

Deployment of Neural Network on Multi-Core Architecture

Jigisha Gandhi
1

Assistant Professor, Information Technology

Department
Sarvajanik College of Engineering and

Technology, Surat, India

Shitanshu Parekh
2

Lecturer, MCA Department,

Sarvajanik College of Engineering and
Technology, Surat, India

Abstract

Traditional computational methods are highly

structured and linear, properties which they drive

from the digital nature of computers. These methods

are highly effective at solving certain classes of

problems: physics simulations, mathematical models,

or the analysis of proteins. Classical computational

methods are not effective at solving other problems,

such as pattern recognition, adaptive learning, and

spam filtering. Some biological systems, however,

excel at the latter class of problems. For example, the

human mind can quickly identify a face, even if it has

changed heavily from the last time it was seen, while

traditional computational systems are unable to

accomplish facial recognition efficiently and

accurately even if minor facial or environmental

alterations occur. Attempts to create facsimiles of

these biological systems electronically have resulted

in the creation of artificial neural networks.

Similar to theirbiological counterparts, artificial

neural networks are massively parallel systems

capable of learning and making generalizations. The

inherent parallelism in the network allows for a

distributed software implementation of the artificial

neural network, causing the network to learn and

operate in parallel, theoretically resulting in a

performance improvement. This project will address

a parallel neural network implementation, the

network’s relative strengths and weaknesses, and

conclude by comparing the performance using

different Intel tools.

1. Introduction
In recent years there has been a great rising of

interest in a method of computing that was originally

investigated in the 1940s. This method is modelled

generally after bio logical nervous system and is

called neural networks (NN), art ificial neural

networks (ANN), parallel distributed processing

(PDP) and perhaps others.

A parallel implementation of neural computations is a

possible solution for memory and time consuming

neural network applications (for instance real-time

data processing). The two main ideas are to distribute

the patterns that are used for train ing or to distribute

the computation performed by the neural network.

Pattern partitioning schemes require large pattern

sets. Network partitioning schemes require large

neural networks. Due mostly to their learn ing

capability, artificial neural networks are increasingly

recognized in academic and engineering communities

as powerful tools for complex problem solving tasks.

Unfortunately, their use in time-crit ical applicat ions

often demands high performance, and therefore high

cost hardware systems.

Obtaining optimal solution for engineering design

problem is often expensive because the process

typically requires numerous iteration involving

analysis and optimization programs. Many

researchers have shown that optimum solution can be

obtained in less time by simulat ing a slow, expensive

analysis with a fast inexpensive Artificial Neural

Network from a process perspective. And on a

hardware point of view this has led to two major

directions – the accelerations of execution speed of

microprocessor and the parallel application of more

than one processor to the problem solution. The

major reason of selecting ANN for parallel

programming is its own basic parallel topology,

which is easily viable to parallel processing. The

proposed approach explores the parallelis m in ANN

on Decomposition of network, weight initialization,

instance presentation, calculation of activation in a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

MC (Multi-Core) environment for better

performance.

Neural computation means organizing processing

into a number of processing elements that are

massively interconnected and that exchange

signals. Processing within elements usually

involves adding weighted input values, applying a

(non-) linear function to the input sum, and

forwarding the result to other elements. Since the

basic principle of neurocomputation is learning by

example, such processing must be repeated again

and again, with weights being changed until a

network learns the problem. As matrix-vector

operations are at the core of many neuroalgorithms,

processing is often organized in such a way as to

ensure their efficient implementation.

In this research we have developed some of the

neural network models with the help of OpenMP

and C++ language. The evaluation and results are

compared using different intel tools – intelVtune

performance analyser, intel thread checker, intel

thread profiler.

Here the main concentration can be on how the

object-oriented programming style can be used in

the context of OpenMP and hoe to exploit C++

language features to improve scalability. The

beauty of OpenMP is that it provides an abstract

model. Users can develop OpenMP program on any

piece of hardware with OpenMP compliant

compiler and then run it on any parallel system.

Possibly users need to recompile if we change

architecture.

2. Deployment of Neural Network on

Multi-core Architecture

To achieve the objective here we are using parallel

programming concept which is implemented by

OpenMP programming. We have chosen three of

the neural network models which are mostly used

to give solutions to complex problems in d igital

communicat ions due to their nonlinear processing,

parallel distributed architecture, and self-

organization, capacity of learn ing and

generalization, and efficient hardware

implementation. These are single layer Feed-

Forward Perceptron, NN with Back-propogation

algorithm and SOM (Self-Organizing Map). We

are gathering the statistical data for each model

with the help of d ifferent intel tools. These data

helps us to compare the performance of each

model.

 With the help of parallel programming a

problem can be solved in a reasonable time;

situations arise when the same problem has to be

evaluated multip le times with different input

values. This situation is especially applicable to

parallel computers, since without any alteration to

the program, multip le instances of the same

program can be executed on different

processors/computers simultaneously.

OpenMP programming is helping in the following

way, at run-time; the applicat ion will go parallel at

the point where the OpenMP part comes. The

threads are created and the work is distributed over

the threads. In this case “work” means the various

loop iterations. Each thread will get assigned a

chunk out of the total number of iterations that

need to be executed. At the end of the loop, the

thread synchronizes and one thread (the so-called

“master thread”) resumes execution.

In the proposed methodology we are comparing the

performance of Neural Network using OpenMP

with sequential programming on dual core

architecture. It also ensures parallelis m of ANN on

Multi-Core (MC) environment in the following

levels of implementation of ANN:

1. First level parallelism can be achieved

through the topology of ANN by

decomposing the ANN into sub-networks

depending on available cores.

2. Once subnet have been defined advantage

of thread level parallelis m can be taken

into picture for achieving parallelis m at

following basic stages of ANN:

a. Weight initializat ion

b. Instance presentation to input layer

c. Calculation of activation on different

layers according to the application

and ANN used.

To improve the computation capability of Neural

Network we are trying to implement it on dual core

by parallelizing the unit of the program which

seems to be easily parallelized, because as matrix-

vector operations are at the core of many

neuroalgorithms, processing is often organized in

such a way as to ensure their efficient

implementation (parallel implementation)[5].

3. Neural Network

 An artificial neural network is a massively

parallel distributed processor made up of simple

processing units (neurons), which has the ability to

learn functional dependencies from data. It

resembles the brain in two respects:

1. Knowledge is acquired by the network

from its environment through a learning

process.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

2. Interneuron connection strengths, known

as synaptic weights, are used to store the

acquired knowledge.

A typical feedforward neural network will consist

of a set of nodes. Some of these are designed input

nodes, some output nodes, and those in between

hidden nodes. There are also connections between

the neurons, with a number referred to as a weight

associated with each connection. When the network

is in operation, a value will be applied to each input

node – the values being fed in by a human operator,

or from environmental sensors, or perhaps from

some other program.

Each node than passes it’s given value to the

connections leading out from it, and on each

connection the value is multiplied by the weight

associated with that connection. Each node in the

next layer than receives a value which is the sum of

the values produced by the connections leading into

it, and in each node a simple computation is

performed on the value – a sigmoid function is

typical. This process is then repeated, with the

results being passed through subsequent layers of

nodes until the output nodes are reached.

Figure 1.Graphical representation of a neuron

Each neuron is a simple processing unit which

receives some weighted data, sums them with a

bias and calculates an output to be passed on

(Figure 1). The function that the neuron uses to

calculate the output is called the activation

function.

O = f(x1.W1+x2.W 2+x3.W3+….+x1w1+b) =

f(j=1to n xj Wj + b) where f is the activation

function[1].

Typically, activation functions are generally non-

linear having a “squashing” effect. Linear functions

are limited because the output is simply

proportional to the input.

3.1. Types of Neural Networks

Neural Networks can be viewed as weighted

directed graphs in which artificial neurons are

nodes and directed edges (with weights) are

connections between neuron outputs and neuron

inputs.

Based on the connection pattern (architecture),

Neural Networks can be grouped into two

categories (Figure 2):

1. Feed-forward networks: Feed-forward

networks, in which graphs have no

recurrent (or feedback) networks, in which

loops occur because of feedback

connections. Feed-forward networks are

static, that is, they produce only one set of

output values rather than a sequence of

values from a given input. These networks

are memory -less in the sense that their

response to an input is independent of the

previous network state.

There are three types of networks in this

category:

a) Single-layer perceptron

b) Multilayer perceptron

c) Radial basis function nets

2. Recurrent or feedback

networks:Recurrent, or feedback

networks on the other hand, are dynamic

systems. When a new input pattern is

presented, the neuron outputs are

computed. Because of the feedback paths,

the inputs to each neuron are then

modified, which leads the network to enter

a new state.

There are four types of networks in this

category:

a) Competitive Networks

b) Kohonen’s SOM

c) Hopfield Networks

d) ART models

3.2. Learning

A learning process in the ANN context can be

viewed as the problem of updating network

architecture and connection weights so that a

network can efficiently perform a specific task.

There are three main learning paradigms:

supervised, unsupervised, and hybrid.

1. In supervised learning, or learning with a

“teacher”, the network is provided with a

correct answer (output) for every input

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

Figure 2.A taxonomy of feed-forward and recurrent/feedback network architectures

pattern. Weights are determined to allow

the network to produce answers as close as

possible to the known correct answers.

Reinforcement learning is a variant of

supervised learning in which the network

is provided with only a critique on the

correctness of network outputs, not the

correct answers themselves.

2. Unsupervised learning, or learning without

a teacher, does not require a correct

answer associated with each input pattern

in the training data set. It exp lores the

underlying structure in the data, or

correlations between patterns in the data,

and organizes patterns into categories

from these correlations.

3. Hybrid learning combines supervised and

unsupervised learning. Parts of the

weights are usually determined through

supervised learning, while the others are

obtained through unsupervised learning.

In this research paper we are trying to implement

three basic learning algorithms of neural networks.

These are perceptron learning algorithm,

backpropogation learning algorithm and SOM

(self-organizing maps) learn ing algorithm [2].

4. OpenMP

What is OpenMP?

OpenMP is a shared-memory application

programming interface (API) whose features are

based on prior efforts to facilitate shared-memory

parallel programming.

OpenMP uses a directive based approach to

parallelize an applicat ion. The one limitation of

OpenMP is that an application can only run within

a single address space. In other words, we cannot

run an OpenMP application on a cluster. This is a

difference with MPI. OpenMP is built on top of a

native threading model and therefore adds

overhead, but the additional cost is fairly low.

Unless we use OpenMP in the “wrong” way. One

golden rule is to create large portions of parallel

work to amort ize the cost of the so-called parallel

region in OpenMP.

Creating an OpenMP Program

OpenMP’s directives let the user tell the compiler

which instructions to execute parallel and how to

distribute them among the threads that will run the

code. An OpenMP directive is an instruction in a

special format that is understood by OpenMP

compilers only. In fact, it looks like a comment to a

regular Fortran compiler or a p ragma to a C/C++

compiler, so that the program may run just as it did

beforehand if a compiler is not OpenMP-aware.

The API does not have many different directives,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

but they are powerfu l enough to cover a variety of

needs.

 The first step in creating an OpenMP

program a sequential one is to identify the

parallelism it contains. Basically, this

means finding instructions, sequences of

instructions, or even large regions of code

that may be executed concurrently by

different processors.

 The second step in creating an OpenMP

program is to express, using OpenMP, the

parallelism that has been identified. A

huge practical benefit of OpenMP is that it

can be applied to incrementally create a

parallel program from an existing

sequential code. The developer can insert

directives into a portion of the program

version has been successfully compiled

and tested, another portion of the code can

be parallelized. The programmer can

terminate this process once the desired

speedup has been obtained [3].

OpenMP Language Features

OpenMP provides directives, library functions, and

environment variables to create and control the

execution of parallel programs.

 OpenMP Directive – In C/C++, a #pragma

and in Fortran, a comment, that specifies

OpenMP program behaviour.

 Executable Directive – An OpenMP

directive that is not declarative; that is, it

may be p laced in an executable context.

 Construct – An OpenMP executable

directive (and, for Fortran, the paired end

directive, if any) and the associated

statement, loop, or structured block, if

any, not including the code in any called

routines, that is, the lexical extent of an

executable directive [6].

This set comprises the following constructs, some

of the clauses that make them powerful, and

(informally) a few of the OpenMP library routines

[7]:

 Parallel Constucts

 Work-Sharing Constructs

1. Loop Construct

2. Sections Construct

3. Single Construct

4. Workshare Construct (FORTRAN

only)

 Data-Sharing, No wait, and Schedule

Clauses

 Other constructs

1. Barrier Construct

2. Critical Construct

3. Atomic Construct

4. Locks

5. Master Construct

5. Tools Used

5.1. Intel VTune Performance Analyzer
This tool helps to streamline the code in just a few

clicks. It locates and removes performance

bottlenecks with low overhead through a graphical

interface on Windows platforms, with strong

Visual Studio .NET integration.

5.2. Intel Thread Checker
The tool is designed to observe the execution of a

program and to in form the user of places in the

application where problem may exist. The

problems detected are specific to the threads. These

include incorrect use of the threading and

synchronization API functions.

5.3. Intel Thread Profiler
The tool is very useful for analysing bottlenecks in

our threaded code. Thread Profiler quickly

pinpointed problem areas and showed us the

reasons for the slowdown, so user is able to

restructure the code for better threaded

performance [4].

6. Results and Discussion

In this research paper we have implemented

perceptron algorithm of neural network model.

There are two types both sequential and parallel

methodologies have been used to develop this

algorithm. Here Intel VTune Performance Analyzer

is used to evaluate this program.

The sequential and parallel both programs have the

same input values. The performance is checked by

intel tools. Intel VTune Performance Analyzer

finds out the hotspots in the program. In hotspots

analysis it views results of time and event sampling

on multip le levels, drilling down to the exact

operating system process, thread, module

executable, function/method, individual line of

source code, or individual machine/assembly

language instruction to identify specific

bottlenecks.

Evaluation: Neural Network model with

Perceptron algorithm
The program contains one class named neuron

having four member functions as:

 Initializat ion

 Calculation of act ivation

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

5www.ijert.org

 Weight change

 Weight adjustment

Statistical data of perceptron algorithm:

Table 1.Statistical data of sequential program –

Perceptron algorithm

Execution time : 0.03100 sec

Time statistics

1) Clockt icks 1,778,000,000 events

2) Processor Time 0.64 sec

Characterization data

1. System CPI 7.47 Clockticks per

Instruction Retired

2. Parallel act ivity 16.99 %

3. Processor Utilization 58.5 %

Table 2.Statistical data of parallel program –
Perceptron algorithm

Execution time : 0.0460 sec

Time statistics

1) Clockt icks 1,156,400,000 events

2) Processor Time 0.41 sec

Characterization data

1. System CPI 4.49 Clockticks per

Instruction Retired

2. Parallel act ivity 28.82 %

3. Processor Utilization 64.41 %

7. References

[1] Alexandra Oliveira, “Neural network software tool

development: exploring programming language options”,
INEB – Instituto de EngenhariaBiomedica FEUP/DEEC,

RuaDr. Roberto Frias, 4200-645 PORTO

[2] Anil K.Jain, Michigan State University, Jianchang

Mao, K.M.Mohiuddin, ZBMAZmaden Research Center,

“Artificial Neural Networks : A tutorial”
[3] Christian Terbovan, “C++ and OpenMP” and

“OpenMP and C++”, Center for Computing and

Communication, RWTH Aachen University, Germany

[4] Information about intel tools. [Online]. Available:

www.intel.com
[5] LiMin Fu, “NEURAL NETWORKS IN COMPUTER

INTELLIGENCE”, University of Florida, Gainesville.

[6] OpenMP and C++, article of MSDN Magazine

Available:

http://www.indopedia.org/Neuaral_network.html
 [7] Tim Mattson of Intel Corporation, “OpenMP C/C++

Application Program Interface” version 1.0, October

1998

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

6www.ijert.org

