been mapped but is not, then it must 

be carrying a data bit 0. Otherwise it carries a 1. 

A. Data Extraction Summary 

1. Parse the image. 

2. Extract used VLCs. 

3. Compare run/size of used VLCs with run/size of 

the standard Huffman table. 

4. Work backward to identify corresponding 

      {original,mapped}  VLC. 

5. Build{origina,mapped} VLC pairs list. 

6. Extract a 1 if eligible VLC pair appears in the 

image. 

7. Extract a 0 if eligible VLC pair appears 

unchanged. 

8. Using secret key, compute MIC of extracted data 

and compare with the stored copy. 

9. If two MICs match authentication succeeds. 

 

VI. RESULTS 

 

The algorithm was tested across ten images obtained 

from the online image database of the University of 

Southern California [21]. Selected images are in 512 

X 512 TIFF format and were converted to grayscale 

and compressed by varying JPEG Q-factors. Testing 

involved embedding each image with the maximum 

allowable capacity. PSNR was used as a measure of 

quality by computing the mean square difference 

between the embedded image and original after they 

are decompressed. Therefore, any difference is due to 

embedding, not compression. 
 

 
 

Fig. 9. Number of VLCs versus JPEG Q-factor. As Q decreases 

(compression 
increases), the number of VLCs also decrease. 

 

 

 
Fig. 10. Number of used AC VLCs versus JPEG Q-factor. These 
numbers are each out of the default 162 defined in the JPEG 

standard. Since these numbers are far less than nominal, there exist 

redundancies in the code space which will be used for embedding. 
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A. Pre-Embedding Statistics 

    Prior to embedding several statistics were recorded 

which aided in identifying key issues regarding 

embedding capacity and PSNR. Fig. 9 shows the 

number of VLCs that actually occur in each image 

versus Q-factor. This verifies that as Q increases so 

does the total number of VLCs. However, the 

number of unique AC VLCs was found to be far less 

than the maximum 162. This supports the claim that 

there is indeed unused code space within the JPEG 

images. As shown in Fig. 10, the number of AC 

VLCs used in each image never exceeds 70, 

corresponding to code space occupancy of  70/162 = 

43.2%. The final pre-embedding statistic is the 

number of qualifying VLCs, i.e., VLCs that can be 

mapped to an unused VLC, versus Q-factor. Results 

are shown in Table I. From the data collected, it is 

clear that increasing compression will reduce the 

number of VLCs used within any given image. The  

number of unique AC VLCs, however, is image 

dependent since different images will use different 

VLCs. With this in mind, it can be concluded that the 

number of qualifying VLCs is more influenced by 

image content than the Q-factor. 
 

                                     TABLE I 

NUMBER OF QUALIFYING VLCS VERSUS JPEG Q-FACTOR 

 

 
                      10      20       30       40       50      60       70       80        

90 

         

 
Baboon         12      12       16        15     17       19       19        19       

16 

 
Boat             10      10       13        17      20      18        19        25       

25 

 

Bridge          11      11       12       15      19       17        22       22       

24            

 
Elaine           7        10       8         6         7         6          8         8        

11 

 
F16               8          8       9        17       18        20        23      27       

32 

 
Gray21         6         11     15       15       16        14       17       22       

29      

 
Lena            10        6       8         9          9          9        10       18       

18             

 
Peppers        9       11      13      17        18        23       24       27        

26     

 
Splash          9       11      10      13        15        20       23       25        

31        

 

Tiffany       12       10      13      16        21       22       28       32        

33     

 

 

                     

 
                                    TABLE II                                               

 EMBEDDING    CAPACITY(BITS) VERSUS JPEG Q-FACTOR 
 

 

                  10      20       30       40       50      60         70           80        

90 

                                                                                                                               

 
Baboon   792      2035   1071   1342    820    887       953       317       

195 

 

Boat         476      350    457       355     439    514       231       270     

528 
 

Bridge     719      554    469       583     683    244       283       161      

188     
 

Elaine      111     130     139       200      249   79         92          146      

339 
 

F16         545     400     310       367       401   298      259        210      

222      
 

Gray21    152    261     488       292       333    310     752         934     

1152     
 

Lena       263     197     235       259       317     94       99          86       

152       
 

Peppers   350     247    338       242       278    357      164        144     

378              
 

Splash     284     369    261       296       378    547      383        359     

296        
 

Tiffany   226      348    222       310       332    391      534        332     

279   

 

 

B. Post-Embedding Statistics 

   Results for embedding capacity in bits versus JPEG 

Q-factor are shown in Table II.With the exception of 

baboon, the overall capacity did not vary much with 

changing Q-factor. Data suggests that the Q-factor 

weakly affects overall embedding capacity. From the 

data collected, PSNR is not directly related to the 

number of embedded bits. Instead, any change in 

PSNR is a result of a run/size remapping. Table III 

shows PSNR versus JPEG Q-factor versus capacity. 

The only connection Q-factor has to PSNR is that it 

regulates the number of VLCs which occur in the 

image and, hence, the resulting number of qualifying 

VLCs. It does not, however, influence the mapping 

of used VLCs to unused VLCs which ultimately will 

alter the visual quality of the image. After applying 

the algorithm to several images using the standard 

VLC tables, it is clear that the remapping of VLCs is 

not consistent from image to image. Therefore, in 
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order to maintain sufficient PSNR, only VLC re-

mappings that minimize visual distortions should be 

used. This approach may reduce capacity though the 

amount by which it is reduced is strictly image- 

dependent. Note that it is generally accepted that 

PSNR of 35 dB and above is visually 

indistinguishable from the original. 
                            
                              TABLE III  

AVERAGE CAPACITY AND PSNR ACROSS ALL JPEG Q 

 

Image          AverageCapacity(bits)  Across All Q   Average 

PSNR(db) 

 

Baboon                  934.67                                                50.39 

 

Boat                       402.22                                                55.42 
 

Bridge                   431.56                                                 54.41    

 
Elaine                    165.00                                                 62.25                                                                              

 

F16                       334.67                                                 53.46 
 

Gray21                  519.33                                                 50.82 

 
Lena                      189.11                                                  58.05                

 

Peppers                277.56                                                  57.63    
 

Splash                  352.56                                                  57.83           

 
Tiffany                 330.44                                                  57.55 

 

 

                                     
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
                                          

 

 

  TABLE IV 
            CONTRIBUTION OF CHROMINANCE (Q  =  50) 

 
 

Image   LumaCapacity(bits) ChromaCapacity(bits)  Payload  

Contribit of Cromi                                                                                                                                            
                                                                                                       

Nance 

 

 

lena             314                         86                             400             
21.5%    

 
baboon         821                       160                            981             

16.31%        

 
f16                376                        115                           491             

23.42%   

 
peppers         282                        274                           556              

49.28%       

 
Earth             366                        505                           871              

57.97%              

 
splash           366                         245                           611              

40.10%                  

 
sailboat          370                         243                         613               

39.64%     

 
louse              572                         220                         792               

27.78%      

 
tiffany            328                         387                         715               

54.12%     

 

        

 

 

C. Embedding in the Chrominance Band 

   

Most watermarking algorithms stop at the luminance 

band. 

Code mapping, however, is equally applicable to the 

chrominance band. JPEG standard supports up to 

four  

Huffman AC tables; two for luminance and two for 

chrominance. The chrominance VLCs are defined in 

Table K. 6 of the standard. There are 162 

chrominance VLCs, equal to the luminance 

component. The VLCs themselves are in fact shared 

between the two tables. The difference is that same 

VLCs are assigned to different run/sizes. Therefore, 

it is not possible to distinguish between chrominance 

and luminance VLCs based solely on the bit string. 

What are of most interest at this stage is howthe two 

code spaces compare and how much capacity 

increases by embedding in chrominance band, as 

well. Table IV illustrates the contribution of 

luminance to the total capacity for Q = 50 . Because 

JPEG color model uses YUV with 4 : 2 : 0 
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component sampling, adding chrominance means 

increasing image blocks by 50% compared to 

grayscale. Stated differently, chrominance blocks 

account for 1/3 of total blocks. Data shows that 

chrominance VLCs, depending on the image, account 

for less or more than 1/3 embedding capacity. The 

percentage is different across images depending on 

the content, population of qualifying VLCs and the 

frequency they occur in the image. Nevertheless, 

there is a substantial increase in payload by 

embedding in the color band, as well. 

 

 

 

 

D. Computational Benchmarking 

 

One of the promises of data embedding applied 

directly in the bitstream is fast execution time. To test 

this property, we applied the algorithm to satellite 

scale images of sizes close to 1000
2 

 

 

 
 

 

 

 

 

 
 

 
Fig. 11. Original (left) and embedded color image (right). In this 

case, chrominance band accounts for close to 50% of embedding 

capacity. Run/size mapping makes the two images visually, and 
numerically, identical. 

 

 

Fig. 12. 3000�3000 image of San Francisco Bay collected by 

IKONOS. This image carries 180 000 bits of information at zero 

loss in quality. This is achieved by using only equal length VLC 

pairs and mapping their runs/sizes accordingly. 

 

 

pixel shown in Fig. 12. Such image sizes have 

seldom been tried in watermarking literature. Our 

algorithm embedded 180 000 bits with zero loss in 

visual quality. This goal was achieved by limiting 

VLC mapping to Case 1 mapping. Higher embedding 

rates are possible by including other cases. For 

benchmarking we chose F5 [4]. F5 is arguably the 

best known JPEG watermarking algorithm that 

comes closest to compressed domain 

implementation. Data in Table V shows that our 

algorithm runs five to seven times faster than F5. For 

sizes bigger than 1552 X 1552, F5 simply hangs. 

 

 

                     VII. CONCLUSION 

In this paper, we have advanced the state of the art in 

JPEG data embedding on several fronts. The data is 

embedded directly in the bitstream and executes 

considerably faster than existing techniques, which 

require full or partial decompression. Embedding is 

lossless in the sense that once the data is removed, 

the image can be restored to its original state with no 

changes. The stream, despite carrying a payload, 

remains syntax-compliant and, hence, viewable by 

standard viewers. Notably, marked images can be 

made mathematically and, thus, visually identical to 

the original image. File size increase is only due to 

the 16-byte hash value. In most cases there are 

redundant fields in the JPEG header that can be 

removed to offset this addition. Therefore, no file 
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size increase is experienced. In fact, we have 

observed that marking a VLC may negate the need 

for zero pads and, thus, may actually reduce the file 

size. 
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