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Abstract 
 

Traditional computational methods are highly 

structured and linear, properties which they drive 

from the digital nature of computers. These methods 

are highly effective at solving certain classes of 

problems: physics simulations, mathematical models, 

or the analysis of proteins. Classical computational 

methods are not effective at solving other problems, 

such as pattern recognition, adaptive learning, and 

spam filtering. Some biological systems, however, 

excel at the latter class of problems. For example, the 

human mind can quickly identify a face, even if it has 

changed heavily from the last time it was seen, while 

traditional computational systems are unable to 

accomplish facial recognition efficiently and 

accurately even if minor facial or environmental 

alterations occur. Attempts to create facsimiles of 

these biological systems electronically have resulted 

in the creation of artificial neural networks. 

Similar to theirbiological counterparts, artificial 

neural networks are massively parallel systems 

capable of learning and making generalizations. The 

inherent parallelism in the network allows for a 

distributed software implementation of the artificial 

neural network, causing the network to learn and 

operate in parallel, theoretically resulting in a 

performance improvement. This project will address 

a parallel neural network implementation, the 

network’s relative strengths and weaknesses, and 

conclude by comparing the performance using 

different Intel tools. 

 

 

1. Introduction  
In recent years there has been a great rising of 

interest in a method of computing that was originally  

investigated in the 1940s. This method is modelled 

generally after bio logical nervous system and is 

called neural networks (NN), art ificial neural 

networks (ANN), parallel distributed processing 

(PDP) and perhaps others. 

 

A parallel implementation of neural computations is a 

possible solution for memory and time consuming 

neural network applications (for instance real-time 

data processing). The two main ideas are to distribute 

the patterns that are used for train ing or to distribute 

the computation performed by the neural network. 

Pattern partitioning schemes require large pattern 

sets. Network partitioning schemes require large 

neural networks. Due mostly to their learn ing 

capability, artificial neural networks are increasingly 

recognized in academic and engineering communities 

as powerful tools for complex problem solving tasks. 

Unfortunately, their use in time-crit ical applicat ions 

often demands high performance, and therefore high 

cost hardware systems. 

 

Obtaining optimal solution for engineering design 

problem is often expensive because the process 

typically requires numerous iteration involving 

analysis and optimization programs. Many 

researchers have shown that optimum solution can be 

obtained in less time by simulat ing a slow, expensive 

analysis with a fast inexpensive Artificial Neural 

Network from a process perspective. And on a 

hardware point of view this has led to two major 

directions – the accelerations of execution speed of 

microprocessor and the parallel application of more 

than one processor to the problem solution. The 

major reason of selecting ANN for parallel 

programming is its own basic parallel topology, 

which is easily viable to parallel processing. The 

proposed approach explores the parallelis m in ANN 

on Decomposition of network, weight initialization, 

instance presentation, calculation of activation in a 
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MC (Multi-Core) environment for better 

performance. 

Neural computation means organizing processing 

into a number of processing elements that are 

massively interconnected and that exchange 

signals. Processing within elements usually 

involves adding weighted input values, applying a 

(non-) linear function to the input sum, and 

forwarding the result to other elements. Since the 

basic principle of neurocomputation is learning by 

example, such processing must be repeated again 

and again, with weights being changed until a 

network learns the problem. As matrix-vector 

operations are at the core of many neuroalgorithms, 

processing is often organized in such a way as to 

ensure their efficient implementation.  

 

In this research we have developed some of the 

neural network models with the help of OpenMP 

and C++ language. The evaluation and results are 

compared using different intel tools – intelVtune 

performance analyser, intel thread checker, intel 

thread profiler. 

 

Here the main concentration can be on how the 

object-oriented programming style can be used in 

the context of OpenMP and hoe to exploit C++ 

language features to improve scalability. The 

beauty of OpenMP is that it provides an abstract 

model. Users can develop OpenMP program on any 

piece of hardware with OpenMP compliant 

compiler and then run it on any parallel system. 

Possibly users need to recompile if we change 

architecture. 

 

2. Deployment of Neural Network on 

Multi-core Architecture 

 
To achieve the objective here we are using parallel 

programming concept which is implemented by 

OpenMP programming. We have chosen three of 

the neural network models which are mostly used 

to give solutions to complex problems in d igital 

communicat ions due to their nonlinear processing, 

parallel distributed architecture, and self-

organization, capacity of learn ing and 

generalization, and efficient hardware 

implementation. These are single layer Feed-

Forward  Perceptron, NN with Back-propogation 

algorithm and SOM (Self-Organizing Map). We 

are gathering the statistical data for each model 

with the help of d ifferent intel tools. These data 

helps us to compare the performance of each 

model. 

     With the help of parallel programming a 

problem can be solved in a reasonable time; 

situations arise when the same problem has to be 

evaluated multip le times with different input 

values. This situation is especially applicable to 

parallel computers, since without any alteration to 

the program, multip le instances of the same 

program can be executed on different 

processors/computers simultaneously. 

 

OpenMP programming is helping in the following 

way, at run-time; the applicat ion will go parallel at 

the point where the OpenMP part comes. The 

threads are created and the work is distributed over 

the threads. In this case “work” means the various 

loop iterations. Each thread will get assigned a 

chunk out of the total number of iterations that 

need to be executed. At the end of the loop, the 

thread synchronizes and one thread (the so-called 

“master thread”) resumes execution.  

 

In the proposed methodology we are comparing the 

performance of Neural Network using OpenMP 

with sequential programming on dual core 

architecture. It also ensures parallelis m of ANN on 

Multi-Core (MC) environment in the following 

levels of implementation of ANN: 

 

1. First level parallelism can be achieved 

through the topology of ANN by 

decomposing the ANN into sub-networks 

depending on available cores.  

2. Once subnet have been defined advantage 

of thread level parallelis m can be taken 

into picture for achieving parallelis m at 

following basic stages of ANN: 

a. Weight initializat ion 

b. Instance presentation to input layer 

c. Calculation of activation on different 

layers according to the application 

and ANN used. 

To improve the computation capability of Neural 

Network we are trying to implement it on dual core 

by parallelizing the unit of the program which 

seems to be easily parallelized, because as matrix-

vector operations are at the core of many 

neuroalgorithms, processing is often organized in 

such a way as to ensure their efficient 

implementation (parallel implementation)[5]. 

 

3. Neural Network  
 

     An artificial neural network is a massively 

parallel distributed processor made up of simple 

processing units (neurons), which has the ability to 

learn functional dependencies from data. It 

resembles the brain in two respects: 

1. Knowledge is acquired by the network 

from its environment through a learning 

process. 
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2. Interneuron connection strengths, known 

as synaptic weights, are used to store the 

acquired knowledge. 

 

A typical feedforward neural network will consist 

of a set of nodes. Some of these are designed input 

nodes, some output nodes, and those in between 

hidden nodes. There are also connections between 

the neurons, with a number referred to as a weight 

associated with each connection. When the network 

is in operation, a value will be applied to each input 

node – the values being fed in by a human operator, 

or from environmental sensors, or perhaps from 

some other program. 

 

Each node than passes it’s given value to the 

connections leading out from it, and on each 

connection the value is multiplied by the weight 

associated with that connection. Each node in the 

next layer than receives a value which is the sum of 

the values produced by the connections leading into 

it, and in each node a simple computation is 

performed on the value – a sigmoid function is 

typical. This process is then repeated, with the 

results being passed through subsequent layers of 

nodes until the output nodes are reached. 

 

 
 

Figure 1.Graphical representation of a neuron 

 

Each neuron is a simple processing unit which 

receives some weighted data, sums them with a 

bias and calculates an output to be passed on 

(Figure 1). The function that the neuron uses to 

calculate the output is called the activation 

function.  

O = f(x1.W1+x2.W 2+x3.W3+….+x1w1+b) = 

f( j=1to n xj Wj + b ) where f is the activation 

function[1]. 

Typically, activation functions are generally non-

linear having a “squashing” effect. Linear functions 

are limited because the output is simply 

proportional to the input. 

 

 

 

3.1. Types of Neural Networks 

 
Neural Networks can be viewed as weighted 

directed graphs in which artificial neurons are 

nodes and directed edges (with weights) are 

connections between neuron outputs and neuron 

inputs. 

Based on the connection pattern (architecture), 

Neural Networks can be grouped into two 

categories (Figure 2): 

 

1. Feed-forward networks: Feed-forward 

networks, in which graphs have no 

recurrent (or feedback) networks, in which 

loops occur because of feedback 

connections. Feed-forward networks are 

static, that is, they produce only one set of 

output values rather than a sequence of 

values from a given input. These networks 

are memory -less in the sense that their 

response to an input is independent of the 

previous network state.   

There are three types of networks in this 

category: 

a) Single-layer perceptron 

b) Multilayer perceptron 

c) Radial basis function nets 

 

2. Recurrent or feedback 

networks:Recurrent, or feedback 

networks on the other hand, are dynamic 

systems. When a new input pattern is 

presented, the neuron outputs are 

computed. Because of the feedback paths, 

the inputs to each neuron are then 

modified, which leads the network to enter 

a new state. 

There are four types of networks in this 

category: 

a) Competitive Networks  

b) Kohonen’s SOM 

c) Hopfield Networks  

d) ART models  

 

3.2. Learning 

 
A learning process in the ANN context can be 

viewed as the problem of updating network 

architecture and connection weights so that a 

network can efficiently perform a specific task.  

 

There are three main learning paradigms: 

supervised, unsupervised, and hybrid.  

 

1. In supervised learning, or learning with a 

“teacher”, the network is provided with a 

correct answer (output) for every input 
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Figure 2.A taxonomy of feed-forward and recurrent/feedback network architectures 

 

pattern. Weights are determined to allow 

the network to produce answers as close as 

possible to the known correct answers. 

Reinforcement learning is a variant of 

supervised learning in which the network 

is provided with only a critique on the 

correctness of network outputs, not the 

correct answers themselves. 

2. Unsupervised learning, or learning without 

a teacher, does not require a correct 

answer associated with each input pattern 

in the training data set. It exp lores the 

underlying structure in the data, or 

correlations between patterns in the data, 

and organizes patterns into categories 

from these correlations. 

3. Hybrid learning combines supervised and 

unsupervised learning. Parts of the 

weights are usually determined through 

supervised learning, while the others are 

obtained through unsupervised learning.  

 

In this research paper we are trying to implement 

three basic learning algorithms of neural networks. 

These are perceptron learning algorithm, 

backpropogation learning algorithm and SOM 

(self-organizing maps) learn ing algorithm [2]. 

 

 

 

 

 

4. OpenMP 
 

What is OpenMP?  

OpenMP is a shared-memory application 

programming interface (API) whose features are 

based on prior efforts to facilitate shared-memory 

parallel programming. 

OpenMP uses a directive based approach to 

parallelize an applicat ion. The one limitation of 

OpenMP is that an application can only run within 

a single address space. In other words, we cannot 

run an OpenMP application on a cluster. This is a 

difference with MPI. OpenMP is built on top of a 

native threading model and therefore adds 

overhead, but the additional cost is fairly low. 

Unless we use OpenMP in the “wrong” way. One 

golden rule is to create large portions of parallel 

work to amort ize the cost of the so-called parallel 

region in OpenMP. 

 

Creating an OpenMP Program 

OpenMP’s  directives let the user tell the compiler 

which instructions to execute parallel and how to 

distribute them among the threads that will run the 

code. An OpenMP directive is an instruction in a 

special format that is understood by OpenMP 

compilers only. In fact, it looks like a comment to a 

regular Fortran compiler or a p ragma to a C/C++ 

compiler, so that the program may run just as it did 

beforehand if a compiler is not OpenMP-aware. 

The API does not have many different directives, 
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but they are powerfu l enough to cover a variety of 

needs. 

 The first step in creating an OpenMP 

program a sequential one is to identify the 

parallelism it contains. Basically, this 

means finding instructions, sequences of 

instructions, or even large regions of code 

that may be executed concurrently by 

different processors. 

 The second step in creating an OpenMP 

program is to express, using OpenMP, the 

parallelism that has been identified. A 

huge practical benefit of OpenMP is that it 

can be applied to incrementally create a 

parallel program from an existing 

sequential code. The developer can insert 

directives into a portion of the program 

version has been successfully compiled 

and tested, another portion of the code can 

be parallelized. The programmer can 

terminate this process once the desired 

speedup has been obtained [3]. 

 

OpenMP Language Features  

 

OpenMP provides directives, library functions, and 

environment variables to create and control the 

execution of parallel programs. 

 OpenMP Directive – In C/C++, a #pragma 

and in Fortran, a comment, that specifies 

OpenMP program behaviour.  

 Executable Directive – An OpenMP 

directive that is not declarative; that is, it 

may be p laced in an executable context.  

 Construct – An OpenMP executable 

directive (and, for Fortran, the paired end 

directive, if any) and the associated 

statement, loop, or structured block, if 

any, not including the code in any called 

routines, that is, the lexical extent of an 

executable directive [6]. 

This set comprises the following constructs, some 

of the clauses that make them powerful, and 

(informally) a few of the OpenMP library routines 

[7]: 

 Parallel Constucts 

 Work-Sharing Constructs 

1. Loop Construct 

2. Sections Construct 

3. Single Construct 

4. Workshare Construct (FORTRAN 

only) 

 Data-Sharing, No wait, and Schedule 

Clauses 

 Other constructs 

1. Barrier Construct 

2. Critical Construct 

3. Atomic Construct 

4. Locks  

5. Master Construct 

 

5. Tools Used 

 
5.1. Intel VTune Performance Analyzer 
This tool helps to streamline the code in just a few 

clicks. It locates and removes performance 

bottlenecks with low overhead through a graphical 

interface on Windows platforms, with strong 

Visual Studio .NET integration. 

 

5.2. Intel Thread Checker 
The tool is designed to observe the execution of a 

program and to in form the user of places in the 

application where problem may exist. The 

problems detected are specific to the threads. These 

include incorrect use of the threading and 

synchronization API functions. 

 
5.3. Intel Thread Profiler 
The tool is very useful for analysing bottlenecks in 

our threaded code. Thread Profiler quickly 

pinpointed problem areas and showed us the 

reasons for the slowdown, so user is able to 

restructure the code for better threaded 

performance [4]. 

 

6. Results and Discussion 

 
In this research paper we have implemented 

perceptron algorithm of neural network model. 

There are two types both sequential and parallel 

methodologies have been used to develop this 

algorithm. Here Intel VTune Performance Analyzer 

is used to evaluate this  program. 

 

The sequential and parallel both programs have the 

same input values. The performance is checked by 

intel tools. Intel VTune Performance Analyzer 

finds out the hotspots in the program. In hotspots 

analysis it views results of time and event sampling 

on multip le levels, drilling down to the exact 

operating system process, thread, module 

executable, function/method, individual line of 

source code, or individual machine/assembly 

language instruction to identify specific 

bottlenecks. 

 

Evaluation: Neural Network model with 

Perceptron algorithm 
The program contains one class named neuron 

having four member functions as: 

 

 Initializat ion 

 Calculation of act ivation 
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 Weight change 

 Weight adjustment 

 

Statistical data of perceptron algorithm: 

 
Table 1.Statistical data of sequential program – 

Perceptron algorithm 
 

Execution time : 0.03100 sec 

Time statistics 

1) Clockt icks  1,778,000,000 events 

2) Processor Time 0.64 sec 

Characterization data 

1. System CPI 7.47 Clockticks per 

Instruction Retired 

2. Parallel act ivity 16.99 % 

3. Processor Utilization  58.5 % 

 

 

Table 2.Statistical data of parallel program – 
Perceptron algorithm 

 

Execution time : 0.0460 sec 

Time statistics 

1) Clockt icks  1,156,400,000 events 

2) Processor Time 0.41 sec 

Characterization data 

1. System CPI 4.49 Clockticks per 

Instruction Retired 

2. Parallel act ivity 28.82 % 

3. Processor Utilization  64.41 % 
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