
Database Management Systems: A NoSQL

Analysis

Syed Abdul Rahman Rakshitha

 PG Scholor, Department of MCA,

 Dayananda Sagar College of

Engineering,Bangalore

Department of MCA,

Dayananda Sagar College of

Engineering,Bangalore

Abstract- Addressing today’s ever increasing changes in

data management needs require solutions that can

achieve unlimited scalability, high availability and

massive parallelism while ensuring high performance

levels. The new breed of applications like business

intelligence, enterprise analytics, Customer Relationship

Management, document processing, Social Networks,

Web 2.0 and Cloud Computing require horizontal scaling

of thousands of nodes as demanded when handling huge

collections of structured and unstructured data sets that

traditional RDBMS fail to manage. The rate with which

data is being generated through interactive applications

by large numbers of concurrent users in distributed

processing involving very large number of servers and

handling Big Data applications has outpaced the

capabilities of relational databases thereby driving focus

towards the NoSQL database Adoption. NoSQL database

systems have addressed scaling and performance

challenges inherent in traditional RDBMS by exploiting

partitions, relaxing heavy strict consistency protocols and

by way of distributed systems that can span data centres

while handling failure scenarios without a hitch. In this

paper different database management systems are

discussed and their underlying design principles namely

ACID, CAP and BASE theorems respectively, are

evaluated.

Keywords: Database Management Systems, Relational

Databases, NoSQL Databases, ACID, CAP, BASE

I. INTRODUCTION

The advent of computer systems and the rapid changes in

industrial dynamics on several fronts including research and

technical knowledge increased the demand on quality and

productivity of products and services. This saw the

automation of real world processes and the introduction of

Assembly Automation Equipment, Automated Bookkeeping

and Manufacturing systems among a many others. These

systems were capable of manipulating only textual and

numerical data using Flat file databases as a data management

system. This enabled measurement, collection, transcription,

validation, organisation, storage, aggregation, update,

retrieval and protection of data.

A Flat file database describes any of the various means

toencode a database model (most commonly a table) as a

single file. Flat file databases contained a logical collection of

records with no structured relations which were in plain text

or binary file.

Flat file databases at the time were quite useful as data

management requirements were still very limited and simple.

With further advances in technology, flat file databases

became inadequate as they could not cater for new data types,

data security and growth requirements. Also flat file

databases contained no information about data and additional

knowledge was required to interpret the files. There was no

standard way of storing data as well as a standard of

communicating to and from the database, hence it created a

lot of inefficiencies.

In the 1970s cord came up with the relational theory that led

to the development of the relational Database Management

Systems (RDBMS) as a solution to the challenges posed by

the flat file database system in the earlier years. Storage of

data in RDBMS was done using Tables. Standard fields and

records are represented as columns (fields) and rows (records)

in a table. Their major advantage was the ability to relate and

index information. Security was enhanced in RDBMS and

they were also able to adapt to considerable growth of data.

Structured Query Language, SQL is the programming

language used for querying and updating relational databases.

For a long time RDBMS has been the preferred technique for

data management purposes. However, RDBMS inability to

handle modern workloads has given rise to scalability,

performance and availability problems with its rigid schema

design. Businesses all over the world, including Amazon,

Facebook, Twitter, and Google have adopted new ways to

store and scale large amounts of data hence the move away

from the complexity of SQL based servers to NoSQL

database Systems. NoSQL is a class of database management

systems that have been designed to cater for situations in

which RDBMSs fall short. It is different from the traditional

relational databases mainly in that it is schema-less. This

makes it suitable to be used for unstructured data. These

engines usually provide a query language that

provides a subset of what SQL can do, plus some additional

features [1]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

NOSQL DATABASES

The NoSQL database approach is characterized by flexibility

in storage and manipulation of data, improvements in

performance and allowing for easier scalability.Many

different types of these NoSQL databases exist, each one

suited for different purposes. Examples include MongoDB

whose deployments are at foursquare, Disney, bit.ly,

sourceforge, CERN, The New York Times, and others.

Hadoop (Apache), Cassandra was primarily used by

Facebook for their Inbox Search. Afterwards it was open-

sourced and now it is an Apache Software Foundation top-

level project, being used by Digg, Twitter, Reddit,

Rackspace, Cloudkick, Cisco and others. DynamoDB is used

by Amazon, Voldemort is used by Amazon, and Neo4J is

used by Adobe and Cisco etc. While RDBMS is transaction

oriented and based on the ACID principle, NoSQL make use

of either CAP or

Among several capabilities of NoSQL databases are

managing large streams of non-relational and unstructured

data, fast data access speeds, availability of data even when

system is operating in degraded mode due to network

partitions. NoSQL databases provide near-endless scalability

and great performance for data-intensive use cases. However,

with so many different options around, choosing the right

NoSQL database for your interactive Web application can be

tricky. In general, the most important factors to keep in mind

are as follows

Among several capabilities of NoSQL databases are

managing large streams of non-relational and unstructured

data, fast data access speeds, availability of data even when

system is operating in degraded mode due to network

partitions. NoSQL databases provide near-endless scalability

and great performance for data-intensive use cases. However,

with so many different options around, choosing the right

NoSQL database for your interactive Web application can be

tricky. In general, the most important factors to keep in mind

are as follows:

Scalability. Adopting the Sharding technique can be useful in

achieving scale regardless of the database technology in use.

Sharding employs horizontal partitioning which is a database

design principle in which rows of a database table are held

separately .These tables may then be located on a separate

database server or physical locations. Scaling quickly, on

demand, and without any application changes become a

determinant factor in Web traffic that has on and off surges.

Resource contention between servers like disk, memory and

CPU is removed. Intelligent parallel processing and

maximization of CPU/Memory per database instance can be

done.

i. Performance. Interactive applications require very low read

and write latencies. Performance is achieved by distributing

load across several servers. The database must deliver

consistently low latencies regardless of load or the size of

data. As a rule, the read and write latencies of NoSQL

databases are very low because data is shared across all nodes

in a cluster while the application’s working set is in memory.

ii. Availability. Interactive Web applications need a highly

available database. If your application is down, you are

iii. simply losing money. To ensure high availability, your

solution should be able to do online upgrades, easily remove

a node for maintenance without affecting the availability of

the cluster, handle online operations, such as backups, and

provide disaster recovery, if the entire data centre goes down.

IV. Ease of development. Relational databases require a rigid

schema and, if your application changes, your database

schema needs to change as well. In this regard, NoSQL

databases offer a number of important advantages that make

it possible to alter data structure without affecting your

application

Supporting distributed processing of large-scale data

workloads requires adequate processing frameworks likes

Apache Hadoop with the MapReduce engine. The emergence

of new forms of traffic profiles driven by the Social Web as

well as the growing popularity of E-commerce coupled by the

ever increasing interconnectedness of the World where Sites

are

experiencing variations of traffic through-out the year has

resulted in massive surges of writes and read traffic in Sites

like Twitter, Facebook, Whatsapp in very short time frames

hence the need for infrastructure that adapt quickly. Massive

upswings on volumes of data movement across the Internet

into storage solutions might have traffic becoming a

bottleneck. The popularity of agile development methods call

for techniques that offer higher scalability and performance so

as to keep up with the ever changing technical environment.

In-memory database for high update situations, like a website

that displays everyone's "last active" time (for chat

maybe). If users are performing some activity once every 40

seconds, then it will push RDBMS to limits with about 5000

simultaneous users for instance, what when the numbers

multiplies by 10.

a. NOSQL DATABASE CATEGORIES

A. KEY VALUE STORES

Provide a way of storing schema-less data by means of a

distributed index for object storage. The key (data-type) will

be displayed on the left and the corresponding value (actual

data) on the right as shown in the example below.

Key Value

Comp3_manufa Dell

Comp20_processor IntelCore_i5

Comp3_installedMemory 4GB

comp230_systemType 64-BitOS

Figure 1: Key Value Store

Key/Value store is best applicable where write

performance is of highest priority since its schema-less

structure allows for fast storage of data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

COLUMN ORIENTED DATABASES

Provide a data store that resembles relational tables but also

adds a dynamic number of attributes to the model. They use

keys but they point to multiple tables.

Row Key Columns

Com

p3

Brand processor Memory

Dell IntelCore_i5 4GB

Com

p8

Brand processor Memory

Dell IntelCore2_d

uo

3GB

Printer4 2 Brand Color Type

Hp White 4in1

Figure 2: Column Oriented databases

DOCUMENT ORIENTED DATABASES

Data is treated as independent objects and their attributes

which are stored as separate documents. Each document

contains unique information pertaining to a single object.

Document stores recognise the structure of the objects stored.

Read and writes can be accomplished at once thus making it

faster in performance. Schema-less structure gives flexibility

in the wake of changing technologies. Documents are

described using JSON or XML or derivatives.

Figure 4: Graph Databases

A. GRAPH DATABASES

These are databases that are based on the graph theory. Graph

databases store data in a graph structure with nodes, edges

and properties to represent the data. The nodes represent

entities in the database. Edges are connecting lines

between two nodes representing their relationships. Properties

are the attributes of the entities. Graph databases are more

applicable in social networks and intelligent agencies as they

efficiently show relationships between entities and provide a

way to access data in sites with heavy workloads

(predominantly reads).

A. OTHER CATEGORIES

The databases discussed above are considered to be the major

ones. However, NoSQL has several other categories of

databases for various applications. Other types include

Multimodel Databases (eg ArangoDB, OrientDB), Object

Databases (DB40, Velocity), Grid and C loud Database

solutions (Gigaspace, Gemfire), XML Database (BaseX,

Berkeley DB XML), Multidementional Databases (SciDB,

MiniM DB).

Figure 3: Document Oriented Databases

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

FFigure 5: Summary of the four categories

V. MODELS FOR STRUCTURING DATABASES

ACID transactions provide 4 properties which must be

guaranteed:

i. Atomicity: A database transaction is treated as a single unit

such that all of the operations in the transaction will complete,

or none will. This property is referred to as "all or nothing"

approach to execution. If one element of the transaction fails,

the entire transaction is rolled back.

Consistency: This property ensures that there is no violation

of integrity thus any transaction will transform the database

state from one valid state to another. The transaction must

adhere to rules predefined in the system at every instance. If

at one instance, a transaction that violates the rules is

executed, the transaction is rolled back and the database is

returned to the previous valid state. This property entails that

there can never be any partially-completed transactions.The

database will be in a consistent state when the transaction

begins and ends. This property ensures that any transaction

will bring the database from one valid state to another. In

high availability environment

ACID transactions provide 4 properties which must be

guaranteed:

i. Atomicity: A database transaction is treated as a single unit

such that all of the operations in the transaction will complete,

or none will. This property is referred to as "all or nothing"

approach to execution. If one element of the transaction fails,

the entire transaction is rolled back.

ii. Consistency: This property ensures that there is no violation

of integrity thus any transaction will transform the database

state from one valid state to another. The transaction must

adhere to rules predefined in the system at every instance. If

at one instance, a transaction that violates the rules is

executed, the transaction is rolled back and the database is

returned to the previous valid state. This property entails that

there can never be any partially-completed transactions.The

database will be in a consistent state when the transaction

begins and ends. This property ensures that any transaction

will bring the database from one valid state to another. In

high availability environment this rule must be satisfied for

all nodes in a cluster.

Key Value Stores Column Family

Databases

Document Databases Graph databases

Based on Dynamic Hash

Tables, Dynamo DB

Google’s Bigtable Lotus Notes,

encoding include JSON,

XML

Euler’s Graph Theory

Data Model Key/Value pairs Columns Key/Value Collections Graph structure-

Nodes, Edges and Properties

Applicability Handling massive load Distributed file systems Web applications, full text

searches and updates,

information

ranking

Semantic web, Social

Networks, Intelligent

Agencies

Advantages Simple and easy to

implement

Fast querying of data, storage

of very large quantities of data

Accepts partially complete

data, allows efficient

querying

Easy scaling of complex data

across distributed systems.

Disadvantages Inefficient in querying/

updating part

of a database

Very low-level API No standard query language Traversal of entire graph to

give correct results

Examples Redis,Project

Voldermort

Cassandra, HBase MongoDB,

CouchDB

Neo4J, InfoGrid

Data Model Key/Value pairs Columns Key/Value Collections Graph structure- Nodes,

Edges and

Properties

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

Figure 6: Summary of flatfile database, RDBMS and NoSQL

usage, characterized by Big Data, large number of users and

unstructured data in distributed environments which has

called for NoSQL databases .

Isolation: Every transaction’s execution is independent

another and thus will behave as if it is the only operation

being performed upon the database. Each transaction has to

execute in a “black box” and thus should be transparent to

any

 other concurrent transaction. No transaction should ever see

the intermediate product of another transaction until it is

completed

Durability: After a transaction is committed, the effects

thereof

 are permanent. Any subsequent disturbances or system

failure will not result in a change in the current database

state.

At every given database operation, all the data undergoes

checks to make sure they adhere to constraints imposed by

ACID properties. This has worked well for over three decades

in normalized, small data environments with less

concurrent users in the relational database age. However with

new trends in technology and burgeoning internet

IV.

V. CONCLUSIONS

The underlying features of the main database management

systems namely the Flat File Database, RDBMS and NoSQL

were reviewed. The main problems found on the Flat file and

RDBMS that were common to both database systems include

security vulnerabilities, scalability limitations, and

availability of data regardless of network partition, timely

propagation of changes to ensure consistency, performance

bottlenecks and existence of a single point of failure. Owing

to the rigid schema of the RDBMS, not all data structures can

be represented and stored. These challenges manifest as a

result of the architectural constraints inherent in the

databases. It was observed that these DBMS have some

aspects that are still desirable for instance to achieve

reliability and integrity. Completely doing away with the

traditional databases in favour of total adoption of the NoSQL

also poses great challenges in our data management quest.

NoSQL has challenges of not adequately catering for

relational and transactional data. While giving cognisance to

mission critical data, transactional data and a varied more

cases where we seek to ensure reliability as a key aspect,

NoSQL may not be ideal, calling for a revisit to the good old

mature, tried and tested RDBMS. Owing to this scenario,

both RDBMS and NoSQL are suited for different purposes

and therefore cannot be absolute substitutes for each other.

Flat File Database RDBMS NoSQL

Data Model Flat File Tables Columns, Graph, Document,

Key/Value

Schema Schema-less Fixed Schema Schema-less

Query Languages CQL SQL API calls, JavaScript and REST

Integrity Model None ACID CAP, BASE

Applicability Any Relational and transactional

data

Non-relational data

Security No security Limited security mechanisms, vulnerable

to SQL injection

Authorisation and authentication

weaknesses, no encryption, Multiple interfaces

increase attack surface.

Advantages Simpler to use, Less

expensive, suited for small

scale use

Ensures data integrity between

transactions, better security, supports

medium to larger sized organisations,

provides

backup and recovery controls

Can cater for Big Data, unstructured data and

distributed systems

Disadvantages No support for multi-user

access, redundancy and

integrity problems

Expensive and difficult to manage in

distributed systems, Complex and difficult

to learn, not suitable for unstructured

data

Security is a concern (no encryption), lack of

standard query language, Too many varied

databases thus no single solution for different

purposes

Examples MsDOS Oracle, Postgres, MySQL,

Microsoft SQL Server

MongoDB, Cassandra, Neo4J

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

REFERENCES

[1] Alexandru Boicea, Florin Radulescu, Laura Ioana Agapin, “MongoDB

vs Oracle - database comparison”, IEEE 2012

[2] Kris Zyp http://www.sitepen.com/blog/2010/05/11/ nosql-
architecture/,

May 2010

[3] http://www.rackspace.com/blog/nosql-ecosystem/

[4] Ruxandra Burtica, Eleonora Maria Mocanu, Mugurel Ionuţ Andreica,
Nicolae Ţăpuş, “Practical application and evaluation of no-SQL

databases in Cloud Computing”, IEEE 2012

[5] Jim Gray, “The Transaction Concept: Virtues and Limitations”,

Proceedings of Seventh International Conference on Very Large

Databases, June 1981

[6] Vibneiro,http://ivoroshilin.com/2012/12/13/brewers-cap-theorem-

explai ned-base-versus-acid/,December 2012

[7] Anders Karlsson, http://karlssonondatabases.blogspot.com/ August

2013

[8] http://datastax.com/docs/1.0/ddl/column_family

[9] http://www.infoq.com/news/2011/08/UnQL

[10] http://www.wikipedia.org/wiki/SPARQL

[11] W3C,http://www.w3.org/TR/rdf-sparql-query,March 2013

[12] Vibneiro,http://ivoroshilin.com/2012/12/13/brewers-cap-

theorem explained-base-versus-acid/,December 2012

[13] Dmitriy kalyada,http://blog.altoros.com/four-things-to-consider-

when-choosing-a-db-for-your-interactive-application.html,June
11,2013

[14] Charles Roe,

http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-

database-t ransaction-processing/ March 2013

[15] Mike Chapple, http://databases.about.com/od/ other

databases/a/Abandoning-Acid-In-Favor-Of-Base.htm, August

2013Sones GmbH http://en.wikipedia.org/wiki/Sones_GraphDB
May 2011

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110051
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

