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Abstract—This paper examines the de-noising performance of
the different bi-orthogonal spline wavelets, making use of
Discrete Wavelet Transform. We investigate the dependence of
the peak signal to noise ratio of the de-noised images on the
filter properties of the bi-orthogonal wavelets used in the DWT.
The
bi-orthogonal spline wavelet most suited for de-noising
application has been sorted out.
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l. INTRODUCTION

The classical frequency domain image de-noising
processes make use of the Fourier Transform for the
decomposition and reconstruction processes. The basis
function of the Fourier transform is et which results in a
sinusoidal decomposition of the image. But Fourier analysis
provides only a single resolution always. If we choose a
coarse resolution we lose the small details in the image; if a
small resolution is chosen we lose the large structures in the
image. This problem can be circumvented by making use of
Wavelet Transform for the analysis, instead of Fourier
Transform. Wavelet transform can break up any data in to
different frequency components and then study each
component with a resolution that matches its scale[1]. Thus
"multi-resolution analysis”(MRA),i.e., analyzing different
frequency components at different resolutions becomes
possible. Thus one can see the finer and coarse details in an
image [2]. A selected “wavelet” forms the basis function in a
Wavelet Transform. The families of the function

hao() = lal7h (2), (1)

a,beR,a # 0, generated from one single function ‘h’ by
dilations and translations of the function are called wavelets
[3]. The function which is subjected to dilations and
translations is called the “Mother wavelet”. The basis function
which has zero value outside a finite interval is said to have a
“compact support”. This characteristic which stands for a fast
decay as the time tends to infinity is useful in providing the
wavelet analysis time and frequency localization. Such
compactly supported wavelet bases have FIR filters with
perfect reconstruction [4].

The performance of the different members of a family of
wavelets called "bi-orthogonal spline wavelets"”, in de-noising
using Discrete Wavelet Transform (DWT) is discussed in this

paper.
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Il. MATERIALS AND METHODS

A. Bi-orthogonal wavelets

A bi-orthogonal wavelet is a combination of two wavelets.
Out of these two wavelets, one wavelet is used for
decomposition and the other is used for reconstruction.
Symmetry and exact reconstruction cannot be achieved
simultaneously if we use one and the same wavelet for
decomposition and reconstruction. Bi-orthogonal wavelets
help to overcome this problem. The term “bi-orthogonal”
indicates that the individual wavelets in the bi-orthogonal
wavelet need not be orthogonal but that they are pair-wise
orthogonal.

Two functions f(x) and g(x) are said to be orthogonal if :

Jftg™ (x) =0, @

where g*(x) is the conjugate of g(x). Bi-orthogonality (and
orthogonality) makes the computations speedy and easy. In
addition, bi-orthogonal wavelets exhibit linear phase property
which is highly desirable for image reconstruction [5]. The bi-
orthogonal spline wavelets are symbolically represented as
'bior Nr.Nd" where Nr and Nd stand for the number of
vanishing moments in the reconstruction wavelet and the
decomposition wavelet respectively. A wavelet W is said to
have p vanishing moments if:

[xk wdx = 0, 3)

where p = 0,1,..k-1[6]. If the number of vanishing moments is
large, it implies that its "support” or equivalently the "filter
length” is large. The bi-orthogonal spline wavelets which
satisfy compact support and perfect reconstruction with FIR
filters are: 'bior 1.1', 'bior 1.3, 'bior 1.5', 'bior 2.2', 'bior 2.4',
‘bior 2.6', 'bior 2.8','bior 3.1', 'bior 3.3', 'bior 3.5, 'bior 3.7,
'bior 3.9', 'bior 4.4', 'bior 5.5' and 'bior 6.8'. DWT using each
of these bi-orthogonal wavelets are successively employed in
our study.

B. Addition of noise

The most common noise encountered in digital images is
the Additive White Gaussian Noise (AWGN) [7]. Hence we
employ AWGN as the noise in the image used for the study.
The model used to describe AWGN is:

w(,v) =s(u,v) +n(u,v), @)
where w(u, v) represents any picture element (pixel) in the
noisy image, s(u,v) is the true value of the element and
n(u,v) isthe random Gaussian noise value [8]. First we add
an AWGN with variance o* = 0.07 in a 0-1 scale, to the
original image, to produce a corrupted image. Here we have
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employed a comparatively high noise value to ensure good
visual comparison of the resultant images with the noisy
image.

C. Levels of Decomposition.

The decomposition using DWT can be performed
repeatedly until the last detail components have only a single
pixel. But we may limit the levels of decomposition to such a
value determined by criteria such as noise level of the image
and the acceptability of the reconstructed image. The results
of a pilot study conducted by the authors indicated that only a
low amount of noise gets removed with one or two levels of
decomposition and that four or more levels of decomposition
result in blurring due to removal of more information. Hence
in this study we adopt an optimum of three levels of
decomposition.

D. Thresholding.
The de-noising process basically comprises the following
strategy:

1. Decompose the noisy image. This results in generation of
a number of coefficients.
2. Adopt an appropriate threshold strategy and apply the
threshold function to the coefficients.
3. Reconstruct the image from the coefficients that remain
after application of the threshold.
Hence any wavelet based de-noising operation requires
selection of a proper threshold criterion. Careful selection of
threshold is important because, a large threshold value may
result in blurring, and a small threshold removes little noise
[9]. ‘Hard thresholding’ and ‘soft thresholding’ are the two
major thresholding techniques usually adopted. Hard
thresholding involves complete elimination of coefficients
whose values are below the threshold value. But in soft
thresholding, in addition to elimination of those coefficients
whose values fall below the threshold, we shrink the
remaining coefficients towards zero. This strategy precludes
occurrence of sharp discontinuities in the reconstructed
image. Soft thresholding has been observed to give better
results than hard thresholding and is hence preferred to the
other [10]. This fact has made us choose soft thresholding for
our work.

The value of the threshold as determined by "Fixed form
threshold" given in Matlab and originally proposed by
Donoho and Johnstone [11], defined as:

d= o 2logM, (5)
where d is the threshold value, ¢ is standard deviation of
noise and M is the size of the image, is used for our study.

E. Performance measures

The factors used to assess the effectiveness of de-
noising performance are the Mean Squared Error (MSE) and
Peak Signal to Noise Ratio (PSNR). These two parameters
are calculated using the following formulae :

MSE = — I, S, (XG0, ) — X', ))? 6)
PSNR = 10 log (%) dB, @

where X is the original image and X' is the denoised image
[12]. Also. the quality of the de-noised images are compared
by means of physical observation since there exists no other
consensual method for comparison of visual quality of de-
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noised images [13].The whole study described in this paper
has been carried out using Matlab.

F. Procedure:

An image of such size permitting at least three levels of
decomposition is selected. The image 'lena’ of size [512, 512]
is one such image. AWGN of variance 0.07 (in 0 — 1 scale) is
added to this image to produce a noisy image. De-noising of
this noisy image is carried out with DWT using 'biorl.1"
wavelet. The performance factors mentioned in section Il E
are estimated and tabulated. The effective lengths, filter
values and the minimum and maximum filter values of the
high pass and low pass decomposition and reconstruction
filters are estimated and recorded. All the above operations
are repeated with the same noisy image for the other bi-
orthogonal wavelets listed in section Il A also, successively.
Since quadrature mirror filter relationship exists between the
high pass reconstruction filters and the low pass
decomposition filters and also between the high pass
decomposition filters and the low pass reconstruction filters
of the individual bi-orthogonal wavelets, the maximal and
minimal values of only the high pass reconstruction filter and
high pass decomposition filter have been shown in this paper.
The results are analyzed to explore how the de-noising
performance of the different bi-orthogonal spline wavelets
are related to the respective values of the decomposition and
reconstruction filters.

I1l.  RESULTS AND DISCUSSION

Fig.1 shows the original noise-less image. Fig.2 is the
noisy image. Fig.3 shows the de-noised image having the
highest PSNR and Fig.4 shows the de-noised image having
the lowest PSNR. Tablel shows the estimated values of PSNR
and MSE corresponding to the different de-noising processes
i.e., using the different bi-orthogonal wavelets. The last four
columns of this table show the effective lengths of the low
pass decomposition filter (Lo_D), high pass decomposition
filter (Hi_D), low pass reconstruction filter (Lo_R) and the
high pass reconstruction filter (Hi_R) in the order said, from
left to right. Table 2 shows the maximum and minimum
values of the high pass decomposition filters and the high pass
reconstruction filters. The low pass filter outputs give an
approximation of the image. The high pass decomposition
filter Hi_D and the high pass reconstruction filter Hi_R take
care of the high frequency parts of the image; as such they
operate on the noise part of the image.

The values of PSNR (and also the MSE) of the de-noised
images vary for de-noising carried out using the different bi-
orthogonal wavelets.

From table 1, we can see that the maximum value of
PSNR is obtained by de-noising using the bi-orthogonal
wavelet 1.1 (‘bior'l.1). In this case the wavelets used for both
decomposition and reconstruction are one and the same. The
corresponding filters are also identical. Figs. 5(i) and 5(ii)
show these wavelets and the corresponding filters
respectively. Here we see that Hi_R (and also Hi_D in this
particular case) has the minimum length,2". The next de-
noising process makes use of 'biorl.3' wavelet; it gives a lower
PSNR and has a longer Hi_R. Similarly, a comparison of the
other values of PSNR and the lengths of the filters given in
tablel shows that changes in the PSNR values with de-noising
using the different bi-orthogonal
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Fig.1. Original image

wavelets can be related to the changes in the effective lengths
of the filters Hi_R and Hi_D of the bi-orthogonal wavelets. It
can be seen that the PSNR has an inverse relation to the
effective length of Hi_R. When the effective lengths of Hi_R
are equal, a similar inverse relation is found to exist between
the PSNR and the effective lengths of Hi_D. A few
exceptions are noted in relation to the former of these
observations:

1. The first exception is found when we move from 'bior
2.2' to 'bior 2.4'. Here effective length of Hi_R changes from
5 to 9 but there is a very slight increase in the PSNR. This
contradiction is explained as follows: The values of Hi_R for
'bior2.2" are:

Hi_R (bior2.2) =[0 0.1768 0.3536 -1.0607 0.3536
0.1768] and the values of Hi_R for 'bior2.4" are:

Hi_R (bior2.4) = [0 -0.0331 -0.0663 0.1768 0.4198
-0.9944 0.4198 0.1768 -0.0663 -0.0331]. It can be seen
that even though the length of Hi_R for 'bior2.2" is less than
that of 'bior 2,4", the filter values of 'bior 2.4" are mostly very
small compared to the values of 'bior 2.2". Relating the effect
of Hi_R on the noise in the reconstructed image we can say
that due to the filter values of 'bior 2.4' being very small the
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noise components accumulated by the filter Hi_R is very
small, the decreasing effect on PSNR due to the increase in
length of filter Hi_R is countered and to some extent
reversed, thus resulting in an actual slight increase in the
PSNR.

2. Another exception is encountered when we pass from
'bior2.8' to 'bior3.1". The reason for this is:

Examining table 2 we can see that the maximum value of
Hi_R has increased from 0.4626 to 1.0607. This is an
increase of 129.29%. Simultaneously Hi_R minimum has
decreased from -0.9516 to -1.0607. This is a decrease of
11.46%. Both of these together have the effect of carrying a
good amount of noise in to the reconstructed image. Hence
even though the effective length of Hi_R has faced a
reduction, the PSNR has undergone a drastic reduction,
instead of augmentation. The increase in the effective length
of Hi_D has augmented this reduction in PSNR. In effect,
with 'bior3.1', we get the minimum PSNR.

Since 'bior 3.1' gives odd values it is better to treat de-
noising with 'bior 3.1' as of little use compared to the other
bi-orthogonal wavelets. Hence the de-noising performance of
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Fig.(5i).(a) Decomposition wavelet and (b) reconstruction wavelet
of ‘bior 1.1”
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Fig. 5(ii) Filters of ‘bior 1.1 °

'bior 3.3" is examined in comparison with that of 'bior 2.8'
instead of comparing with the performance of 'bior 3.1".

3. It can be seen that the effective length of Hi_R of 'bior
3.3"is lower than that of 'bior 2.8'; the PSNR is also lower for
'bior3.3". This is due to the following facts: even though the
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effective length of Hi_R is lesser in the case of 'bior 3.3', the
maximum value of Hi_R has increased and the minimum
value of Hi_R has decreased, resulting in a combined effect
of retaining a high amount of noise in the reconstructed
image and consequently giving a lower PSNR.

4. The effective length of Hi_R is longer for 'bior3.5' but
the PSNR is higher, compared to that of 'bior 3.3". This is
explained in the discussion below.

The values of Hi_R for ‘bior 3.3’ are:

Hi_R (‘bior3.3") = [0.0663 0.1989 -0.1547 -0.9944
0.9944 0.1547 -0.1989 -0.0663] and the values of Hi_R
for ‘bior 3.5’ are:

Hi_R ('bior3.5") = [-0.0138 -0.0414 0.0525 0.2679 -
0.0718 -0.9667  0.9667 0.0718 -0.2679 -0.0525
0.0414  0.0138]. It can be seen that the values of Hi_R of
‘bior 3.5’ are very meagre compared to those of ‘bior
3.3’.This results in lesser noise being carried on to the
reconstructed image and hence in a higher PSNR.

5. When we consider de-noising using ‘bior 3.7', it is seen
that the effective length is higher than that of 'bior 3.5' but that
the corresponding PSNR is also higher. But this is due to the
fact that, as seen from table 2, the maximum value of Hi_R
has decreased and minimum value of Hi_R has increased.

In de-noising with all other bi-orthogonal wavelets it can
be seen that the PSNR has an inverse relation to the effective
length of Hi_R. The maximum PSNR is obtained by de-
noising using the bi-orthogonal wavelet having minimum
length for Hi_R. But the inverse of this statement is not true
because, like what has been found in several instances pointed
out above, the PSNR is also affected by the actual values of
the filter, rather than its length only. Further to the above, it is
also found that in instances in which the effective lengths of
Hi_R are equal, the

TABLE 1.
Wavelets, MSE, PSNR and Effective lengths of filters
p MSE PSNR Effective Lengths of Filters
Lo_D Hi_D Lo_R Hi_R
biorl.1 29.0779 33.4952 2 2 2
bior1.3 30.1858 33.3328 2 2 6
biorl.5 30.4096 33.3007 10 2 2 10
bior2.2 29.1871 33.4789 3 3 5
bior2.4 29.1807 33.4798 3 3 9
bior2.6 29.2937 33.4631 13 3 3 13
bior2.8 29.3623 33.4529 17 3 3 17
bior3.1 33.9804 32.8185 4 4 4
bior3.3 29.8271 33.3847 4 4 8
bior3.5 29.4298 33.4429 12 4 4 12
bior3.7 29.2377 33.4714 16 4 4 16
bior3.9 29.4003 33.4473 20 4 4 20
biord.4 29.1761 33.4805 7 7 9
bior5.5 29.3074 33.4610 11 11 9
bior6.8 29.4075 33.4462 17 11 11 17
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TABLE 2

Wavelets and Extremities of Filter values
4 Hi_D Hi_R Hi_R
min min max
biorl.1 -0.7071 0.7071 -0.7071 0.7071
bior1.3 -0.7071 0.7071 -0.7071 0.7071
bior1.5 -0.7071 0.7071 -0.7071 0.7071
bior2.2 -0.7071 0.3536 -1.0607 0.3536
bior2.4 -0.7071 0.3536 -0.9944 0.4198
bior2.6 -0.7071 0.3536 -0.9667 0.4475
bior2.8 -0.7071 0.3536 -0.9516 0.4626
bior3.1 -0.5303 0.5303 -1.0607 1.0607
bior3.3 -0.5303 0.5303 -0.9944 0.9944
bior3.5 -0.5303 0.5303 -0.9667 0.9667
bior3.7 -0.5303 0.5303 -0.9516 0.9516
bior3.9 -0.5303 0.5303 -0.9421 0.9421
bior4.4 -0.7885 0.4181 -0.8527 0.3774
bior5.5 -0.4768 0.8995 -0.3456 0.7367
bior6.8 -0.7589 0.4178 -0.8259 0.4208
PSNR has an inverse relation to the effective lengths of REFERENCES

Hi_D.

What has been said above looks in to the relationship of
PSNR got by de-noising making use of the different bi-
orthogonal wavelets, to the difference in the high pass
filters' values and lengths.

Apart from the PSNR values, visual inspection of the
de-noised images reveals that all of them have artifacts.
This is due to the inherent feature of DWT that it is not
shift-invariant. This means that the DWT of a time-shifted
signal or image is not the same as the DWT of the original
signal This problem can be resolved by employing Shift-
invariant Wavelet Transform (SWT) for de-noising.
However, our emphasis is on studying the relative
performance of the different bi-orthogonal spline wavelets
in de-noising.

IV. CONCLUSION

This paper presents an investigation of the denoising
performance of the different bi-orthogonal spline wavelets,
using DWT. The results show that the denoising
performance improves as the effective length of the
highpass reconstruction filter or the effective length of the
high pass decomposition filter decreases. The maximum
value of PSNR and correspondingly the best de-noising
performance is obtained with the bi-orthogonal wavelet
‘bior 1.1°. Hence 'bior 1.1' is most suitable for de-noising.
The bi-orthogonal wavelet 'bior 3.1' gives the worst de-
noising performance and is not at all suitable for de-noising
purpose. The de-noising performance of the other bi-
orthogonal spline wavelets lie in between these two
extremes.
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