

Design and Implementation of a Protocol-Agnostic

Serial Bus Analyzer for Real-Time Waveform

Debugging and Verification

Harshal Subhash Advane

Corporate Trainer

Abstract— Serial bus analyzer presented here is generic serial

bus debugger which can basically monitor single input line for any

serial bus protocol and displays the frames/state and values both

big and little endian in a hex format on the waveform like

gtkwaves, VCS etc. The design is protocol agnostic, synthesizable

and configurable for multiple instances.

Keywords-Serial Bus protocol, debugger, logic analyzers protocol,

I2C protocol, CAN protocol, JTAG.

I. INTRODUCTION

Debugging serial bus protocols can be a daunting task,
especially when dealing with complex communication systems.
A single error can cause a domino effect, resulting in cascading
failures that are difficult to diagnose and fix. In such cases, a
generic debugger can be a lifesaver.

A generic debugger is a tool that allows you to monitor and
analyze the data traffic on a serial bus. It can help you pinpoint
errors and track down their root causes quickly and efficiently.
Additionally, a generic debugger can help you validate that your
code or hardware design is functioning correctly.

When debugging serial bus protocols, it is essential to
capture the data traffic on the bus in real-time. This is where a
tool like a logic analyzer or an oscilloscope comes in handy.
These tools can capture the data traffic on the bus and display it
in a waveform or a table format. However, they only provide raw
data, and interpreting this data can be a time-consuming task.

A generic debugger solves this problem by analyzing the
captured data traffic and presenting it in a more user-friendly
format. It can decode the data traffic and display it in a human-
readable format, allowing you to quickly identify errors and
anomalies. Additionally, a generic debugger can provide real-
time notifications of errors, making it easier to identify and
troubleshoot issues.

II. PROBLEM STATEMENT

We have lots of serial bus protocols in our Chips, we take

lots of 3rd party serial bus protocols like CAN, SPI, I2C, eMMC,

JTAG etc.

We need to run the simulation for verification purpose and

need to make sure protocol is working correctly. Each serial

protocol uses different frame format as per there need and

requirements.

Also, while debugging we need to note down each bit looking

at the waveform and cross check it with protocol to understand

if its correct or incorrect.

III. SOLUTIONS

The solution that I have developed is a generic serial bus
protocol analyzer which can be used across any serial bus
protocol and can have parameterized frame format and can have
multiple instances of the debugger.

It will basically give a visual display of frames in hex format
which would be easier to debug.

This way we don’t have to deal with each bit on serial bus
and can save the debug time resulting in the many man hours of
saving.

One of the significant advantages of a generic debugger is
that it can be used to debug a wide range of serial bus protocols.
It is not tied to a specific protocol or vendor and can be adapted
to different protocols and configurations. This makes it a
versatile tool that can be used in various debugging scenarios.

IV. ADVANTAGE

• It saves a lot man hour of debugging time.

• It can be used agnostic to any serial bus protocol.

• The output can be capture on the text format for text-
based debugging.

• It’s written inside interface hence can be used with any
tools.

V. STEPS TO CONFGIURE

• Instantiate the serial bus debugger interface inside your
testbench top.

• Declare the set the parameter no_of_state as how many
no of states are there your serial bus protocol

• Declare the wait_table in the following format which
basically signifies the number of bit in each states

• Assign the signal start = 1 from the time period you want
the debugger to analyses the input signals

VI. SAMPLE EXAMPLE CODE

a) Declare the wait_table as mention in figure 1 and

figure 2 here the left-hand side number denotes the frame / state
and right-hand side denote the number of bits in the frame /
number of wait state inside the state.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090072
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

For e.g., In an imaginary “My” serial bus protocol there are 7
data frames, and each data frame can contain 8 bits of data the
wait_table can be declared as follows.

parameter [7:0] wait_table[6:0] = '{

 {6,8},

 {5,8},

 {4,8},

 {3,8},

 {2,8},

 {1,8},

 {0,8}

 };

Fig. 1. Example of a wait_state for “My” serial bus protocol..

In “Me” serial bus protocol if there are 2 data frames and 1st
frame is of 1 bit and 2nd frame is of 64 bits it will be declare as
follows

parameter [7:0] wait_table1 [1:0] = '{

 {1,63},

 {0,1}

 };

Fig. 2. Example of wait_state for “Me” serial bus protocol.

b) Instatitiating the serial debugger

In the second steps we need to do the installation of the

serial_debugger interface inside your testbench top

 serial_debugger #

(.no_of_state(7), // No of total states in serial protocol

 .wait_table(wait_table))// Wait_table declare in step 1.

 la0 (.clk(clk), // Input clk signal

 .rst(rst), // Input rst signal

 .in (in), // Input serial bus signal

 .start_la(start)); // Input signal to indicate start of

analyser

c) Define the start signal

Define the signal start which can be use by serial_debugger

from the time where to start analysing the incoming signals.

initial begin

 int total_delay = wait_table.sum();

 $display (" total_delay %0d",total_delay);

 @(negedge in)

 start = 1;

 repeat(total_delay) @(posedge clk);

 start = 0;

 #1300 $finish();

end

VII. SAMPLE OUTPUT

The sample output waveform is shown in the

Fig 3 and Fig 4

 Fig 3. Output of state 01 is value ‘h01 (‘h80)

 Fig 4. Output of state 04 is value ‘h04(‘h20) and output of state

05 is ‘h05 (‘ha0)

VIII. FEATURE OF INTERFACE

• It can be used with any serial bus protocol

• It been developed inside interface which can be ported
in design and testbench

• The frame format is customizable hence you can
increase and decrease the size as needed

• The output is shown in big and little endian format

• It shows the bits captured against the each frame

• The interface is synthesizable which can help in
debugging the actual silicon bugs.

ACKNOWLEDGMENT

The work reported in this paper is developed on free open
source website www.edaplayground.com.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS090072
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 09, September-2023

www.ijert.org
www.ijert.org

