
Data Leakage Detection and Security

Mrugesh U. Verekar. Abhijeet Patil. Gaurang Prabhu.

Vidyalankar Institute of Technology, University of Mumbai.

Abstract

In any enterprise, database plays one of the most

crucial part since organizations most confidential data

(e.g. employee’s social security no) is stored in the

database. Since the data is of great value, it should not

be leaked or sabotaged. In every business field

including private, public and individual level, database

is widely used. In any organization there is a need to

share the data among multiple trusted parties. But

during this sharing of the data, it could be possible that

any dishonest employees (aka guilty agents) may try to

leak the data which results into data vulnerability or

alteration. In order to prevent such data leakage, data

leakage detection system has been proposed. It

comprises of brief idea about data leakage and a

methodology to detect the same.

Data leakage is a main obstacle to data distribution.

A distributor gives sensitive data to a set of supposedly

trusted agents. Sometimes the data gets leaked and is

found in an unauthorized place. If the data is found at

some places other than the authorized places which

imply that the any of the trusted agents has leaked the

data, so the distributor needs to identify the guilty

agents. we analyse the guilty model that detects the

agents by using concept called ‘data allocation

strategy’ which intelligently allocates a set of fake

objects (not real object but appears to be realistic to

agent) to the trusted agents without making any

modification to the original data. The guilty agent is

one who leaked a portion of distributed data. In

addition to this, we also aim to impart security at

various levels using encryption depending upon the

hierarchy of the importance of the data.

Main idea is to distribute the data intelligently to

agents based on sample and explicit data request in

order to improve the chances of detecting the guilty

agents. The algorithm implemented using fake object

will help to improve the chances of detecting the guilty

agents.

Index Terms—fake object, watermark, data leakage

detection, data allocation strategy

1. Introduction.

 While doing any kind of business, sensitive data is

required to be shared with authorized users, employees

as well as trusted third parties. The owner of the data is

said to be a distributor and the supposedly trusted third

parties are said to be agents. Here our aim is to detect

whether the distributor‘s sensitive data has been leaked

by agents and if yes, then try to find out the agent who

has leaked the data.

 Traditionally, data leakage detection is handled

by watermarking by embedding a unique code in each

distributed copy. If that copy is later discovered in the

hands of an unauthorized party, the leaker can be

identified. Watermarks can be very useful in some

cases. E.g. we may have seen that many of the

company‘s/organizations do make available some

documents for the entire world, so they upload it on

their respective websites by embedding their

watermarks in it. These watermarks do not modify any

documents. But these watermarks can be destroyed by

using any latest technology if the data recipient is

malicious. So our purpose of identifying a guilty agent

is not served fully. In order to overcome this problem,

in this paper we study a perturbation technique for

detecting a leakage of a set of objects or records.

 Perturbation is a very useful technique but

the problem associated with it is that the data gets

modified and becomes less sensitive before it is handed

over to the agents. But in some cases, it is important

not to alter the distributor‘s original data. For example,

any research stuff done by research organization,

patient‘s medical record. Hence our focus is on use of

fake objects. These are not real objects but appears

realistic to the user/trusted client i.e., these fake objects

are still hidden from the clients and it gives an

impression to the clients as if original data is not

modified. All details regarding fake object will be

stored in database and by making use of it, data

distributor can assess the guiltiness by using the

concept of probability.
[1]

2384

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

2. Existing System.

Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in each

distributed copy. If that copy is later discovered in the

hands of an unauthorized party, the leaker can be

identified. Watermarks can be very useful in some

cases, but again, involve some modification of the

original data. Furthermore, watermarks can sometimes

be destroyed if the data recipient is malicious.
[1]

 A hospital may give patient records to researchers

who will devise new treatments. Similarly, a company

may have partnerships with other companies that

require sharing customer data. Another enterprise may

outsource its data processing, so data must be given to

various other companies. We call the owner of the data

the distributor and the supposedly trusted third parties

the agents. The distributor gives the data to the agents.

These data will be watermarked. Watermarking is the

process of embedding the name or information

regarding the company. The examples include the

pictures we have seen in the internet. The authors of the

pictures are watermarked within it. If anyone tries to

copy the picture or data

the watermark will be present. And thus the data

may be unusable by the leakers.

Disadvantage

 This data is vulnerable to attacks. There are

several techniques by which the watermark can be

removed. Thus the data will be vulnerable to attacks.

3. Proposed System.

 Our aim is to detect when the distributor‘s

sensitive data has been leaked by agents, and if possible

to identify the agent that leaked the data. Using

Perturbation technique we can modify the data to make

it less sensitive before being handed to agents. We have

developed an unobtrusive techniques for detecting

leakage of a set of objects or records. In this section we

develop a model for assessing the guilt of agents who

has the highest probability. We also present algorithms

for distributing objects to agents, in a way that

improves our chances of identifying a leaker.

 We also consider the option of adding fake objects

to the distributed set of data. This fake objects do not

correspond to real entities but appear realistic to the

agents. In a sense, the fake objects acts as a type

of watermark for the entire set, without modifying any

individual members. If it turns out an agent was given

one or more fake objects that were leaked, then the

distributor can be more confident that agent was guilty.

The Fake object are unique for every set of data and the

value of the fake object changes every time the data is

accessed and modified by the receiving agent

depending on the specific pre specified instructions

which can be vary upon type and importance of data

and on receiving agent.

 Today‘s technology made the watermarking system

a simple technique of data authorization and a simple

means of identification of source. There are various

software‘s which can remove the watermark from the

data and makes the data as original leaving no way

around for its original owner to any legal claim on data.

Also data is encrypted before sharing (transferring)

and the encryption is done using a unique key for each

client agent. All the information (sensitive data) is

stored in a different database server in altogether

different Encrypted form to which only main server has

access.

Figure 1: Encrypted Data

Advantage

 The system that we have developed includes the

facility of data hiding along with the provisional

software only by which the data can be accessed. This

system gives privileged access to the database

administrator (i.e., data distributor) as well as to the

agents that are registered by the distributors. Only

registered agents can access the system. The user

accounts can be activated as well as cancelled. The

exported file will be accessed only by the system. The

agent has given only the permission to access the

software and view the data. The data can be copied by

our software. If the data is copied to the agent‘s system,

the path and agent‘s information will be sent to the

distributors (i.e., to the server) thereby the identity of

the data leaker can be traced.

2385

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

4. Implementation.

Our aim is develop an application for an

organization or businesses where the organization

(Distributor agent) can share information with its clients

(receiving agents) we have implemented a three tier

architecture in implementation and follows a client-

server architecture.

The Distributer agent at server can share some

important data object with receiving agents i.e., trusted

clients. The server is responsible for adding watermarks,

implement Perturbation, add unique fake objects,

watermarks if required and encrypt the data before

sending and the third tier is a separate server where we

can store the data in encrypted form.

Figure 2: System Architecture

A client agent can access the data information

shared and can perform all the other granted operations

only through the application. Hence, the client requires

the application to decrypt the encrypted shared data and

to perform other tasks. A client specific log of every

client is kept in server of all operations performed by

the client. Every time when client access any

information or do any operation with the data or on the

application a notification is sent to the server and the

client log is updated.

A client agent if having access writes can modify or

add new information to the existing shared information

and the procedure of client modifying information is

carried out. E.g. In a hospital, a doctor can add or

modify patient‘s medical record depending on the

current diagnosis and can forward it to another doctor

for review which can be modified by him if required.

The data is always distributed in an encrypted form.

There will be a client specific encryption with a unique

key assigned and possessed by the client. The data is

securely stored in a different server using altogether

different encryption technique.

 Figure 3: Notification sent to server every time when

the data is transferred from one source to another

Major modules of the project are:

Data Allocation Module:

 Any client can make a request to the data

distributor.

Once the request is received, data distributor first

verifies whether the request that is received is from

authorized agent/client or not. Once verification is done,

data distributor further verifies whether that particular

agent/client has that permission to send a request or not.

Once verification is done, the data distributor then

intelligently gives data to agents by adding fake objects

in it in order to improve the chances of detecting a

guilty agent.

 In our project, we have used an algorithm named

as ‗explicit data request‘. It works as follows.

 Let T = {t1, t2, …, tn} be the set of records that

are owned by data distributor. First agents send the

request for available records to data set T. It can contain

sensitive as well as non-sensitive data. It can be

represented as Ri=EXPLICIT ({t1, t2, …, tn}, cond1).

Such request is said to be an explicit data request which

is made to the data distributor. Once such request is

received, data distributor add one or more fake object

from the set of fake object and then hand over agents

requested data.
[1]

2386

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

 Figure 4: Data sharing mechanism

Algorithm: Evaluation of Explicit Data Request

1: Calculate total fake records = sum of fake object

allowed. 2: While (total fake objects > 0) do

3: Select agent that have the greatest improvement in

the sum objective i.e. i= argmax ((1\|Ri|)-(1\|Ri|+1)) σj

Ri∩ Rj

4: Create fake object

5: Add this fake object to the agent‘s data set and also to

the fake object set.

6: Decrement fake object from total fake record set.

E.g. Let T = {t1, t2} where T be the set that is owned

by data distributor and there are two agents u1 and u2

with explicit data requests R1 = {t1, t2} and R2 = {t1}

respectively. The value of the sum-objective is in this

case:

 2 n

 Σ 1/|Ri| Σ | R1 ∩ R2|=1/2 +1/1= 1.5

 i=1 j=1

 j≠i
 Here we can see that object t1 is given to both the

agents. This is called as overlap and it is represented as

R1 ∩ R2.

But the problem associated with it is that the distributor

cannot remove or alter the R1 or R2 data in order to

decrease the overlap. Hence the distributor can create

one fake object let say f and gives it to R1. Now agent

U1 has now R1 = {t1, t2, f} with F1 = {f}. Due to this

value of the sum-objective decreases to 1/3 + 1/1 = 1.33 <

1.5. But if the data distributor adds fake object f to R2

instead of R1 then in this case the sum-objective would

be 1/2 + 1/2 = 1 < 1.33. This shows that addition of a

fake object to R2 has greater impact on the

corresponding summation terms, since

 1/|R1|-1/| (R1| + 1) = 1/6 < 1/|R2|-1/ (|R2|+ 1) = 1/2

Fake Object Module:

 The concept of adding fake object is at the core

of our project since it plays a lead role while assessing

the guilt of the agent. In our project, perturbation

technique is used which makes use of fake objects that

are added by data distributor. This technique basically

removes some of the data from original data/document

and makes it less sensitive i.e., results into the

modification of the original data only theoretically but

not practically. This means that any client/trusted agent

when desire to view their documents can get the

documents as it is without any modification but

practically data distributor intelligently add fake objects

at the server side and modified data is send to the client.

Detail information about for which clients which are the

fake objects are added is stored in database at the server

side. These fake objects are not visible in normal

notepad or in any word-processor. These fake objects

get visible only when those files are opened at the server

side. Only data distributor has access to the server side.

This means that there is no way by which client can

come to know about which are the fake objects that are

added if that client decided to leak that data. This means

that fake objects remain hidden from the client.
[1]

Our use of fake objects is inspired by the use of trace

records in mailing lists. In this case, company A sells to

company B a mailing list to be used once (e.g., to send

advertisements). Company A adds trace records that

contain addresses owned by company A. Thus, each

time company Buses the purchased mailing list, A

receives copies of the mailing. These records area type

of fake objects that help identify improper use of data.

The creation of a fake object for agent Ui as

a black box function CREATEFAKEOBJECT (Ri,

Fi, condi) that takes as input the set of all objects Ri, the

subset of fake objects Fi that Ui has received so far, and

condi, and returns a new fake object. This function

needs condi to produce a valid object that satisfies Ui‘s

condition. Set Ri is needed as input so that the created

fake object is not only valid but also

indistinguishable from other real objects.

The function can either produce a fake object on

demand every time it is called or it can return an

appropriate object from a pool of objects created in

advance. We are using the following strategies to add

the fake object to finding guilty agent.

Algorithm: Implementing Fake Objects

Input: R1, , Rn, cond1 , ... , condn , b1 ,... ,b, B

Output: R1, . . . , Rn, F1 ,. . . ,Fn

1: R ← Ø .Agents that can receive fake objects

2: for i = 1, . . . , n do

3: if b > 0 then

4: R ← R ∪ {i}

5: Fi ← Ø ..Set of fake objects given to agent U

2387

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

6: while B > 0 do

7: i ← SELECT_AGENT_RANDOM(R, R)

8: f ← CR E AT E FA K E OB J E C T(R, F)

9: Ri ← R∪ {f }

10: Fi ← Fi ∪ {f }

11: if b← bi - 1

12: if bi= 0 then

13: R ← R\{R}

14: B ← B – 1

Data Distributor Module:

 Once data allocation is done by adding fake object

Intelligently into the data, data distributor (in reality a

server) hands over the requested data to the desired

agent. Now it is data distributor‘s responsibility to keep

the track of that data.

e.g. The data distributor gives data to agent u1. Suppose

an agent u1 decides to leak that data to one or more

other agents or organizations. If the data gets leaked and

found in an unauthorized place (e.g., on the web or

somebody‘s laptop) then it is data distributor‘s

responsibility to keep the track of that data and at the

end assess the guilt of an agent by using agent‘s guilt

model (i.e., concept of probability).
[3]

Probability assumption module:

 This module makes use of access patterns and

access

variations and other client statistics to detect a

probability of a particular client/ agent of leaking the

data. If a data file or information is leaked, the

probability assumption module suggests the client with

highest probability as a culprit (i.e., a data leaker).

 E.g. Let u1 and u2 be the two authorized agents.

Highest value of any probability will be 1. Suppose an

agent u1 accesses a file named as (let say) abc.txt for 6

times and an agent u2 accesses the same file for only 3

times. Then in this case, since an agent u1 has accessed

a file two times more as compared to an agent u2, the

probability of an agent u1 to be guilty should also be

twice that that of an agent u2. Hence the probability of

agent u1 to be guilty is 0.67 and the probability of an

agent u2 to be guilty is 0.33. But suppose it is possible

that an agent u1 only accesses a file 6 times but not

modified it and an agent u2 not only accesses a file but

also modified it one or more times. All this information

will be saved in a separate log file which is stored at a

server. Then in such case, probability of an agent u2 to

be guilty is definitely more than that of an agent u1.

 Mathematically, let Gi be an event that represents

an agent Ui to be guilty and let S be the set of leaked

data objects. Now we need to estimate P (Gi |S) i.e.,

we need to estimate that the agent Ui to be guilty for a

given set S of leaked data object since write access

always has more priority over read access.

Let us assume that all T objects have the same the

same probability p. We need to take into consideration

the following two assumptions regarding the

relationship among the various leakage events.

Assumption 1:-

 For all t , t
‘ ∈ S such that t ≠ t‘

the provenance of t is

independent of the provenance of t
‘
.

 This assumption simply states that an agent‘s

decision to leak an object is not related to other objects.

In other words, joint events have a negligible

probability. This assumption gives us more

conservative estimates for the guilt of agents, which is

consistent with our goals.

Assumption 2 :-

 Let S be the set that represents a set of leaked data

object. Let t be a leaked data object such that t ∈ S. Any

agent Ui can obtain an object t by one of the following

two ways.

• A single agent U i leaked t from his own Ri set.

OR

• The target guessed t (or obtained through any

other means) without the help of any of the n

agents.

Assume that sets T, R‘s and S are as follows:-

T = {t 1, t2, t3}, R1 = {t1, t2}, R2 = {t1, t3}, S = {t1, t2, t3}.

 Here set T denotes a set of fake object which will

be added by data distributor intelligently into the

agent‘s data set. Let U1 and U2 be the two agents

having data sets R1 and R2 respectively. Let S be the

set that represents a set of leaked data objects. Here we

can see that all three of the distributor‘s objects have

been leaked and appear in S.

 In above data sets, we can see that an object t1 is

given to both the agents. According to assumption 2,

the target either guessed t1 or one of U1 or U2 leaked it.

We know that the probability of the former event is p.

Hence we conclude the following:-

The target guessed t1 with probability p

Agent U1 leaked t1 to S with probability (1− p)/2

Agent U2 leaked t1 to S with probability (1− p)/2

 Similarly, we find that an agent U1 has leaked t2 to

S with probability (1− p) since it is the only agent that

2388

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

has this data object and agent U2 has leaked t2 to S with

probability

(1− p) since it is also the only agent that has this data

object.

 To assess the probability of any guilty agent (u1

and u2 in this case), we can use the basic concept of

probability i.e.,

 P (at least one) = 1 – P (none).

 By using above concept, we can compute the

probability that agent u1 is not guilty as follows:-

P{G¯1|S} = (1−(1− p)/2)×(1−(1− p)) ---------- (1)

Hence, the probability that an agentU1 is guilty is as

follows:-

 P{G1|S} = 1− P{G¯1|S} ---------- (2)

 In general, we first consider a set of agents (let say)

agents Vt = {Ui |t ∈ Ri} where i = 1 to n. Ri be the set of

data objects that are allocated to an agent Ui and t be an

any data object that belongs to the set Ri.

 Now our aim is to find the probability that an agent Ui

is guilty given a set S. By using Assumption 2 and known

probability p, we have:-

P {some agent leaked t to S} = 1− p. ------- (3)

Let us assume that all agents that belong to set Vt can leak

a data object t to S with equal probability and by using

assumption 2 we obtain:-

P {Ui leaked (4)

Here we assume that any agent Ui is guilty if that agent

leaks at least one data object (i.e., object t in our case) to a

set S then by using our assumption 1 and eq. 4 given

above, we can finally compute the probability P{Gi|S} that

an agent Ui is guilty as follows:-

 -------- (5)

5. Graphical User Interface

Figure 5.1: Login Screen (Client application)

Figure 5.2: Client Accessing and modifying

information

Figure 5.3: Add Watermark & Fake Object

2389

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

Figure 5.4: Encrypted Data

Figure 5.5: Probability of Clients

Figure 5.6: Find Fake object

6. References

[1] Panagiotis Papadimitriou, Hector Garcia-Molina, ―Data

Leakage Detection‖ , IEEE Transactions on Knowledge and

Data Engineering‖, January 2011

[2] Mungamuru and H. Garcia-Molina, ―Privacy,

Preservation and Performance: The 3 P‘s of Distributed Data

Management,‖ technical report, Stanford Univ., 2008.

[3] Buneman and W.C. Tan, ―Provenance in Databases,‖ Proc.

ACM SIGMOD, pp. 1171- 1173, 2007

2390

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100958

