
Decision Tree Formation and Fuzzy Similarity Matching for Duplicates

Detection

. S.Sindhu,

Mphil Scholar,

Dept of Computer Science,

Dr. SNS Rajalakshmi College of Arts and

Science,

Coimbatore-49,

India.

ABSTRACT

The duplicate detection is the most

important process needed in world to find

the duplicates. Several algorithms fail to

detect the accurate duplicate in the

hierarchal data. Our method to detect

duplicates is the combination of Decision

Tree and Fuzzy Similarity Matching.

Duplicate detection, which is an important

subtask of data cleaning, is the task of

identifying multiple representations of a

same real-world object.

In this paper is discussed to detect duplicate

using the Decision tree is used to form the

tree from the given input variables. Fuzzy

Similarity Matching is used to match the

variables and provide the probability value

for the matching .Our goals are either on

improving the quality of the detected

duplicates (effectiveness) or on saving

computation time (efficiency).

Keywords: Decision tree induction, xml

duplicate detection, conditional

probabilities, fuzzy matching.

Ms.R.Suganya,

Asst Professor,

Dept of Computer Science,

Dr. SNS Rajalakshmi College of Arts and

Science,

Coimbatore-49,

India.

1. INTRODUCTION

Duplicate detection is a nontrivial task is the

fact that duplicates are not exactly equal,

often due to errors in the data.

Consequently, we cannot use common

comparison algorithms that detect exact

duplicates.

Instead, we have to compare all object

representations, using a possibly complex

matching strategy, to decide if they refer to

the same real-world object or not.

Detecting duplicates is problems with a long

tradition in many domains. The problems

are first define a suitable similarity measure,

and second efficiently apply the measure to

all pairs of objects. With the advent and

pervasion of the XML data model, it is

necessary to find new similarity measures

and to develop efficient methods to detect

duplicate elements in nested XML data.

Duplicate Detection is the problem of

detecting different entries in a data source

representing the same real-world entity.

1187

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

While Research abounds in the realm of

duplicate detection in relational data, there is

yet little work for duplicates in other, more

complex data models, such as XML.

For instance, within XML data, XML

elements may lack any text. However, the

hierarchical relationships with other

elements potentially provide enough

information for meaningful comparisons.

Automatically detecting duplicates is

difficult: First, duplicate representations are

usually not identical but slightly differ in

their values. Second, in principle all pairs of

records should be compared, which is

infeasible for large volumes of data.

This lecture examines closely the two main

components to overcome these difficulties:

(i) Similarity measures are used to

automatically identify duplicates when

comparing two records. Well-chosen

similarity measures improve

the effectiveness of duplicate detection.

(ii) Algorithms are developed to perform on

very large volumes of data in search for

duplicates. Well-designed algorithms

improve the efficiency of duplicate

detection. Finally, we discuss methods to

evaluate the success of duplicate detection.

Duplicate detection is an expensive

operation of disk-based model checkers. It

consists of comparing some potentially new

states, the candidate states, to previous

visited states. Duplicate detection is the

process of identifying multiple

representations of a same real-world object

in a data source.

Duplicate detection is a problem of critical

importance in many applications, including

customer relationship management, personal

information management or data mining.

The problem of XML duplicate detection is

particularly tackling in applications like

catalog integration or online data cleansing.

Numerous approaches both for relational

and XML data exist. In particular for the

first goal, the “goodness” of an approach is

usually evaluated based on experimental

studies.

Although some methods and data sets have

gained popularity, it is still difficult to

compare different approaches or to assess

the quality of one own’s approach.

In existing system, it first present a

probabilistic duplicate detection algorithm

for hierarchical data called XML Dup. This

algorithm considers both the similarity of

attribute contents and the relative

importance of descendant elements, with

respect to the overall similarity score.

The XML Dup system first proposed uses a

Bayesian Network model (BN) for XML

duplicate detection.

It first present how to construct a Bayesian

Network model for duplicate detection, and

then show how this model is used to

compute the similarity between XML object

representations. Given this similarity, we

classify two XML objects as duplicates if it

is above a given threshold.

The proposed method for the effective

duplicate detection is through Decision Tree

Formation and Fuzzy Similarity Matching.

Fuzzy matching is an advanced

mathematical process that determines the

similarities between data, information, and

facts, where the outcome is neither true nor

false, or 100 percent certain, hence the word,

“fuzzy.” The hierarchical and semi-

structured nature of XML strongly differs

from the flat and structured relational model,

1188

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

which has received the main attention in

duplicate detection so far.

The input data is first processed by Decision

Tree learning method and then that tree

structure is compared by Fuzzy Similarity

Matching and results in accurate duplicate

detection.

2. DECISION TREE INDUCTION

Decision tree learning is a method

commonly used in data mining. The goal is

to create a model that predicts the value of a

target variable based on several input

variables.

Decision tree induction is one of the basic

techniques for data classification. A

Decision tree is a flow-chart like tree

structure, where each internal node denotes

a test on an attribute, each branch represents

an outcome of the test, and leaf node

represent classes or class distributions, The

top most node in a tree is the root node.

In order to classify an unknown sample, the

attribute values of the sample are tested

against the decision tree. A path is traced

from the root to a leaf node that holds the

class prediction for that sample. Decision

trees can easily be converted to

classification rules.

When decision trees are built, many of the

branches may reflect noise or outliers in

training data. Tree pruning attempts to

identify and remove such branches, with the

goal of improving classification accuracy on

unseen data.

In the prepruning approach, a tree is pruned

by halting its construction early. Upon

halting the node becomes a leaf. The leaf

may hold the most frequent class among the

subset samples or the probability

distribution of those samples.

The knowledge represented in decision trees

can be extracted and represented in the form

of classification IF-THEN rules. One rule is

created for each path from the root to a leaf

node. Each attribute-value pair along a given

path forms a conjunction in the rule

antecedent. The leaf node holds the class

prediction, forming the rule consequent. The

IF-THEN rules may be easier for humans to

understand, particularly if the given tree is

very large.

The basic algorithm for Decision tree

induction is a greedy algorithm that

constructs decision trees in a top-down

recursive divide-and-conquer manner.

2.1Strengths and Weakness of Decision

Tree Methods

The strengths of decision tree methods are:

 Decision trees are able to generate

understandable rules.

 Decision trees perform classification

without requiring much computation.

 Decision trees are able to handle

both continuous and categorical

variables.

 Decision trees provide a clear

indication of which fields are most

important for prediction or

classification.

2.2 The weaknesses of decision tree

methods

 Decision trees are less appropriate

for estimation tasks where the goal is

to predict the value of a continuous

attribute.

 Decision trees are prone to errors in

classification problems with many

class and relatively small number of

training examples.

1189

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

 Decision tree can be computationally

expensive to train. The process of

growing a decision tree is

computationally expensive. At each

node, each candidate splitting field

must be sorted before its best split

can be found. In some algorithms,

combinations of fields are used and a

search must be made for optimal

combining weights. Pruning

algorithms can also be expensive

since many candidate sub-trees must

be formed and compared.

 Decision trees do not treat well non-

rectangular regions. Most decision-

tree algorithms only examine a

single field at a time. This leads to

rectangular classification boxes that

may not correspond well with the

actual distribution of records in the

decision space.

Each interior node corresponds to one of the

input variables; there are edges to children

for each of the possible values of that input

variable. Each leaf represents a value of the

target variable given the values of the input

variables represented by the path from the

root to the leaf.

The estimation criterion in the decision tree

algorithm is the selection of an attribute to

test at each decision node in the tree. The

goal is to select the attribute that is most

useful for classifying examples. A good

quantitative measure of the worth of an

attribute is a statistical property

called information gain that measures how

well a given attribute separates the training

examples according to their target

classification. This measure is used to select

among the candidate attributes at each step

while growing the tree.

Practical issues in learning decision trees

include determining how deeply to grow the

decision tree, handling continuous attributes,

choosing an appropriate attribute selection

measure, handling training data with missing

attribute values, handing attributes with

differing costs, and improving

computational efficiency. Avoiding over-

fitting the data

2.3 Avoiding over-fitting the data

Over-fitting is a significant practical

difficulty for decision tree learning and

many other learning methods. There are

several approaches to avoiding over-fitting

in decision tree learning. These can be

grouped into two classes:

a. Approaches that stop growing the

tree earlier, before it reaches the

point where it perfectly classifies the

training data.

b. Approaches that allow the tree to

over-fit the data and then post prune

the tree.

Although the first of these approaches might

seem more direct, the second approach of

post-pruning over-fit trees has been found to

be more successful in practice. This is due to

the difficulty in the first approach of

estimating precisely when to stop growing

the tree.

Regardless of whether the correct tree size is

found by stopping early or by post-pruning,

a key question is what criterion is to be used

to determine the correct final tree size.

Approaches include:

 Use a separate set of examples,

distinct from the training examples,

to evaluate the utility of post-pruning

nodes from the tree.

 Use all the available data for

training, but apply a statistical test to

estimate whether expanding (or

1190

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

pruning) a particular node is likely to

produce an improvement beyond the

training set.

 Use an explicit measure of the

complexity for encoding the training

examples and the decision tree,

halting growth of the tree when this

encoding size is minimized. This

approach is based on a heuristic

called the Minimum Description

Length principle.

The first of the above approaches is the most

common and is often referred to as training

and validation set approach. In this

approach, the available data are separated

into two sets of examples: a training set,

which is used to form the learned

hypothesis, and a separate validation set,

which is used to evaluate the accuracy of

this hypothesis over subsequent data and, in

particular, to evaluate the impact of pruning

this hypothesis.

The problem of identifying duplicate records

has been considered under many different

names, such as record linkage, merge/purge,

entity identification, and object matching.

Typically, standard string similarity metrics

such as edit distance or vector-space cosine

similarity are used to determine whether two

values or records are alike enough to be

duplicates.

Several problems arise in the context of data

integration, where data from distributed and

heterogeneous data sources is combined.

One of these problems is the possibly

inconsistent representation of the same real-

world object in the different data sources.

When combining data from heterogeneous

sources, the ideal result is a unique,

complete, and correct representation for

every object. Such data quality can only be

achieved through data cleansing, where the

most important task is to ensure that an

object only has one representation in the

result. This requires the identification of

duplicate objects, and is referred to as object

identification or duplicate detection.

Decision tree is a classifier in the form of a

tree structure (see Figure 1), where each

node is either:

 A leaf node - indicates the value of

the target attribute (class) of

examples, or

 A decision node - specifies some test

to be carried out on a single

attribute-value, with one branch and

sub-tree for each possible outcome

of the test.

A decision tree can be used to classify an

example by starting at the root of the tree

and moving through it until a leaf node,

which provides the classification of the

instance.

A decision tree consists of 3 types of nodes:

1. Decision nodes - commonly

represented by squares

2. Chance nodes - represented by

circles

3. End nodes - represented by triangles

 Advantages of Decision trees:

 Are simple to understand and interpret.

People are able to understand decision

tree models after a brief explanation.

 Have value even with little hard data.

Important insights can be generated

based on experts describing a situation

(its alternatives, probabilities, and costs)

and their preferences for outcomes.

 Possible scenarios can be added

 Worst, best and expected values can be

determined for different scenarios

1191

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

 Use a white box model. If a given result

is provided by a model.

 Disadvantages of decision trees:

 For data including categorical variables

with different number of

levels, information gain in decision

trees are biased in favor of those

attributes with more levels.

 Calculations can get very complex

particularly if many values are uncertain

and/or if many outcomes are linked.

Once the relationship is extracted, then one

or more decision rules can be derived that

describe the relationships between inputs

and targets. Rules can be selected and used

to display the decision tree, which provides

a means to visually examine and describe

the tree-like network of relationships that

characterize the input and target values.

Decision rules can predict the values of new

or unseen observations that contain values

for the inputs, but might not contain values

for the targets.

Each rule assigns a record or observation

from the data set to a node in a branch or

segment based on the value of one of the

fields or columns in the data set.1 Fields or

columns that are used to create the rule are

called inputs. Splitting rules are applied one

after another, resulting in a hierarchy of

branches within branches that produces the

characteristic inverted decision tree form.

 Each segment or branch is called a node. A

node with all its descendent segments forms

an additional segment or a branch of that

node. The bottom nodes of the decision tree

are called leaves (or terminal nodes). For

each leaf, the decision rule provides a

unique path for data to enter the class that is

defined as the leaf. All nodes, including the

bottom leaf nodes, have mutually exclusive

assignment rules; as a result, records or

observations from the parent data set can be

found in one node only. Once the decision

rules have been determined, it is possible to

use the rules to predict new node values

based on new or unseen data. In predictive

modeling, the decision rule yields the

predicted value.

Decision trees are a simple, but powerful

form of multiple variable analysis. They

provide unique capabilities to supplement,

complement, and substitute for

• Traditional statistical forms of analysis

(such as multiple linear regressions)

• A variety of data mining tools and

techniques (such as neural networks)

• Recently developed multidimensional

forms of reporting and analysis found in the

Field of business intelligence Decision trees

are produced by algorithms that identify

various ways of splitting a data set into

branch-like segments.

These segments form an inverted decision

tree that originates with a root node at the

top of the tree. The object of analysis is

reflected in this root node as a simple, one-

dimensional display in the decision tree

interface. The name of the field of data that

is the object of analysis is usually displayed,

along with the spread or distribution of the

values that are contained in that field.

This Decision tree induction is a typical

inductive approach to learn knowledge on

classification. The key requirements to do

mining with decision trees are:

a. Attribute-value description: object or

case must be expressible in terms of

a fixed collection of properties or

attributes. This means that we need

to discretize continuous attributes, or

1192

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

this must have been provided in the

algorithm.

b. Predefined classes (target attribute

values): The categories to which

examples are to be assigned must

have been established beforehand

(supervised data).

c. Discrete classes: A case does or does

not belong to a particular class, and

there must be more cases than

classes.

d. Sufficient data: Usually hundreds or

even thousands of training cases.

Figure 1: An example of a simple decision

tree.

The problem has been addressed extensively

for relational data stored in tables. However,

relational data only represents a small

portion of today’s data. Indeed, XML is

increasingly popular as data representation,

especially for data published on the World

Wide Web and data exchanged between

organizations.

Therefore, we need to develop methods to

detect duplicate objects in nested XML data.

There are two types of data heterogeneity:

structural and lexical.

Structural heterogeneity occurs when the

fields of the tuples in the database are

structured differently in different databases.

For example, in one database, the customer

address might be recorded in one field

named, say, addr, while, in another database,

the same information might be stored in

multiple fields such as street, city, state, and

zip code.

 Lexical heterogeneity occurs when the

tuples have identically structured fields

across databases, but the data use different

representations to refer to the same real-

world object (e.g., Street Address = 44 W.

4th St. versus Street Address = 44 West

Fourth Street).

As numerous approaches exist both for

increasing efficiency and effectiveness, it is

essential to provide some common ground to

compare these algorithms with each other.

The proposed algorithms most often

improve either efficiency or effectiveness. In

the first case, the goal is to reduce the

number of pairwise comparisons, which is

quadratic in the number of elements if all

pairs are compared.

Many duplicate detection algorithms are

described in scientific papers only, and often

a 12 page publication cannot cover all

details and aspects of an approach. When it

comes to re-implementing an existing

method, the information provided in a paper

is often insufficient.

Freely available and simultaneously

interesting datasets for duplicate detection

are rare. Even more seldom are datasets with

1193

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

true duplicates already marked. As a

consequence, even if same or similar

datasets were used, the results expressed as

precision, recall and run time measure are

not comparable: Two approaches might not

agree in what is a correctly detected

duplicate and how many duplicates are in

fact hidden in the dataset.

To confront these problems, many

publications create their own data sets, inject

duplicates and then let their duplicate

detection algorithm find them. Often these

generators of data are not freely available

for legal reasons simple because the original

code is lost once the programmer leaves the

organization.

By applying different duplicate detection

approaches on the same data, comparing

efficiency or effectiveness of different

approaches is easy.

Duplicate elements are created s copies of

elements in the clean data, Duplicate

detection can be considered as batch

process, where all pairs of duplicates are

determined in single process or it can be

considered a search problem, i.e., given a

particular element , find its duplicates in a

given data set.

The latter is particularly important to

support during data input, so that users can

warned of a possibly existing entry for the

particular real-world object.

Numerous approaches both for relational

and xml data exist. Their goals are either on

improving the quality of the detected

duplicates or on saving computation time.

In particular for the first goal, the goodness

of the approach is usually evaluated based

on experimental studies. Although some

methods and data sets have gained

popularity it is still difficult to compare

different approaches or to assess the quality

of one own’s approach.

The goal our algorithm is to improve

efficiency without reducing effectiveness.

When concentrating on effectiveness, the

goal is to find duplicates more accurately.

Structure. This paper is organized as

follows: Section 3presents XML Duplicate

Detection. Section4 summarizes Conditional

Probabilities. Section 5.We discusses the

results and algorithm .Finally, in Section

6we conclude and present suggestions for

future work. This XML duplicate detection

is to develop effective, efficient, and scalable

solutions for XML duplicate detection.

3. XML DUPLICATE DETECTION:

Research on fuzzy duplicate detection has

mainly concentrated on efficiently and

effectively finding duplicate records in

relational data. Due to space limitations, we

only highlight a few solutions in this section.

We classify approaches into two areas:

domain dependent solutions, such as the

ones proposed in, assume a certain domain

and the help of human experts to calibrate

algorithms.

Domain dependent approaches have in

common that description selection and

structural heterogeneity is not considered

because the problems do not arise in

relational duplicate detection.

The work presented in detects duplicates in

hierarchically organized relations by

1194

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

considering data of tables related to the

object table through foreign keys. In this

context, instance heterogeneity has to be

considered but description selection and

schematic heterogeneity are still not an

issue.

There is work on identifying similar

hierarchical data and XML data. However,

most work does not consider the

effectiveness of the similarity join. Rather,

the authors concentrate on fast execution of

the algorithm.

The focus is on the efficient incorporation of

tree edit distance in a framework performing

approximate XML joins. The authors

present upper and lower bounds for the tree

edit distance, which are used as filters to

avoid expensive tree edit distance

computations. They further introduce a

sampling method to effectively reduce the

amount of data examined during the join

operation.

The only approach we are aware of that

considers recall and precision of XML

similarity joins. They present four different

strategies to define the similarity function

using the vector space model.

Knowing Object Descriptions is necessary

for duplicate detection, because they

represent the information that is used to

classify objects as duplicates or non-

duplicates. Ideally, an Object Descriptions

includes information that characterizes a

particular object, such as a book’s ISBN,

and does not vary depending on external

influence (e.g., who wrote the book’s

review).

Fig: 2 workflow diagram

4. CONDITIONAL PROBABILITIES

It needs to define the following four types of

conditional probabilities: Conditional

probability 1 (CP1): The probability of the

values of the nodes being duplicates, given

that each individual pair of values contains

duplicates.

1195

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

Intuitively,

1) If all attribute values are

duplicates, we consider the XML node

values as duplicates.

2) If none of the attribute values are

duplicates, we consider the XML node

values as non-duplicates;

3) If some of the attribute values are

duplicates, we determine that the probability

of the XML nodes being duplicates equals a

given value.

This value represents the importance of the

corresponding attribute a in determining if

the nodes are duplicates.

Conditional probability 2 (CP2): The

probability of the children nodes being

duplicates, given that each individual pair of

children is duplicates. Intuitively, it makes

sense to say that two nodes are duplicates

only if all of their child nodes are also

duplicates.

However, it may be the case that the XML

tree is incomplete, or contains erroneous

information. Thus, we relax this assumption

and state that the more child nodes in both

trees are duplicates, the higher the

probability that the parent nodes are

duplicates.

Conditional probability 3 (CP3): The

probability of two nodes being duplicates

given that their values and their children are

duplicates. Essentially, we consider the

nodes as duplicates if both their values and

their children are duplicates.

Conditional probability 4 (CP4): The

probability of a set of nodes of the same

type being duplicates given that each pair of

individual nodes in the sets is duplicates.

Similarity scores are calculated using the

probability values.

5. FUZZY MATCHING

Fuzzy set theory defines fuzzy operators

on fuzzy sets. Fuzzy logic needs to be able

to manipulate degrees of maybe, in addition

to true and false.”

This algorithm combination will result in

accurate duplicate detection than the other

methods.

The problem in applying this is that the

appropriate fuzzy operator may not be

known. For this reason, fuzzy logic usually

uses IF-THEN rules, or constructs that are

equivalent, such as fuzzy associative

matrices. Rules are usually expressed in the

form:

IF variable IS property THEN action

For example, a simple temperature regulator

that uses a fan might look like this:

IF temperature IS very cold THEN stop fan

IF temperature IS cold THEN turn down fan

IF temperature IS normal THEN maintain

level

IF temperature IS hot THEN speed up fan

There is no "ELSE" – all of the rules are

evaluated, because the temperature might be

"cold" and "normal" at the same time to

different degrees.

The AND, OR, and OT operators of boolean

logic exist in fuzzy logic, usually defined as

the minimum, maximum, and complement;

when they are defined this way, they are

called the Zadeh operators.

1196

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

So for the fuzzy variables x and y:

NOT x = (1 - truth(x))

x AND y = minimum(truth(x), truth(y))

x OR y = maximum(truth(x), truth(y))

There are also other operators, more

linguistic in nature, called hedges that can be

applied. These are generally adverbs such as

"very", or "somewhat", which modify the

meaning of a set.

Algorithm:

 Input as records, IR1, IR2,….IRn

 Target records for comparison, TRi1,

TRi2,….TRin, where i = 1,2,….,m,

where m is the number of records in

dataset

 Assume some attributes as important

for comparison, for eg., IR1, IR2,

IRn-1 &IRn as important attribute.

 For i = 1,2,….,m

a. Similarity score calculation, S1 =

PrDiff(IR1,TRi1), S2 =

PrDiff(IR2,TRi2) ……… Sn =

PrDiff(IRn,TRin)

b. Total similarity score (S) = S1 + S2

+ ……. + Sn

c. If S < threshold; Result as

Duplicates.

d. Fuzzy match, Calculate

S1(IR1,TRi1) AND S2(IR2,TRi2)

OR S3(IR3,TRi3) AND …. Sn-

2(IRn-2,TRin-2) OR Sn-1(IRn-

1,TRin-1) AND Sn(IRn-1,TRin-1)

e. If any Similarity score > 0, Result as

Not Duplicates.

Fig: 3 List of XML Files

 Fig: 4 Finding duplicates in XML Data

1197

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

6. CONCLUSION

Duplicate detection is defined as the

identification of different representations or

versions of a same real-world object, called

duplicates.

 Such duplicates are due to errors and

inconsistencies in the data, such as typos and

misspellings, missing information, or

outdated data. As a consequence, duplicates

are not exactly equal, which makes duplicate

detection a challenging task in data cleaning

and data integration processes.

Errors are spelling mistakes, inconsistent

conventions, etc. Hence, significant amount

of time and money are spent on data

cleaning, the task of detecting and

correcting errors in data. The problem of

detecting and eliminating duplicated data is

one of the major problems in the broad area

of data cleaning and data quality.

Many times, the same logical real world

entity may have multiple representations in

the data warehouse.

Such duplicated information can

significantly increase direct mailing costs

because several customers like Lisa may be

sent multiple catalogs. Moreover, such

duplicates can cause incorrect results in

analysis queries (say, the number of Super

Mart customers in Seattle), and erroneous

data mining models to be built.

Duplicate detection is hard because it is

caused by several types of errors like

typographical errors, and equivalence

errors—different (non-unique and

nonstandard) representations of the same

logical value. For instance, a user may enter

“WA, United States” or “Wash., USA” for

“WA, United States of America.”

Equivalence errors in product tables (“winxp

pro” for “windows XP Professional”) are

different from those encountered in

bibliographic tables (“VLDB” for “very

large databases”), etc. Also, it is important

to detect and clean equivalence errors

because an equivalence error may result in

several duplicate tuples.

Fuzzy matching process will give a

probability score to determine the accuracy

of the match. This matching will shows the

accurate result than Bayesian network.

While considering the problem of XML

duplicates detection under the aspects of

effectiveness, efficiency and scalability, we

believe that our solutions will significantly

contribute to solving XML duplicate

detection for a wide range of applications.

1198

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

7. REFERENCES

[1] E. Rahm and H.H. Do, “Data Cleaning:

Problems and Current Approaches,” IEEE

Data Eng. Bull., vol. 23, no. 4, pp. 3-13,

Dec. 2000.

[2] F. Naumann and M. Herschel, An

Introduction to Duplicate Detection. Morgan

and Claypool, 2010.

[3] R. Ananthakrishna, S. Chaudhuri, and V.

Ganti, “Eliminating Fuzzy Duplicates in

Data Warehouses,” Proc. Conf. Very Large

Databases (VLDB), pp. 586-597, 2002.

[4] D.V. Kalashnikov and S. Mehrotra,

“Domain-Independent Data Cleaning via

Analysis of Entity-Relationship

Graph.”ACM Trans. Database Systems, vol.

31, no. 2, pp. 716-767, 2006.

[5] M. Weis and F. Naumann, “Dogmatix

Tracks Down Duplicates in XML,” Proc.

ACM SIGMOD Conf. Management of Data,

pp. 431-442, 2005.

[6] A.M. Kade and C.A. Heuser, “Matching

XML Documents in Highly Dynamic

Applications,” Proc. ACM Symp. Document

Eng. (DocEng), pp. 191-198, 2008.

[7]S.Puhlmann, M.Weis, and F.

Naumann. Xml duplicate detection using

sorted neigborhoods. International

Conference on Extending Database

Technology (EDBT), 2006

[8] “A Duplicate Detection Benchmark for

XML (and Relational) Data.” Melanie Weis

and Felix Naumann and FranziskaBrosy,

SIGMOD Workshop on Information Quality

in Information Systems (IQIS), 2006

[9] R. Ananthakrishna, S. Chaudhuri, and V.

Ganti. Eliminating fuzzy duplicates in data

warehouses. In International Conference on

Very Large Databases (VLDB), Hong Kong,

China, 2002

[10] E. Cesario, F. Folino, G. Manco, and L.

Pontieri.An incremental clustering scheme

for duplicate detection in large databases. In

Proceedings of the International Database

Engineering Application Symposium

(IDEAS), pages 89–95, Montreal, Canada,

2005

[11]“xml duplicate detection using sorted

neighborhoods”Melanie Weis, Felix

Naumann and FranziskaBrosy,SIGMOD

2006 Workshop on Information Quality for

Information Systems (IQIS), Chicago, IL,

2006.

[12]“Relationship-Based Duplicate

Detection” ,Melanie Weis and Felix

Naumann,Technical Report No. HU-IB-206,

July 2006.

1199

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90467

Vol. 2 Issue 9, September - 2013

