
Deep Reinforcement Learning Framework for

Navigation in Autonomous Driving

Gopika Gopinath T G
M.Tech Scholar, Computer Science and Engineering

LBS Institute of Technology for Women

Trivandrum, India

Anitha Kumari S
Associate Professor, Computer Science and Engineering

LBS Institute of Technology for Women

Trivandrum, India

Abstract— Reinforcement Learning resides in the scope of

Machine Learning which allows software agents and machine to

automatically manipulate the behavior of a specific environment

and perform accordingly. The success of Atari games has

proved the influence of RL in gaming environments. From the

inspiration of the success in RL induced games, the idea of a car

that runs automatically has become the goal of Reinforcement

Learning. The purpose of this paper is to provide idea of how

Reinforcement Learning can be implemented for the purpose of

navigation in autonomous car in game environment that is the

proposed work here. The classification of the images which are

the primary dataset is done by Convolutional Neural Network

(CNN). The purpose of this work is to implement navigation in

autonomous car using MXNet, an open source reinforcement

learning framework which is primarily used to train and deploy

deep neural networks. In assistance with the Beta simulator

made by the open source driving simulator called UDACITY is

used for the training of the autonomous vehicle agent in the

simulator environment. The agent here is a car that navigates

without driver intervention and proceeds to move autonomously

by learning thoroughly about the environment surroundings

Keywords— Beta Simulator, Convolutional Neural Network,

MXNet, Reinforcement Learning, Udacity Framework

Introduction

I. INTRODUCTION

Driving a vehicle requires skill, expertise and presence of

mind from a human driver. The driving scenario is a

complicated challenge when it comes to incorporate Artificial

Intelligence in automatic driving schemes. In order to bring

human level talent for machine to drive vehicle, then the

combination of Reinforcement Learning (RL) and Deep

Learning (DL) is considered as the best approach. This

combination has already proved the success in Atari games.

RL is responsible for planning part where as DL is

responsible for learning part. The information needed for

manipulation is collected form images of high dimension but

the information needed for autonomous driving requires only

low dimension images. The relevant information is only

extracted and all other non-relevant parts are neglected. The

accuracy and efficiency of the system is thus improved. The

main parameters like memory requirements and

computational complexities are also reduced. This work

portrays an end to end autonomous driving model that takes

images as input and outputs driving actions. The RL model

works in such a way that it learns from making mistakes i.e. it

learn from its own involvement by taking actions. This

particular scenario is handled by reward signal or in other

words based on these reward signal the driving agent can take

appropriate decision like whether to move (action) or where

to drive (plan). This is difficult to implement on a real car as

it requires time and huge cost thus this current RL research is

done in game simulation environment. Beta simulator is used

to illustrate driving scenarios in this work. The car is able to

navigate with sharp turns and it adjusts the speed in the

curves and humps which is illustrated by RL. This enacts

how self-driving is implemented using Behavioral Cloning.

The whole process include Convolutional Neural Network,

for feature extraction and continuous regression for getting

steering angle.

II. RELATED WORK

Artificial Intelligence based autonomous vehicles have

already explored the existence in different levels of

autonomous driving scenario. Following are the related

projects in autonomous driving done by various simulators.

A. ALVINN (Autonomous Land Vehicle in aNeural Network

ALVINN [1] was developed by neural network which control

driving by the use of images. Input layer consists of two

retinas and feedback unit in which every layer in the input is

connected to 29 hidden layer unit. It is divided into 2 groups

each with 46 units such that first 45 units demonstrates the

curvature of the path through which the vehicle navigate.

Input image is taken from the camera and the output is the

guidance for the vehicle to travel. Simulated road images are

taken and thus training is done. The final output is a feedback

unit which check whether the road is good to travel i.e. it

check whether the condition of the road is cloudy or bright.

Several tests were conducted in order to check the accuracy

and effectiveness and have succeeded in the Carnegie

Mellon autonomous navigation tests vehicle. It is technically

proved that the network have followed real on road

conditions.

B. TORCS (The Open Race Car Simulator)

TORCS [2] is an open source driving simulator proposed by

Bernhard Wymann et.al and is used for autonomous driving

from real generalized images. It is a modular multi-agent

simulator for cars and is highly portable. In this simulator the

agent are loaded as external modules in the framework. This

agents are developed independently which satisfies the basic

API requirements of the robot code. Robots are designed in

such a way that it has the ability to collect and process the

information about the geometry and surface of the path. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060734
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1461

www.ijert.org
www.ijert.org
www.ijert.org

information regarding the racing status, distance and position

of robot from the edge of the track and position with respect

to other cars are given by the API. The purpose of this work

was to provide an API which is stable enough to avoid

distraction for many other users.

C. The DARPA AutonomousVehicle

This project is based on off-road robot that proceeds to move

by avoiding obstacles on a terrain from visual output [4].

Human driver trains the system under real constrains. The

network is built with 6 convolutional network. Ahmad El

Sallab et.al introduced a robot car with AI having tasks like

recognition, prediction and planning [3]. Recognition is done

so that surrounding environment can be identified such as

pedestrian, traffic sign detection etc. prediction is used to

predict the states. Past information is needed to predict the

subsequent states. Recurrent Neural Network (RNN) and

Long Short Term Memory (LSTM) are used to end to end

labelling process, in planning part recognition and prediction

parts are incorporated to plan the subsequent stages of driving

action that enables the steering of the vehicle. In order to

achieve human level control in the autonomous vehicle,

combination of RL and DL is designed.

D. FODS & DeepGTAV Framework

Wesley Hsieh introduced an open source simulator called

First Order Driving Simulator (FODS) [5]. It is designed for

data collection purpose and bench marking performance for

automatic driving experience. DeepGTAV [11] is another

framework which communicates with Grand Theft Auto

instance which is a popular 3D open source sandbox game

with driving component. Client-server interface in python is

used for communication. Realistic graphics is used for

environment and can include other cars too. The environment

is built mainly for gaming purpose rather than real time

driving experiments.

III. REINFORCEMENT LEARNING

In autonomous driving the vehicle should reach the

destination safely. In order to achieve that goal motion

planners of the vehicles must understand the environment.

Understanding the environment means understanding the

state of vehicle, interaction with obstacles, traffic signals etc.

The mapping from current space to intended region where the

vehicle is supposed to move is done by the motion planner.

The mapping scenarios and its regarding approaches [7] [8]

were discussed in the work done by Haoyang Fan et.al and

Shai et.al. There exists several approaches for mapping

systems. Reinforcement learning is one among the approach

which is done via reward function. By maximising the value

of reward function driving actions can be done. The pre-

stated cost/reward functions with policies are derived by the

motion planners.

Following are the steps in RL using reward function:

• Input: It is the initial state of the model in which it is

about to start

• Output: It is the solution of the problem

• Training: This is based on the input as the model

returns the state and user will decide to reward the

model based on its output or not.

• The model continues to learn.

• On the basis of the value of the reward best solution

is made provided the value of the reward should

be maximum.

IV. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks also known as CNNs, also

known as ConvNets is one of the main stream in neural

networks. CNNs are widely used in the areas such as Image

recognition and classification, object detection and face

recognition. CNNs takes input as images but the computer

recognizes it as array of pixels and process it and classify as

different categories. HxWxD is the image resolution which is

Height, Width and Dimension respectively. Each input image

that is taken at the time of training mode is fed to the CNN

and it will pass through a stream of layers in CNN with

kernal (Filters), pooling layers and fully connected layers.

Classification techniques such as Softmax Function is used to

classify an object.

Fig 1: Neural network with convolutional layers

Following are the brief description of the steps in CNN:

• Feed input image to the convolutional layer.

• Determine the parameters needed and apply filters

with strides also apply padding if needed.

• Convolution is applied to the image with ReLU

activation to the matrix.

• Pooling is done to reduce dimensionality size.

• Convolutional layers are added until perfection is

obtained

• Feed the output into fully connected (FC) layer after

the output is flattened.

• Classify images and output the class using activation

function.

The convolutional layer extracts the features when the input

image is fed to it. This layers helps to learn about the features

of the image and keeps the relationship between the pixels by

using image matrix and kernel (filter). When the filter does

not fit the image perfectly the alternate option is either do

padding, i.e.; zeroes are padded to the picture thus it fits to the

filter perfectly. This is the perfect way of padding and it is

called valid padding. In order to introduce non-linearity in our

ConvNets Rectified Linear Unit (ReLU) is used and thus

CNN would only learn non-negative linear values. Another

layer present in CNN is the pooling layer that is used to

reduce the number of parameters when the image is large. In

other words this layer reduces the dimensionality of each map

but preserves the important features and information. Finally

the Fully Connected layer called as FC layer is used to flatten

the matrix into vector.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060734
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1462

www.ijert.org
www.ijert.org
www.ijert.org

V. CONVOLUTIONAL NEURAL NETWORK

A.Data Collection

The training data is collected by driving the car in the training

track inside beta simulator built using Udacity. The car in the

simulator is driven using the keyboard keys. Depending on

the driving that is done using the keyboard keys, it is copied

to autonomous mode. In the training track as the car proceeds

to move images are taken at each instance using the virtual

camera built on left, right and center of the car. These image

data are recorded using the record button. Later the images

are saved in a specified folder. The images represents the

training dataset.

B. Training Process

The label of the images taken are considered to be the

steering angle of the vehicle at particular instance. The

training images are then fed to convolutional neural network

in order to allow it to learn how to navigate the car

autonomously same as that of the behavior of manual driver.

The most important variable is the steering angle that learns

to adjust the car at any given instance and thus eventually

learn to adjust appropriate degree based on the circumstances

that it find on any particular instance. By the behavior of the

user the car learns to drive and navigate autonomously thus

the name Behavioral Cloning and it is the technique that

plays a vital role in real self-driving too.

VI. PROPOSED WORK

The model includes RELU layers to introduce non linearity

and the data is normalized. The model is trained and validated

on different data sets. The model is tested by running via the

simulator and ensure that the vehicle can stay and move on

the track perfectly. The design of the car includes 3 virtual

cameras which is used to take input images for training, along

with that steering wheel angle is recorded and stored at the

time of manual training mode and are considered as the

desired steering command. Images are then fed into the CNN.

The proposed steering command is calculated form the output

of the CNN. This steering command is then compared with

the desired steering command and the error is calculated and

weights are adjusted via back propagation so that the output

received finally will be closer to the desired output. Finally it

generates the steering command for perfect driving. After that

it is supposed to run the car in autonomous mode of the

simulator and the car will start driving.

Fig 2: Design of the Architecture

A.Data Collection

After the training of the autonomous model, for testing the

simulator is considered to be as the client-server model. The

server is the simulator itself and the client is the python

program. This client server model is considered as the

feedback loop i.e. client is piping in the steering angle and

throttle to the server and the server is piping back the images

from the car and steering angle so that it can train it right.

Fig 3: Feedback Loop by Client Server model

VII. RESULT

The navigation of autonomous car in beta simulator made by

Udacity has successfully ran on the track by adjusting speed

and acceleration when detecting curves and humps. The

training is done with the images taken in the training mode

and it is fed to the Convolutional Neural Network for

classifying the training data set consisting of the images taken

by the virtual camera built on the car. Reinforcement learning

makes the vehicle to learn about the environment where the

vehicle is supposed to navigate and thus it understand to

move on the track without failure.

VIII. CONCLUSION

This paper describes the implementation of navigation in

autonomous car with the help of Deep Reinforcement

Learning framework, Convolutional Neural Network and the

driving environment called Beta Simulator made by Udacity.

The training approach for the entire process along with

operation on convolutional neural network is also discussed.

A survey on recent advances in deep reinforcement learning

and also framework for end to end autonomous driving using

this technology is discussed in this paper. Along with

different frameworks, a comparison and differences between

the autonomous driving simulators induced by reinforcement

learning are also discussed.

REFERENCES
[1] Dean A.Pomerleau, ALVINN: An Autonomous Land Vehicle in a

Neural Network, Pomerleau Carnegie Mellon University Pittsburgh,

2015.
[2] Ahmed, M. S., Mohammed, A. S., & Agusiobo, O. B. (2006).

Development of a Single Phase Automatic Change Over Switch. AU

Journal of Technicial Report, 10(1), 68–74.
[3] Ahmad El Sallab1, Mohammed Abdou1, Etienne Perot, Senthil

Yogamani, Deep Reinforcement Learning Framework Autonomous

Driving. 8 April2017.
[4] Lu Chi, and Yadong Mu, Member, IEEE, Deep Steering: Learning

End-to-End Driving Model from spatial and Temporal Visual Cues,

Aug 2017

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060734
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1463

www.ijert.org
www.ijert.org
www.ijert.org

[5] Wesley Hsieh Electrical Engineering and Computer Sciences

University Of California at Berkley, ley, First Order Driving

Simulator technical Report May 2017

[6] Marcelo J.V.AVCP: Autonomous Vehicle Coordination Protocol,
December 2017 M. Young, The Technical Writer’s Handbook. Mill

Valley, CA: University Science, 1989.

[7] Shai Shalev-Shwartz Shaked Shammah Amnon Shashua Safe, Multi-
Agent Reinforcement Learning for Autonomous Driving, Oct, 2016

[8] Haoyang Fan1, Zhongpu Xia2, Changchun Liu2, Yaqin Chen2 and Q1

Kong, An Auto tuning framework for Autonomous Vehicles, Aug 2014

[9] Manon Legrand, Deep Reinforcement Learning for Autonomous

Vehicle among Human Drive Faculty of Science Dept, of Science

[10] Leslie Pack Kaelbling, Michael L. Littman, eComputer Science Dept.

Box 1910, Brown University Providence, USA Reinforcement
Learning: A Survey

[11] Conrado Mateu Gisbert, Novel synthetic environment to Design

validate future onboard interfaces for Self-driving Vehicles, Project in
CS ICT OCT 2017.

[12] Robert Chuchro, Deepak GuptaGame, Playing with Deep Q- Learning

Q using OpenAIGym cs23 In.standford.edu/2017

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS060734
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 06, June-2019

1464

www.ijert.org
www.ijert.org
www.ijert.org

