
 Decoding in Statistical Machine Translation Using

Moses And Cygwin on Windows

 Ms. Pragati Vaidya

M.Tech Student, Banasthali Vidyapith, Banasthali, Jaipur

Abstract— Decoding is an integral part in SMT most essential

components in decoding are Language modeling and reordering.

The Moses toolkit generally used for decoding, in which SRILM,

and GIZA++ are the automatic tools, which is used for

probabilistic language modeling and reordering respectively. The

Aim of this paper is to explore the SMT using the Moses toolkit

for English-Hindi language pair. In Linux environment these

tools are very habitual and easy to use but some researchers

conducted their research on windows. Whenever installed these

tools in both environments, then measure the result and the time

difference. In this research paper we discuss how we used Moses,

Srilm and Giza++ in windows and their results.

Keywords— Decoder, Language model, Alignment model,

Moses, Srilm, Giza++.

I. INTRODUCTION

 the main problem arise in SMT system that is selecting the

best translated target sentences which efficiently search for the

source sentence that is completely satisfied. The words are

chosen which has extreme possibility of being a translated

translation. According to Bayes rule

Pr(S/T) = argmax P (T) P(S/T)

Where S denote the source language and T denote the target

language. Lots of tools which had been developed for

decoding in Statistical Machine Translation. Some of the tools

are given below:

1. Moses

2. Marie Decoder

3. Joshua Decoder

4. Phramer Decoder

5. GREAT Decoder

Moses is a collection of tools in SMT for decoding. A decoder

is a single C++ application in which a trained Machine

translation system translates the source sentences into its

equivalent target sentence. In this research paper we consider

English-Hindi language pair. Language modelling is a task of

estimating the probability of each unit text, phrases, sentences,

paragraphs. Reordering is a Natural language Processing task

to identify the correct translation of each other based

information found on parallel text.

SRILM and GIZA++ are the automatic tools, which is

respectively used for probabilistic language modelling, and

reordering.

A. Hardware Requirement

The hardware requirements for the SMT are:

High-end server with the minimum 2 GB RAM

Windows

II. MOSES

Moses is an open source project, Licensed under the LGPL.[1]

Moses is an collection of tools in SMT, which is written in

Perl with some in C++. It takes the raw data or parallel or

monolingual, bilingual data to perform the translation process.

In 2005 Hieu Hoang student of Philipp Koehn starts Moses as

successor to Pharoah.

The job of the Moses decoder is to find the highest scoring

sentence in the target language (according to the translation

model) corresponding to a given source sentence. [1]

III. INSTALLATION ON WINDOWS

The elementary resolution of this paper is to demonstrate the

working of Moses, Giza++, and SRILM in windows. For this

we have to first install Moses, Giza++, and SRILM in

windows. Cygwin is used for running Moses, Giza++, and

SRILM in windows. Cygwin is a freeware software, It consist

of two parts A Dynamic Library DLL (Cygwin1.dll) which

acts as a Linux API emulation layer Providing substantial

Linux API functionality and A collection of tools which

provide Linux like environment, and it also deliver some

software tools which is set to Users to any latest version of

MS-Windows for x86 CPUs (NT/2000/XP/Vista/7/8).

3.1 Installation of Cygwin:

 Download the software of cygwin go to this link

www.cygwin.com/setup.exe, (~250 Kbytes). Then double

click to install the Cygwin on your computer. To install the

Cygwin It is necessary to install all binaries (.bin) files

following packages:

 make

 g++ (currently 4.3.4)

 autoconf

 automake

 libtool

 boost

 libboost (newer than 1.31.0)

 flip (optional, but useful)

736

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20458

Some of these packages are automatically installed from the

internet but some of these packages are dependent and request

you to install or not. These additional packages are frequently

essential for cygwin, so just accept the defaults. Now run

Cygwin for the first time, So Select your home directory

(/home/your username/) is created.

3.2 Installation of Moses:

 For the compilation of Moses, Moses uses bjam

(boost build system). For the installation of Moses basic

models are needed: such as Language Model and Alignment

Model with the help of these models we effortlessly decode

the sentences from one language to corresponding to another.

cd ~/mosesdecoder

./bjam –help

3.2.1 Alignment Model:

 Alignment (Reordering) is a Natural language

Processing task to detect the correct translation of each other

based statistics found on parallel text. Alignment is dominant

approach for decoding and accuracy of the translated sentence

is depending on the word alignment. Find the almost certainly

translations of an SL word, irrespective of position.

Several tools that had been developed for automatic alignment

some of these are given below:
1. Giza++
2. Natura Alignment Tools (NATools)

3. The Berkeley Word Aligner

4. UNL aligner

5. RandLM

6. Geometric Mapping and Alignment (GMA)

There are many functions of alignment in SMT

 Computing the length of the source language

sentences according to the length of the target

language sentence.

 Determine the position in target sentence alignment

aligned to the first word of source language sentence.

3.2.1.1 Giza++:

 Giza++ is a part of statistical machine translation

toolkit (http://www.clsp.jhu.edu/ws99/projects/mt/toolkit/)

which is used to train the IBM Model 1 to Model 5 (Brown et

al., 1993) and use the Hidden Markov Model (HMM) (Och et

al., 2003)[2] and uses these models to compute Viterbi

Alignments for statistical machine translation. Giza++ is an

implementation of IBM model and it treats word alignment as

a hidden process. Giza++ is a tool which is developed by

Franz Josef Och and is an extension of the program GIZA

which was developed by the Statistical Machine Translation

team during the summer workshop in 1999 at the Center for

Language and Speech Processing at Johns-Hopkins University

(CLSP/JHU). Giza++ is an extension of Giza++.

3.2.1.1.1 Features of Giza++ not in Giza:

 Improved perplexity calculation for models IBM-1,

IBM-2 and HMM (the parameter of the Poisson-

distribution of the sentence lengths is computed

automatically from the used training corpus)

 Implementation of a variant of the IBM-3 and IBM-4

(-deficient Distortion Model 1) models which allow

the training of

o Smoothing for fertility, distortion/alignment

parameters

o Significant more efficient training of the

fertility models

 Implements IBM-5: dependency on word classes,

smoothing.

 Implements HMM alignment model.

 Correct implementation of pegging, implemented a

series of heuristics in order to make pegging

sufficiently efficient

3.2.1.1.2 Packages used in Giza++

 GIZA++ package

o Developed by Franz Och

o www-i6.informatik.rwth-

aachen.de/Colleagues/Och

 mkcls package

o Developed by Franz Och

o www.-i6.informatik.rwth-

aachen.de/Colleagues/och

3.2.1.2 Installation of Giza++:

Download the latest version of Giza++ from internet and as

well as extract these file from cygwin using commands

wget http://giza-

pp.googlecode.com/files/giza-pp-

v1.0.7.tar.gz

 tar xzvf giza-pp-v1.0.7.tar.gz

 cd giza-pp

 make

3.2.1.2.1 Compilation:

To compile GIZA++:

 1. The GNU compiler 2.96 is needed.

 2. Two changes need to be made to the Makefile:

 Set the path where GIZA++ will be installed. For

example:

 NSTALLDIR = /home/bthomson/GIZA++

 Set the location of the gnu compiler.

o For example: CC = g++

 3. Type 'make' to make the executable program

737

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20458

To compile mkcls:

 1. Three changes need to be made to the Makefile:

 Set the path where mkcls will be installed. For

example: INSTALLDIR = /home/bthomson/mkcls

 Set the shell that you are using.

o For example: SHELL = bash

 Set the location of the gnu compiler.

o For example: CC = g++

 2. Type 'make' to make the executable program.

To compile plain2snt.cc:

./g++ -o plain2snt.out plain2snt.cpp

Giza++ Install by issuing command

$(MAKE) -C GIZA++-v2 mkcls-v2

This should create the binaries

~/giza-pp/GIZA++-v2/GIZA++,

~/giza-pp/mkcls-v2/mkcls

~/giza-pp/GIZA++-v2/snt2cooc.out

These required to be copied to ~/bin/ directory for easy access

and Moses can find them, some other package is also required

for lowercasing and tokenizing the sentences. For this

download the scripts.tgz from

http://www.statmt.org/wmt07/baseline.html

And extract it in a folder name scripts. These scripts include:

 Tokenizer scripts/tokenizer.perl

 Lowercaser scripts/lowercase.per

3.2.1.2.2 Pre-processing:

The performance of the statistical machine translation is

directly depends upon the quality of the corpus. Pre-

processing of corpus we have to perform tokenization and

cleaning are the essential parts to build the highly accurate

corpus. Tokenization means split the sentence in chunks and

cleaning means to remove the long sentences, this can cause

problems with the training process and obviously mis-aligned

sentences.

Tokenizer can be run as follows:

~/mosesdecoder/scripts/Tokenizer/tokenizer.perl -l hi \

< ~/corpus/training/en-hi.hi \

> ~/corpus/en-hi.tok.hi

~/mosesdecoder/scripts/Tokenizer/tokenizer.perl -l en \

< ~/corpus/training/ en-hi.en\

> ~/corpus/ en-hi.tok.fr

Truecasing run as follows:

~/mosesdecoder/scripts/recaser/truecase.perl \

--model ~/corpus/truecase-model.hi \

< ~/corpus/en-hi.tok.hi \

> ~/corpus/en-hi.true.hi

~/mosesdecoder/scripts/recaser/truecase.perl \

--model ~/corpus/truecase-model.en \

< ~/corpus/ en-hi.tok.en \

> ~/corpus/ en-hi.true.en

Cleaner can be run as follows:

Finally we clean, limiting the length of sentences, 50

~/mosesdecoder/scripts/training/clean-corpus-n.perl \

~/corpus/en-hi.true en hi \

~/corpus/en-hi.clean 1 50

Training Giza++ for English-Hindi word alignment

1. To compile a bilingual corpus which is sentence aligned,

create two files from cygwin For example:

cat > english

cat > hindi

2. Run plain2snt.out which is located in the GIZA++

package. The first argument is the source language and

the second argument is the target language.

 ./plain2snt.out english hindi

Three output files will be created:

 english.vcb: Contains each word from english corpus

and corresponding frequency count and a unique ID

 hindi.vcb: Contains each word from hindi corpus and

corresponding frequency count and a unique id.

 englishhindi.snt: Each sentence from parallel hindi

and english corpus translated into a unique number

for each word.

 Copy these files in mkcls-v2.

3. Run mkcls to create word classes. mkcls is a separate

package.

 ./_mkcls -penglish -Venglish.vcb.classes

 ./_mkcls -phindi -Vhindi.vcb.classes

 Four output files will be created:

 english.vcb.classes

 english.vcb.classes.cats

 hindi.vcb.classes

 hindi.vcb.classes.cats

.vcb.classes file: Contains an alphabetical list of all words and

corresponding frequency count.

.vcb.classes.cats file: Contains a list of frequencies and a set of

words for that corresponding frequency

3.2.1.3 Run Giza++:

To generate the alignment between english to hindi sentences

Command:

./GIZA++ -T english.vcb -S hindi.vcb -C englishhindi.snt

After running this command various file created, main word

alignment is in actual.ti.final.

1. Translation table (*.t*.*)

 The format of the translation table is

Source_id target_id P(target_id|source_id)

2. Fertility table (*.n3.*)

738

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20458

 source token id p0 p1 p2 . . . pn

 Where p0 is the probability that the source token has

zero fertility; p1, fertility one, ..,and n is the

maximum possible fertility as defined in the program.

3. Probability of inserting a null after a source word (*.p0*)

 Contain only one line with the probability of not

inserting a NULL token.

4. Alignment tables (*.a*.*)

 The format of each line is as follows:

 i j l m P(i | j, l, m)

 j = position of target sentence

 i = position of source sentence

 l = length of the source sentence

 m = length of the target sentence

 p(i / j, l, m) = is the probability that a source word in

position i is moved to position j in a pair of sentences

of length l and m

5. Distortion table (*.d3.*)

 The format is similar to the alignment tables but the

position of i and j are switched:

 j i l m P(j | i, l, m)

6. Distortion table for IBM-4 (*.d4.*)

7. Distortion table for IBM-5 (*.d5.*)

8. Alignment probability table for HMM alignment mode (

.A3.)

9. Perplexity File (*.perp)

10. Revised vocabulary files (*.src.vcb, *.trg.vcb)

11. Final parameter file: (*.gizacfg)

12. Final result: actual.ti.final

file contains word alignments from the English and Hindi

corpora

 words alignments are the actual words not their

unique id’s

 the probability of that is alignment is given after each

set of words

For word alignment we used English-Hindi parallel corpus

which contain 1500 sentences. After running these sentences

the output is nearly same in both environment and the

accuracy of output is nearly 50% to 60%.Giza++ allows one to

many alignment that means one token from the source token is

aligned to many tokens from the target sentence. But it’s not

allow many to one word alignment that means multiple tokens

from the source sentence is aligned to one token from the

target sentence.

3.2.2 Language Model:

Language modelling is a task of estimating the probability of

each unit text, phrases, sentences, paragraphs. LM is input to

any decoder system and it also one of the most time

consuming step in decoder.

P (e) = P(w1w2…wn)

 =P(w1)P(w2/w1)P(w3/w1w2)

 =P(wn/w1w2w3…..wn-1)

Several tools that had been developed for LM for Moses some

of these are listed below:

1. SRILM

2. IRSTLM

3. KenLM

In this research paper we take SRILM to run Moses decoder.

3.2.2.1 SRILM:

SRILM support Moses SMT system and Soshua hierarchical

phrase based SMT system. SRILM 1.5.6 is the current and

stable version.

http://www.speech.sri.com/projects/srilm/download.html

With this link we download the latest version of SRILM after

registration.

3.2.2.2 Installation of SRILM:

 Download the Latest version of SRILM Toolkit and then

install the SRILM into the Cygwin environment.

1. Create the srilm directory if it doesn’t exist

2. Extract the srilm.tgz (src files) or “srilm.zip”

(executable Files)

Commands in cygwin

 $ cd /

 $ mkdir srilm //create the “srilm” directory

 $cd srilm

 $ tar zxvf srilm.tgz //extract srilm.tgz

3. Edit “c:\cygwin\home\yourname\.bashrc”

 Add the following several lines into this file

 export SRILM=/srilm

 export MACHINE_TYPE=cygwin

 export PATH=$PATH:$pwd:$SRILM/bin/cygwin

 export MANPATH=$MANPATH:$SRILM/man

4. Restart “Cygwin”

5. Run cygwin

 Switch current directory to “/srilm”

 Modify “/srilm/Makefile”

 Add a line: “SRILM = /srilm” into this file

 Execute the following commands

$ make World

$ make all

$ make cleanest

3.2.2.3 Run SRILM:

To Generating the N-gram Count File
Command:

 vi egg.count

 ngram-count –vocab lex.txt –text eg.train –order 3 –

write egg.count – unk

Then Parameter Settings

 -vocab: lexicon file name

 -text: training corpus name

739

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20458

 -order: n-gram count

 -write: output countfile name

 -unk: mark OOV as <unk>

IV. RUN MOSES:

Command:

~/mosesdecoder/bin/moses-e ~/working/mert-work/moses.ini

After compiling Moses it internally run Giza++ and then

SRILM and then by using the above command we run Moses

on cygwin and then it gives the corresponding result.

V. EXPERIMENTAL RESULTS

For decoding process we use English-Hindi parallel corpora

which contain 1500 sentences as already discussed above.

After running theses sentences in Moses, the output is nearly

same to both in Linux and Cygwin but when we install Moses

toolkit, Giza++ and SRILM sequentially in Linux environment

then decoder takes much more time to decode the source

sentence, and installation time compared with the cygwin.

Time measurement is also a very commanding part to

installation and running of any tools. We install Moses

decoder, Giza++, SRILM, twice, and in both times, we

measure time variation.

To speed up the decoding process we can binaries the phrase-

table and lexicalized reordering models.[1]

Time is precious, while we installed these tool then we analyse

time variation, the above graph indicate the time variation

while we install Moses, Giza++, and SRILM sequentially,

Blue Line indicate the time while we install Moses, Giza++,

and SRILM sequentially in Linux environment and red line

indicate the time while installed these tools in Cygwin

environment.

VI. CONCLUSION:

We have presented the complete installation and decoding

process of Moses decoder, Giza++ (Word Alignment) and

SRILM (Language Modelling), on windows, in which we only

consider English-Hindi language pair, but we can also use for

multilingual language pair. The contribution of this

experiment is to give a way to run Moses, Giza++ and SRILM

under the windows environment and decode the sentences in a

little while.

 REFERENCES:

[1] “Statistical Machine Translation” System User manual and Code Guide
{online].Available:

 http://www.statmt.org/moses/manual/manual.pdf/

[2] “Moses Statistical Machine Translation System” [Online]. Available at:
 http://www.statmt.org/moses/?n=Moses.Baseline

[3] Giza++software [Online]. Available: http://code.google.com/p/giza-

pp/downloads/list
[4] SRILM software [Online]. Available:

 http://www.speech.sri.com/projects/srilm/download.html

[5] Ye-Yi Wang and Alex Waibel, “Decoding Algorithm in Statistical
Machine Translation”.

 Sequential Installation of Moses, Giza++, SRILM

740

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20458

