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Abstract

In this study we consider the decay of energy of MHD
fluid turbulence for four-point correlations prior to the
ultimate phase. Three and four point correlation
equations are obtained. The correlation equations are
converted to spectral form by their Fourier-transform
.By neglecting the quintuple correlations in comparison
to the second, third and fourth order correlation terms.
Finally integrating the energy spectrum over all wave
numbers and we obtained the energy decay law of
MHD turbulence for magnetic field fluctuations.

1. Introduction

The idea of magneto hydrodynamics is that magnetic
fields can induce currents in a moving conductive fluid,
which create forces on the fluid. In magneto
hydrodynamics we study the dynamics of electrically
conducting fluids. The examples of such fluids include
plasmas, liquid metals and salt water. The electrical
field effects are neglected as is usually done in
MHD.Taylor introduced correlation coefficients
between the quantities. Chandrasekhar [1] studied the
invariant theory of isotropic turbulence in magneto-
hydrodynamics. S. Corrsin [2] discussed on spectrum of
isotropic temperature fluctuations in isotropic turbulence.
Deissler [3, 4] developed “A theory decay of
homogeneous turbulence for times before the final
period”. Using Deissler’s theory Kumar and Patel [5 ]
studied the first  order reactant in homogeneous
turbulence before the final period for the case of
multipoint and single time consideration. Loeffler
and Deissler [6] studied the decay of temperature
fluctuation in homogeneous turbulence. Patel [7]
extended the problem [5] for the case of multipoint and
multi-time concentration correlations. Islam and Sarker
[8] studied the decay of dusty fluid MHD turbulence
before the final period in a rotating system. Sarker and
Kishore [9] studied the decay of MHD turbulence
before the final periods. Azad, Aziz and Sarker [10]
studied the first order reactant in magneto-
hydrodynamic turbulence before the final period of
decay in presence of dust particles. They considered the
two and three point correlation equations and solved
these equations after neglecting the fourth and higher
order correlation terms.

In this paper, the turbulence for three point correlations
is generalized to some extent in order to analyze the
four- point turbulence at higher Reynolds numbers. In
this case, the quadruple correlation terms in the three-
point correlation are retained and in addition, a four-
point correlation equation is considered. Following
Deisslers approach we studied the decay of energy of
MHD turbulence for four- point correlation system.
The decay law comes out to be in the form

(h?) = At-t,) 72 + B(t—t,)* +Ct-t) 72 +D(t-t) 2,
where <h2> denotes the total energy and t is the time,

A, B, C and D are arbitrary constants determined by
initial conditions.

2. Four-point correlation and spectral
equations

We take the momentum equation of MHD turbulence at
the point p and the induction equation of magnetic field
fluctuation four point correlation and equations at
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Where a):—+—|h| is the total MHD pressure
p 2
p(X,t)is the hydrodynamic pressure, pis the fluid
density, , _ v isthe Magnetic Prandtl, number v

a
is the kinematics viscosity, A is the magnetic

diffusivity, h, (X,t)is the magnetic field fluctuation,
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u, (x,t)is the turbulent velocity ,t is the time, X, is

the space co-ordinate and repeated subscripts are
summed from 1to 3.

Multiplying equation (2.1) by h/hih" (2.2) by
u,hihy (2.3) by u,hih (2.4) by u/h/h{ and adding
the four equations, we than taking the space or time
averages and they are denoted by ‘_

or (i ). We get
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Using the transformations
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into equations (2.5) we get,
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(2.6)

In order to write the equation (2.6) to spectral form, we
can define the following nine dimensional Fourier
transforms
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Interchange of points p’and p”,p’and p” the
subscripts i and k; i and j results in the relations



uuh’hih” = uu, hhih; uuh'h’h? =
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uuihhyht = uuhihyhh

By use of these facts and equations (2.7) to (2.14), one
can write equation (2.6) in the form
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The tensor equation (2.15) can be converted to the
scalar equation by contraction of the indices i and j ;
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If we take the derivative with respect to X, of the
momentum equation (2.1) at p, we  have,
o*w 0°

= U 2.17
~OxX,0x, axax‘j ko k- (217)

Multiplying equation (2.17) by h/h{h{, taking time
averages and writing the equation in terms of the

- — —

independent variables I, ', r" we have,
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Equation (2.19) can be used to eliminate 67/,'7/;'7/,:1"/

from equation (2.16) if we take contraction of the
indices i and j in equation (2.19).

Equations (2.16) and (2.19) are the spectral equation
corresponding to the four —point correlation equation.

3. Three-point correlation and spectral
equations

The spectral equations corresponding to the three-point
correlation equations by contraction of the indices i and
jare
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Here the spectral tensors are defined by
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A relation between ¢ ¢, S/ 3;and N2 7'7;;]' can be

obtained by letting F”"=0 in equation (2.7) ‘and
comparing the result with equation (3.4)

(408K B (K)

= [(a7i 7Ky KD)explikf + K +K"F)dK"  (3.9)
4. Two-point correlation and spectral
equations

The spectral equation corresponding to the two point
correlation equation taking contraction of the indices is

§<wwf.’(k")> +s—;k2<¢i¢»;(k”)> = 2iky [{ 4 A (K) ~ (et (K))] (4.1)
where,
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obtained by letting F' =0 in equation (3.3) and

comparing the result with equation (4.3),
Then

(4.4)

(evp i) = [(4 8RB K

5. Solution neglecting quintuple correlations

As it stands the set of linear equations (2.15), (3.1),
(3.2), (3.5), (3.6) and (4.4) is indeterminate as it
contains more unknowns than equations in equation
(2.16). Neglecting all the terms on the right side of
equation (2.16), the equation can be integrated between

t, and t to give
( )=y, exp

[

RYiViVm

{“’ Gp, K +K2 4k + 2kk’+2k1<”+2kk’:} (5.1)
Pu
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r 1.

yl'y”yr’n”> is the value of <¢| e

t, that is stationary value for small values of k, k" and

where (g, ) att=

k” when the quintuple correlations are negligible.
Equation (3.9) and (5.1) can be converted to scalar
form by contracting the indices i and j. Equation (3.1)
have been contracted already. Substituting of equation
(3.2), (3.9), (5.1) in equation (3.1), Deissler, [3, 4]

We get
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M

Att,, 7° have been assumed independent of; that

assumption is not, made for other times. This is one of
several assumptions made concerning the initial
conditions, although continuity equation satisfied the



conditions. The complete specification of initial
turbulence is difficult; the assumptions for the initial
conditions made here in are partially on the basis of
simplicity.

Substituting dk” = dk;/dk;dk;and integrating with

respect tok,", k; and K; , we get,
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4

Integration of equation (5.3) with respect to time, and
in order to simplify calculations, we will assume that

,=0; That is we assume that a function

sufficiently general to represent the initial conditions
can obtained by considering only the terms involving

[b],and[c], The substituting of equation (4.4) in

equation (4.1) and setting H = 27K °p.! | result in
2
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where H is the magnetic energy spectrum function,
which represents  contributions from various wave
numbers (or eddy sizes) to the energy and G is the
energy transfer function, which is responsible for the
transfer of energy between wave numbers. In order to
make further calculations, an assumption must be made
for the forms of the bracketed quantities with the
subscripts 0 and 1 in equation (5.5) which depends on
the initial conditions.

2)? [{kABBIKKD) — (ke BBIK, K 1=
— &, (K?k'* —k*k'?) (5.6)

where &, is a constant depending on the initial

conditions. For the other bracketed quantities in
equation (5.5), we get,
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andkk" = kk'cos@,@ is the angle between K and

k' and carrying out the integration with respect to &,
we get,
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Integrating equation (5.8) with respect tok ’.
We have,
G= G, +G, (5.9)
where,

1 5
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(5.15)

The integral expression in equation (5.9), The quantity
G s represents the transfer function arising owing to
consideration of magnetic field at three point
correlation equation;Gyarises from consideration of

the four —point equation. Integration of equation (5.9)
over all wave number shows that

[cdk =0 (5.16)

0

Indicating that the expression for G satisfies the
conditions of continuity and homogeneity, physically, it
was to be expected, Since G is a measure of transfer of
energy and the numbers must be zero. From (5.4), we
get,

H= exp{f Zsz;t 7t°)}jG exp{f Zlkzgt 7t0)}dt +J (k)exp{* L(Zét 40)}

2

where, J(k) = —2— is a constant of integration and

can be obtained as by Corrsin, [2]

H=
Nok? | -2kA(t-t,) -2k (t-t,)
L exp +exp [[G;+(G,, +G, +G, +G,) ]
u P P

2
exp{M} dt (5.17)

Pm
where,
G=Gﬂ+Gh +Gy2 +G73 +G%t (5.18) after
integration equation (5.17) becomes

2 2
b - Nok exp{_ 20kt to)}

T Pm

Hy+[H, +H, +H, +H, ] (5.19)

where,
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Ei(wg) = Pu___ gt
J. (t _tl)
From equation (5.19), we get,
H=H+H, (5.20)
where,
2 2
H, = Nok exp{_ 21k (t—to)},_,ﬂ and
T Pu

HZZ‘-IY1+H72+H7’3+H74/ ,

In equation (5.20) H;and H, magnetic energy
spectrum arising from consideration of the three and
four —point correlation equations respectively. Equation
(5.20) can be integrated over all wave numbers to give
the total magnetic turbulent energy. That is

(hi) wJ.Hdk (5.21)
0
where,
3 3 3

2 N,p2mv 2(t—t,) 2 60t _t )5
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2%.@+2p,)° e

E
p 2w
15 11"

@+ py)2@+2p,)?

Q5=

15.9.7.5.3 . 11.9.7.5.3(24p?w —200p,, +20) B
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9
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23 7"
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+9'7'5'3+7‘5.3{ —423170-16938180p,, — 25381440p\ —16894080p°u —4213440p*u ]J
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9.7.5.3(-2115855- 4237380p,, + 4245780p°w +16927680p°w +14783328p“m +4218816p°w +4218816p°w
24(1+2py)? *
M

11.9.7.5.3(~2115855—5670p,, +12720540p2 +8436120p°w —190720032p"u
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Therefore, from equation (5.21)
. -3
<hihi,>: NOpZMVZ(t_tO)Z +§ QV—G (t_t )—5
2 8V2r ° ’
15

17

+H[ERV 2(t—t) 2 +&Sv 2(t—t) 2]  (5.22)

Also, we can write equation (5.22) of the form
<h2> =Alt _to)_% +B(t-t,)° +C(t —tl)*l% +D(t _tl)*%,
(5.23)

This is the energy decay law of MHD turbulence for
four point correlations.

where,

2y = (hh), A=NoP?uv 2 B=2£ Qv ™, c=2¢,,
)= (A1), A= Nepier™ g 3

19

17 ==
Ry zand D=2¢£,Sv 2.
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(5.23), than we get,
A 45
2 3/2 =5 (? 4
— 7 [
(h?) = At-t,)"* + BA-t, _ (5.24) i
This is the energy decay of MHD turbulence in three- : ’ ylatto=5
point correlations. 5 257 y2ati0=1
Y y3 att0=1.5
g 2r y4 at t0=2
6. Result and discussions 3.4l ypaomzs
g1
S
5 T T T T T 2 1t
i ] 8 osf
S 2 3 4 5 6 7 8
E 3.5 7 Approximation of time=t
2 |
I ylatto=.1
5 25) e 1 Fig. 6.3: Decay of energy of MHD turbulence for three-
g o vaatol ] point correlation.
s y5 at t0=1.
g 15
% ir 5 ; ; ‘
Goosl A 45
ol ‘ ‘ ‘ ‘ \ % y10
2 3 4 5 6 7 8 bhoAr
Approximation of time=t §
235 o
Fig. 6.1: Decay of energy of MHD turbulence for three- 5 5321{8;3;‘5
point correlation. e y8at 10=t1=15
s y9 at t0=t1=2
525 y10 at t0=t1=2.5
15}
r\é 45 ] g
Yoot E g 1
y10 8 0.5
35F 1
y6 at t0=t1=.1 . . . . . .
3 y7 at t0=t1=.4 4 0 2 3 4 5 6 7 8
yg a: :g:}i:f Approximation of time=t
¥9 at t0=ti=

y10 at t0=t1=1.3

Fig. 6.4: Decay of energy of MHD turbulence for four-
point correlation.
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Fig. 6.2: Decay of energy of MHD turbulence for four-
point correlation.
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Fig. 6.5: Comparison between Figure 6.1 and Figure 6.2.
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Fig.6.6: Comparison between Figure 6.3 and Figure 6.4.
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Fig. 4.1 and Fig. 4.3 represent the energy decay of
MHD turbulence for three-point correlations of
equation (5.24). y1, y2, y3, y4 and y5 are solutions
of equation (5.24) at t0=.1, 4, .7, 1 and 1.3
respectively; which indicated in the Figure 4.1
clearly. Similarly, in Figure 4.3; y1, y2, y3, y4 and
y5 are represents solution curves of equation (5.24)
at .5, 1, 1.5, 2 and 2.5 respectively, which indicated
in Figure 4.2 and Figure 4.3. If the time is increases
then the decay of energy is increases.

Fig. 4.2 and Fig. 4.4 represent the energy decay of
MHD turbulence for four-point correlations of
equation (5.23). y6, y7, y8, y9 and y10 are solutions
of equation (5.23) at t0=t1=.1, 4, .7, 1 and 1.3
respectively; which indicated in the Figure 4.2
clearly. Similarly, in Figure 4.4; y6, y7, y8, y9 and
y10 are represents solution curves of equation
(5.23) at .5, 1, 1.5, 2 and 2.5 respectively, which
indicated in Figure 4.4.

Fig. 4.5, represents the comparison between the
Fig.4.1 and Fig.4.2 of three and four- point
correlations of MHD turbulent flow at t0=.1, .4, .7,
1,13and .5,1,15,2, 2.5 respectively .

Fig. 4.6, represents the comparison between the
Fig.4.2 and Fig. 4.4 of three and four- point
correlations of MHD turbulent flow at t0=.1, .4, .7,
1,13and .5,1,15,2, 2.5 respectively .

In equation (5.23) the third and fourth term on the
right hand side comes due to four point
correlations. If we put C=0 and D=0 it will be in
the form

iy -3

h = At—t,) 2 +B(t—t,)°, which is
completely same with Sarker and Kshore [9] for the
case of three -point correlation.

For large times second, third and fourth terms in
equation (5.23) becomes negligible leaving only

R
A(t—t,) 72 power decay law.

In equation (5.23), we shows that magnetic
turbulent energy for four- point correlations
systems decays more and more rapidly by
exponential manner than the decays of three point
correlation system.

If the quadruple and quintuple correlations were
not neglected, the equation (5.23) appears that
more terms in higher power of

(t—ty)and(t—t,)would be added to the
equation (5.23).In this case, energy decays greater

than the energy decays in equation (5.23) for four
point correlation systems.

International Journal of Engineering Research & Technology (IJERT)
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From Fig. 4.5 and Fig. 4.6, we see that, in four-
point correlations system energy die out faster than
the three- point correlations system in MHD
turbulent flow.
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