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ABSTRACT 

The duplicate detection is the most 

important process needed in world to find 

the duplicates. Several algorithms fail to 

detect the accurate duplicate in the 

hierarchal data. Our method to detect 

duplicates is the combination of Decision 

Tree and Fuzzy Similarity Matching. 

Duplicate detection, which is an important 

subtask of data cleaning, is the task of 

identifying multiple representations of a 

same real-world object.  

In this paper is discussed to detect duplicate 

using the Decision tree is used to form the 

tree from the given input variables. Fuzzy 

Similarity Matching is used to match the 

variables and provide the probability value 

for the matching .Our goals are either on 

improving the quality of the detected 

duplicates (effectiveness) or on saving 

computation time (efficiency). 

Keywords: Decision tree induction, xml 

duplicate detection, conditional 

probabilities, fuzzy matching.  
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1. INTRODUCTION 

Duplicate detection is a nontrivial task is the 

fact that duplicates are not exactly equal, 

often due to errors in the data. 

Consequently, we cannot use common 

comparison algorithms that detect exact 

duplicates.  

 

Instead, we have to compare all object 

representations, using a possibly complex 

matching strategy, to decide if they refer to 

the same real-world object or not. 

 

Detecting duplicates is problems with a long 

tradition in many domains. The problems 

are first define a suitable similarity measure, 

and second efficiently apply the measure to 

all pairs of objects. With the advent and 

pervasion of the XML data model, it is 

necessary to find new similarity measures 

and to develop efficient methods to detect 

duplicate elements in nested XML data. 

Duplicate Detection is the problem of 

detecting different entries in a data source 

representing the same real-world entity.  
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While Research abounds in the realm of 

duplicate detection in relational data, there is 

yet little work for duplicates in other, more 

complex data models, such as XML. 

For instance, within XML data, XML 

elements may lack any text. However, the 

hierarchical relationships with other 

elements potentially provide enough 

information for meaningful comparisons.  

Automatically detecting duplicates is 

difficult: First, duplicate representations are 

usually not identical but slightly differ in 

their values. Second, in principle all pairs of 

records should be compared, which is 

infeasible for large volumes of data.  

This lecture examines closely the two main 

components to overcome these difficulties:  

(i) Similarity measures are used to 

automatically identify duplicates when 

comparing two records. Well-chosen 

similarity measures improve 

the effectiveness of duplicate detection.  

(ii) Algorithms are developed to perform on 

very large volumes of data in search for 

duplicates. Well-designed algorithms 

improve the efficiency of duplicate 

detection. Finally, we discuss methods to 

evaluate the success of duplicate detection. 

Duplicate detection is an expensive 

operation of disk-based model checkers. It 

consists of comparing some potentially new 

states, the candidate states, to previous 

visited states. Duplicate detection is the 

process of identifying multiple 

representations of a same real-world object 

in a data source. 

Duplicate detection is a problem of critical 

importance in many applications, including 

customer relationship management, personal 

information management or data mining. 

The problem of XML duplicate detection is 

particularly tackling in applications like 

catalog integration or online data cleansing. 

Numerous approaches both for relational 

and XML data exist. In particular for the 

first goal, the “goodness” of an approach is 

usually evaluated based on experimental 

studies.  

Although some methods and data sets have 

gained popularity, it is still difficult to 

compare different approaches or to assess 

the quality of one own’s approach. 

In existing system, it first present a 

probabilistic duplicate detection algorithm 

for hierarchical data called XML Dup. This 

algorithm considers both the similarity of 

attribute contents and the relative 

importance of descendant elements, with 

respect to the overall similarity score. 

The XML Dup system first proposed uses a 

Bayesian Network model (BN) for XML 

duplicate detection. 

It first present how to construct a Bayesian 

Network model for duplicate detection, and 

then show how this model is used to 

compute the similarity between XML object 

representations. Given this similarity, we 

classify two XML objects as duplicates if it 

is above a given threshold. 

The proposed method for the effective 

duplicate detection is through Decision Tree 

Formation and Fuzzy Similarity Matching. 

Fuzzy matching is an advanced 

mathematical process that determines the 

similarities between data, information, and 

facts, where the outcome is neither true nor 

false, or 100 percent certain, hence the word, 

“fuzzy.” The hierarchical and semi-

structured nature of XML strongly differs 

from the flat and structured relational model, 
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which has received the main attention in 

duplicate detection so far.  

The input data is first processed by Decision 

Tree learning method and then that tree 

structure is compared by Fuzzy Similarity 

Matching and results in accurate duplicate 

detection. 

2. DECISION TREE INDUCTION 

Decision tree learning is a method 

commonly used in data mining. The goal is 

to create a model that predicts the value of a 

target variable based on several input 

variables. 

Decision tree induction is one of the basic 

techniques for data classification. A 

Decision tree is a flow-chart like tree 

structure, where each internal node denotes 

a test on an attribute, each branch represents 

an outcome of the test, and leaf node 

represent classes or class distributions, The 

top most node in a tree is the root node. 

In order to classify an unknown sample, the 

attribute values of the sample are tested 

against the decision tree. A path is traced 

from the root to a leaf node that holds the 

class prediction for that sample. Decision 

trees can easily be converted to 

classification rules. 

When decision trees are built, many of the 

branches may reflect noise or outliers in 

training data. Tree pruning attempts to 

identify and remove such branches, with the 

goal of improving classification accuracy on 

unseen data. 

In the prepruning approach, a tree is pruned 

by halting its construction early. Upon 

halting the node becomes a leaf.  The leaf 

may hold the most frequent class among the 

subset samples or the probability 

distribution of those samples. 

The knowledge represented in decision trees 

can be extracted and represented in the form 

of classification IF-THEN rules. One rule is 

created for each path from the root to a leaf 

node. Each attribute-value pair along a given 

path forms a conjunction in the rule 

antecedent. The leaf node holds the class 

prediction, forming the rule consequent. The 

IF-THEN rules may be easier for humans to 

understand, particularly if the given tree is 

very large. 

The basic algorithm for Decision tree 

induction is a greedy algorithm that 

constructs decision trees in a top-down 

recursive divide-and-conquer manner. 

2.1Strengths and Weakness of Decision 

Tree Methods 

The strengths of decision tree methods are: 

 Decision trees are able to generate 

understandable rules. 

 Decision trees perform classification 

without requiring much computation. 

 Decision trees are able to handle 

both continuous and categorical 

variables. 

 Decision trees provide a clear 

indication of which fields are most 

important for prediction or 

classification. 

2.2 The weaknesses of decision tree 

methods 

 Decision trees are less appropriate 

for estimation tasks where the goal is 

to predict the value of a continuous 

attribute. 

 Decision trees are prone to errors in 

classification problems with many 

class and relatively small number of 

training examples. 
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 Decision tree can be computationally 

expensive to train. The process of 

growing a decision tree is 

computationally expensive. At each 

node, each candidate splitting field 

must be sorted before its best split 

can be found. In some algorithms, 

combinations of fields are used and a 

search must be made for optimal 

combining weights. Pruning 

algorithms can also be expensive 

since many candidate sub-trees must 

be formed and compared. 

 Decision trees do not treat well non-

rectangular regions. Most decision-

tree algorithms only examine a 

single field at a time. This leads to 

rectangular classification boxes that 

may not correspond well with the 

actual distribution of records in the 

decision space. 

Each interior node corresponds to one of the 

input variables; there are edges to children 

for each of the possible values of that input 

variable. Each leaf represents a value of the 

target variable given the values of the input 

variables represented by the path from the 

root to the leaf. 

The estimation criterion in the decision tree 

algorithm is the selection of an attribute to 

test at each decision node in the tree. The 

goal is to select the attribute that is most 

useful for classifying examples. A good 

quantitative measure of the worth of an 

attribute is a statistical property 

called information gain that measures how 

well a given attribute separates the training 

examples according to their target 

classification. This measure is used to select 

among the candidate attributes at each step 

while growing the tree. 

Practical issues in learning decision trees 

include determining how deeply to grow the 

decision tree, handling continuous attributes, 

choosing an appropriate attribute selection 

measure, handling training data with missing 

attribute values, handing attributes with 

differing costs, and improving 

computational efficiency. Avoiding over-

fitting the data 

2.3 Avoiding over-fitting the data 

Over-fitting is a significant practical 

difficulty for decision tree learning and 

many other learning methods. There are 

several approaches to avoiding over-fitting 

in decision tree learning. These can be 

grouped into two classes: 

a. Approaches that stop growing the 

tree earlier, before it reaches the 

point where it perfectly classifies the 

training data. 

b. Approaches that allow the tree to 

over-fit the data and then post prune 

the tree. 

Although the first of these approaches might 

seem more direct, the second approach of 

post-pruning over-fit trees has been found to 

be more successful in practice. This is due to 

the difficulty in the first approach of 

estimating precisely when to stop growing 

the tree. 

Regardless of whether the correct tree size is 

found by stopping early or by post-pruning, 

a key question is what criterion is to be used 

to determine the correct final tree size.  

Approaches include: 

 Use a separate set of examples, 

distinct from the training examples, 

to evaluate the utility of post-pruning 

nodes from the tree. 

 Use all the available data for 

training, but apply a statistical test to 

estimate whether expanding (or 
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pruning) a particular node is likely to 

produce an improvement beyond the 

training set. 

 Use an explicit measure of the 

complexity for encoding the training 

examples and the decision tree, 

halting growth of the tree when this 

encoding size is minimized. This 

approach is based on a heuristic 

called the Minimum Description 

Length principle. 

The first of the above approaches is the most 

common and is often referred to as training 

and validation set approach. In this 

approach, the available data are separated 

into two sets of examples: a training set, 

which is used to form the learned 

hypothesis, and a separate validation set, 

which is used to evaluate the accuracy of 

this hypothesis over subsequent data and, in 

particular, to evaluate the impact of pruning 

this hypothesis. 

The problem of identifying duplicate records 

has been considered under many different 

names, such as record linkage, merge/purge, 

entity identification, and object matching. 

Typically, standard string similarity metrics 

such as edit distance or vector-space cosine 

similarity are used to determine whether two 

values or records are alike enough to be 

duplicates.  

Several problems arise in the context of data 

integration, where data from distributed and 

heterogeneous data sources is combined. 

One of these problems is the possibly 

inconsistent representation of the same real-

world object in the different data sources. 

When combining data from heterogeneous 

sources, the ideal result is a unique, 

complete, and correct representation for 

every object. Such data quality can only be 

achieved through data cleansing, where the 

most important task is to ensure that an 

object only has one representation in the 

result. This requires the identification of 

duplicate objects, and is referred to as object 

identification or duplicate detection.  

Decision tree is a classifier in the form of a 

tree structure (see Figure 1), where each 

node is either: 

 A leaf node - indicates the value of 

the target attribute (class) of 

examples, or 

 A decision node - specifies some test 

to be carried out on a single 

attribute-value, with one branch and 

sub-tree for each possible outcome 

of the test. 

A decision tree can be used to classify an 

example by starting at the root of the tree 

and moving through it until a leaf node, 

which provides the classification of the 

instance. 

A decision tree consists of 3 types of nodes: 

1. Decision nodes - commonly 

represented by squares 

2. Chance nodes - represented by 

circles 

3. End nodes - represented by triangles 

      Advantages of Decision trees: 

 Are simple to understand and interpret. 

People are able to understand decision 

tree models after a brief explanation. 

 Have value even with little hard data. 

Important insights can be generated 

based on experts describing a situation 

(its alternatives, probabilities, and costs) 

and their preferences for outcomes. 

 Possible scenarios can be added 

 Worst, best and expected values can be 

determined for different scenarios 
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 Use a white box model. If a given result 

is provided by a model. 

      Disadvantages of decision trees: 

 For data including categorical variables 

with different number of 

levels, information gain in decision 

trees are biased in favor of those 

attributes with more levels. 

 Calculations can get very complex 

particularly if many values are uncertain 

and/or if many outcomes are linked. 

Once the relationship is extracted, then one 

or more decision rules can be derived that 

describe the relationships between inputs 

and targets. Rules can be selected and used 

to display the decision tree, which provides 

a means to visually examine and describe 

the tree-like network of relationships that 

characterize the input and target values. 

Decision rules can predict the values of new 

or unseen observations that contain values 

for the inputs, but might not contain values 

for the targets. 

Each rule assigns a record or observation 

from the data set to a node in a branch or 

segment based on the value of one of the 

fields or columns in the data set.1 Fields or 

columns that are used to create the rule are 

called inputs. Splitting rules are applied one 

after another, resulting in a hierarchy of 

branches within branches that produces the 

characteristic inverted decision tree form. 

 Each segment or branch is called a node. A 

node with all its descendent segments forms 

an additional segment or a branch of that 

node. The bottom nodes of the decision tree 

are called leaves (or terminal nodes). For 

each leaf, the decision rule provides a 

unique path for data to enter the class that is 

defined as the leaf. All nodes, including the 

bottom leaf nodes, have mutually exclusive 

assignment rules; as a result, records or 

observations from the parent data set can be 

found in one node only. Once the decision 

rules have been determined, it is possible to 

use the rules to predict new node values 

based on new or unseen data. In predictive 

modeling, the decision rule yields the 

predicted value. 

Decision trees are a simple, but powerful 

form of multiple variable analysis. They 

provide unique capabilities to supplement, 

complement, and substitute for  

• Traditional statistical forms of analysis 

(such as multiple linear regressions)  

• A variety of data mining tools and 

techniques (such as neural networks)  

• Recently developed multidimensional 

forms of reporting and analysis found in the 

Field of business intelligence Decision trees 

are produced by algorithms that identify 

various ways of splitting a data set into 

branch-like segments.  

These segments form an inverted decision 

tree that originates with a root node at the 

top of the tree. The object of analysis is 

reflected in this root node as a simple, one-

dimensional display in the decision tree 

interface. The name of the field of data that 

is the object of analysis is usually displayed, 

along with the spread or distribution of the 

values that are contained in that field. 

This Decision tree induction is a typical 

inductive approach to learn knowledge on 

classification. The key requirements to do 

mining with decision trees are: 

a. Attribute-value description: object or 

case must be expressible in terms of 

a fixed collection of properties or 

attributes. This means that we need 

to discretize continuous attributes, or 
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this must have been provided in the 

algorithm. 

b. Predefined classes (target attribute 

values): The categories to which 

examples are to be assigned must 

have been established beforehand 

(supervised data). 

c. Discrete classes: A case does or does 

not belong to a particular class, and 

there must be more cases than 

classes. 

d. Sufficient data: Usually hundreds or 

even thousands of training cases. 

 

Figure 1: An example of a simple decision 

tree. 

The problem has been addressed extensively 

for relational data stored in tables. However, 

relational data only represents a small 

portion of today’s data. Indeed, XML is 

increasingly popular as data representation, 

especially for data published on the World 

Wide Web and data exchanged between 

organizations.  

Therefore, we need to develop methods to 

detect duplicate objects in nested XML data. 

There are two types of data heterogeneity: 

structural and lexical.  

Structural heterogeneity occurs when the 

fields of the tuples in the database are 

structured differently in different databases. 

For example, in one database, the customer 

address might be recorded in one field 

named, say, addr, while, in another database, 

the same information might be stored in 

multiple fields such as street, city, state, and 

zip code. 

 Lexical heterogeneity occurs when the 

tuples have identically structured fields 

across databases, but the data use different 

representations to refer to the same real-

world object (e.g., Street Address = 44 W. 

4th St. versus Street Address = 44 West 

Fourth Street).  

As numerous approaches exist both for 

increasing efficiency and effectiveness, it is 

essential to provide some common ground to 

compare these algorithms with each other. 

The proposed algorithms most often 

improve either efficiency or effectiveness. In 

the first case, the goal is to reduce the 

number of pairwise comparisons, which is 

quadratic in the number of elements if all 

pairs are compared. 

Many duplicate detection algorithms are 

described in scientific papers only, and often 

a 12 page publication cannot cover all 

details and aspects of an approach. When it 

comes to re-implementing an existing 

method, the information provided in a paper 

is often insufficient.  

Freely available and simultaneously 

interesting datasets for duplicate detection 

are rare. Even more seldom are datasets with  
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true duplicates already marked. As a 

consequence, even if same or similar 

datasets were used, the results expressed as 

precision, recall and run time measure are 

not comparable: Two approaches might not 

agree in what is a correctly detected 

duplicate and how many duplicates are in 

fact hidden in the dataset. 

To confront these problems, many 

publications create their own data sets, inject 

duplicates and then let their duplicate 

detection algorithm find them. Often these 

generators of data are not freely available 

for legal reasons simple because the original 

code is lost once the programmer leaves the 

organization. 

By applying different duplicate detection 

approaches on the same data, comparing 

efficiency or effectiveness of different 

approaches is easy. 

Duplicate elements are created s copies of 

elements in the clean data, Duplicate 

detection can be considered as batch 

process, where all pairs of duplicates are 

determined in single process or it can be 

considered a search problem, i.e., given a 

particular element , find its duplicates in a 

given data set. 

The latter is particularly important to 

support during data input, so that users can 

warned of a possibly existing entry for the 

particular real-world object. 

Numerous approaches both for relational 

and xml data exist. Their goals are either on 

improving the quality of the detected 

duplicates or on saving computation time.  

In particular for the first goal, the goodness  

 

 

of the approach is usually evaluated based 

on experimental studies.  Although some 

methods and data sets have gained 

popularity it is still difficult to compare 

different approaches or to assess the quality 

of one own’s approach. 

The goal our algorithm is to improve 

efficiency without reducing effectiveness. 

When concentrating on effectiveness, the 

goal is to find duplicates more accurately. 

Structure. This paper is organized as 

follows: Section 3presents XML Duplicate 

Detection. Section4 summarizes Conditional 

Probabilities. Section 5.We discusses the 

results and algorithm .Finally, in Section 

6we conclude and present suggestions for 

future work. This XML duplicate detection 

is to develop effective, efficient, and scalable 

solutions for XML duplicate detection. 

 

3. XML DUPLICATE DETECTION: 

Research on fuzzy duplicate detection has 

mainly concentrated on efficiently and 

effectively finding duplicate records in 

relational data. Due to space limitations, we 

only highlight a few solutions in this section. 

We classify approaches into two areas: 

domain dependent solutions, such as the 

ones proposed in, assume a certain domain 

and the help of human experts to calibrate 

algorithms.  

Domain dependent approaches have in 

common that description selection and 

structural heterogeneity is not considered 

because the problems do not arise in 

relational duplicate detection.  

The work presented in detects duplicates in 

hierarchically organized relations by 
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considering data of tables related to the 

object table through foreign keys. In this 

context, instance heterogeneity has to be 

considered but description selection and 

schematic heterogeneity are still not an 

issue.  

There is work on identifying similar 

hierarchical data and XML data. However, 

most work does not consider the 

effectiveness of the similarity join. Rather, 

the authors concentrate on fast execution of 

the algorithm.  

The focus is on the efficient incorporation of 

tree edit distance in a framework performing 

approximate XML joins. The authors 

present upper and lower bounds for the tree 

edit distance, which are used as filters to 

avoid expensive tree edit distance 

computations. They further introduce a 

sampling method to effectively reduce the 

amount of data examined during the join 

operation.  

The only approach we are aware of that 

considers recall and precision of XML 

similarity joins. They present four different 

strategies to define the similarity function 

using the vector space model.  

Knowing Object Descriptions is necessary 

for duplicate detection, because they 

represent the information that is used to 

classify objects as duplicates or non-

duplicates. Ideally, an Object Descriptions 

includes information that characterizes a 

particular object, such as a book’s ISBN, 

and does not vary depending on external 

influence (e.g., who wrote the book’s 

review).  

 

Fig: 2 workflow diagram 

4. CONDITIONAL PROBABILITIES 

It needs to define the following four types of 

conditional probabilities: Conditional 

probability 1 (CP1): The probability of the 

values of the nodes being duplicates, given 

that each individual pair of values contains 

duplicates.  
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Intuitively, 

1) If all attribute values are 

duplicates, we consider the XML node 

values as duplicates. 

2) If none of the attribute values are 

duplicates, we consider the XML node 

values as non-duplicates;  

3) If some of the attribute values are 

duplicates, we determine that the probability 

of the XML nodes being duplicates equals a 

given value.  

This value represents the importance of the 

corresponding attribute a in determining if 

the nodes are duplicates. 

Conditional probability 2 (CP2): The 

probability of the children nodes being 

duplicates, given that each individual pair of 

children is duplicates. Intuitively, it makes 

sense to say that two nodes are duplicates 

only if all of their child nodes are also 

duplicates.  

However, it may be the case that the XML 

tree is incomplete, or contains erroneous 

information. Thus, we relax this assumption 

and state that the more child nodes in both 

trees are duplicates, the higher the 

probability that the parent nodes are 

duplicates. 

Conditional probability 3 (CP3): The 

probability of two nodes being duplicates 

given that their values and their children are 

duplicates. Essentially, we consider the 

nodes as duplicates if both their values and 

their children are duplicates. 

Conditional probability 4 (CP4): The 

probability of a set of nodes of the same 

type being duplicates given that each pair of  

 

 

 

 

 

individual nodes in the sets is duplicates. 

Similarity scores are calculated using the 

probability values. 

5. FUZZY MATCHING 

Fuzzy set theory defines fuzzy operators 

on fuzzy sets. Fuzzy logic needs to be able 

to manipulate degrees of maybe, in addition 

to true and false.”  

This algorithm combination will result in 

accurate duplicate detection than the other 

methods. 

The problem in applying this is that the 

appropriate fuzzy operator may not be 

known. For this reason, fuzzy logic usually 

uses IF-THEN rules, or constructs that are 

equivalent, such as fuzzy associative 

matrices. Rules are usually expressed in the 

form: 

IF variable IS property THEN action 

For example, a simple temperature regulator 

that uses a fan might look like this: 

IF temperature IS very cold THEN stop fan 

IF temperature IS cold THEN turn down fan 

IF temperature IS normal THEN maintain 

level 

IF temperature IS hot THEN speed up fan 

There is no "ELSE" – all of the rules are 

evaluated, because the temperature might be 

"cold" and "normal" at the same time to 

different degrees. 

The AND, OR, and OT operators of boolean 

logic exist in fuzzy logic, usually defined as 

the minimum, maximum, and complement; 

when they are defined this way, they are 

called the Zadeh operators.  
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So for the fuzzy variables x and y: 

NOT x = (1 - truth(x)) 

x AND y = minimum(truth(x), truth(y)) 

x OR y = maximum(truth(x), truth(y)) 

 

There are also other operators, more 

linguistic in nature, called hedges that can be 

applied. These are generally adverbs such as 

"very", or "somewhat", which modify the 

meaning of a set. 

 

Algorithm: 

 Input as records, IR1, IR2,….IRn 

 Target records for comparison, TRi1, 

TRi2,….TRin, where i = 1,2,….,m, 

where m is the number of records in 

dataset 

 Assume some attributes as important 

for comparison, for eg., IR1, IR2, 

IRn-1 &IRn as important attribute. 

 For i = 1,2,….,m  

a. Similarity score calculation, S1 = 

PrDiff(IR1,TRi1), S2 = 

PrDiff(IR2,TRi2) ……… Sn = 

PrDiff(IRn,TRin) 

b. Total similarity score (S) = S1 + S2 

+ ……. + Sn 

c. If S < threshold; Result as 

Duplicates. 

d. Fuzzy match, Calculate 

S1(IR1,TRi1) AND S2(IR2,TRi2) 

OR S3(IR3,TRi3) AND …. Sn-

2(IRn-2,TRin-2) OR Sn-1(IRn-

1,TRin-1) AND Sn(IRn-1,TRin-1) 

e. If any Similarity score > 0, Result as 

Not Duplicates. 

 

Fig: 3 List of XML Files 

 

 Fig: 4 Finding duplicates in XML Data 
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6. CONCLUSION 

Duplicate detection is defined as the 

identification of different representations or 

versions of a same real-world object, called 

duplicates. 

 

 Such duplicates are due to errors and 

inconsistencies in the data, such as typos and 

misspellings, missing information, or 

outdated data. As a consequence, duplicates 

are not exactly equal, which makes duplicate 

detection a challenging task in data cleaning 

and data integration processes. 

 

Errors are spelling mistakes, inconsistent 

conventions, etc. Hence, significant amount 

of time and money are spent on data 

cleaning, the task of detecting and 

correcting errors in data. The problem of 

detecting and eliminating duplicated data is 

one of the major problems in the broad area 

of data cleaning and data quality. 

 

Many times, the same logical real world 

entity may have multiple representations in 

the data warehouse.  

 

Such duplicated information can 

significantly increase direct mailing costs 

because several customers like Lisa may be 

sent multiple catalogs. Moreover, such 

duplicates can cause incorrect results in 

analysis queries (say, the number of Super 

Mart customers in Seattle), and erroneous 

data mining models to be built.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Duplicate detection is hard because it is 

caused by several types of errors like 

typographical errors, and equivalence 

errors—different (non-unique and 

nonstandard) representations of the same 

logical value. For instance, a user may enter 

“WA, United States” or “Wash., USA” for  

“WA, United States of America.”  

 

Equivalence errors in product tables (“winxp 

pro” for “windows XP Professional”) are 

different from those encountered in 

bibliographic tables (“VLDB” for “very 

large databases”), etc. Also, it is important 

to detect and clean equivalence errors 

because an equivalence error may result in 

several duplicate tuples. 

 

Fuzzy matching process will give a 

probability score to determine the accuracy 

of the match. This matching will shows the 

accurate result than Bayesian network. 

 

While considering the problem of XML 

duplicates detection under the aspects of 

effectiveness, efficiency and scalability, we 

believe that our solutions will significantly 

contribute to solving XML duplicate 

detection for a wide range of applications. 
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