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Abstract --Binary adders are known as important elements in 

the circuit designs. Many fastest adders have been created 

and developed. Parallel Prefix Adders (PPA) are one among 

them. We use adders frequently in digital design and VLSI 

designs, in digital design we use adders such as half adder, full 

adder. By using both adders we can implement ripple carry 

adder, using ripple carry adder we can perform addition for 

any number of bits. It is a serial adder. It has a huge delay 

problem. With the use of half adder, full adder delay 

increases. To overcome this Parallel Prefix Adders are 

preferred. In VLSI implementation parallel prefix adders are 

known to have the best performance. This paper presents an 

implementation of various types of carry tree adders (the 

Kogge- Stone, Sparse Kogge- Stone, Brent Kung, Han 

Carlson, and Ladner Fischer) and compares them to a ripple 

Carry adder and carry look ahead adders. We report on 

delay, area requirements. These designs of varied on different 

bit widths and simulated using modelsim6.5e and 

implemented on a xilinx14.2 version Spartan 3E FPGA, These 

carry tree adders support bit width of 256.               
 

1. INTRODUCTION 

 

Binary addition is fundamental operation in most of the 

digital circuits. There are so many adders in the digital 

design. The selection of adder depends on its performance 

parameters. Adders are important elements in 

microprocessors, digital signal processors.ALU and in 

floating point arithmetic units. and  memory addressing ,in 

booth multipliers .they are also used in real time signal 

processing like signal processing, image processing etc. for 

human beings arithmetic calculations are easy to calculate 

when they are decimals i.e. base ten. But they became 

pragmatic if binary numbers are given. Therefore binary 

addition is essential any improvement in binary addition 

can improve the performance of system. The fast and 

accuracy of system depends mainly on adder performance.  

In this paper designing and implementation of various 

parallel prefix adders on FPGA are described. Parallel 

Prefix Adders are also known as Carry Tree Adders. 

Parallel prefix adders are designed from carry look ahead 

adder as a base. Parallel prefix adders consist of three 

stages similar to CLA. Figure 1 shows the PPA structure. 

     
  

Figure 1.1 Block diagram of PPA 

 

The parallel prefix adder employs three stages in pre-

processing stage the generation of Propagate and Generate 

signals is carried out. The calculation of Generate (Gi) and 

Propagate (Pi) are calculated when the inputs A, B are 

given. As follows 

 

Gi=Ai AND Bi 

 

Pi=Ai XOR Bi 

 

Gi indicates whether the Carry is generated from that bit. Pi 

indicates whether Carry is propagated from that bit. 

In carry generation stage of PPA, prefix graphs can be used 

to describe the tree structure. Here the tree structure 

consists of grey cells, black cells, and buffers. In carry 

generation stage when two pairs of generate and propagate 

signals (Gm, Pm), (Gn, Pn) are given as inputs to the carry 

generation stage. It computes a pair of group generates and 

group propagate signals (Gm: n, Pm: n) which are 

calculated as follows 

Gm: n=Gm+ (Pm.Gn) 

Pm: n=Pm. Pn 

The black cell computes both generate and propagate 

signals as output. It uses two and gates and or gate. The 
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grey cell computes the generate signal only. It uses only 

and gate, or gate.   

In post processing stage simple adder to generate the sum, 

Sum and carry out are calculated in post processing stage 

as follows 

Si=Pi XOR Ci-1 

Cout=Gn-1 XOR (Pn-1 AND Gn-2) 

 If Cout is not required it can be neglected. 

 

2. CARRY TREE ADDER STRUCTURES 

 

Parallel prefix adders also known as carry tree adders 

They pre-compute propagate and generate signals. These 

signals are combined using fundamental carry operator 

(fco). 

(g1, p1) o (g2, p2) = (g1+g2.p1, p1.p2) 

Due to associative law of the fundamental carry operator 

these operators can be combined in different ways to form 

various adder structures. For example 4 bit carry look 

ahead generator is given by 

C4= (g4, p4) o [(g3, p3) o [(g2, p2) o (g1, p1)]] 

 Now in parallel prefix adders allow parallel operation 

resulting in more efficient tree structure for this 4 bit 

example. 

C4= [(g4, p4) o (g3, p3)] o [(g2, p2) o (g1, p1)] 

It is a key advantage of tree structured adders is that the 

critical path due to carry delay is of order log2N for N bit 

wide adder. So the arrangement of the prefix network gives 

rise to various families of adders. For this study the focus is 

on Kogge-Stone, Sparse Kogge stone, Brent Kung, Han-

Carlson and Ladner Fischer adders for 32, 64 bit width. 

Here we designate black cell as BC and grey cell as GC. 

2.1. Kogge-Stone adder  

Kogge-Stone adder is one among the parallel prefix adders. 

This has regular layout which makes them favoured adder 

in electronic technology. It has the minimum fan-out. A 16 

bit Kogge stone adder is shown in the figure 2. 

The maximum fan-out is 2 in all the logic levels for all 

width Kogge-stone prefix trees. The key of building any 

prefix tree is to implement the equation according to the 

specific features and apply the rules above described in the 

previous section. The number of stages for a Kogge stone 

adder is calculated by log2 power N. It consists of 34 BC’s 

and 15 GC’s and buffers are given.   

 

  
 

Figure 2.1 Block Diagram of 16 bit Kogge Stone Adder 

2.2. Sparse Kogge-Stone adder 

 

 The Sparse Kogge stone adder consists of several small 

ripple carry adders on its lower part, a carry tree is on its 

upper part. It terminates with ripple carry adders. Number 

of carries generated is less in this adder compared to Kogge 

stone adder. The function of grey cells and black cells is 

same as discussed in previous sections. Figure .3 shows the 

block diagram of Sparse Kogge Stone adder.   

 
 

Figure 2.2 Block Diagram of 16 bit Sparse Kogge Stone Adder 

 

2.3. Brent Kung adder 

 

Brent Kung adder is one among the parallel prefix adders. 

Which has low number of cells and it is power efficient. 

Number of cells in the adder is defined by 2(N-1)-log2 

power N. Number of bits are defined by N. it   consists of 

11 BC’s and 15 GC’s. A simple tree structure could be 

formed if only the carry at every power of two positions is 

computed .it consists of inverse carry tree is added to 

compute intermediate carries. Figure .4 shows Block 

diagram of Brent Kung 16 bit adder. 

 

 
 

Figure 2.3 Block Diagram of 16 bit Brent-Kung Adder 
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2.4. Han-Carlson adder 

This adder is the mix of Brent-Kung and Kogge stone 

adders .it has the maximum fan-out of 2.The Block 

Diagram of 16 bit Han-Carlson adder is shown in the figure 

below. 

 

 
 

Figure 2.4 Block Diagram of 16 bit Han-Carlson Adder 

 

2.5. Ladner Fischer adder 

This adder is the mix of Brent Kung and sklansky parallel 

prefix adder’s .it has high fan-out. Figure.5 shows the 

block Diagram of 16 bit Ladner Fischer adder.

  
 

Figure 2.5 Block Diagram of 16 bit Ladner Fischer Adder 
 

 
 

Figure 2.6 Block Diagram of 64 bit Kogge-Stone Prefix tree. 

 

When we apply for Higher Bit widths the carry Tree 

changes accordingly. 

 

3. RELATED WORK 

 

We compared the design of the ripple carry adder with 

carry look ahead adder and different Parallel prefix trees. 

The Previous authors considered several Parallel prefix 

adders implemented on Xilinx vertex 5 FPGA.it is found 

that ripple carry adder performs better than carry tree 

designs because RCA can take advantage of fast carry 

chain on the FPGA, H.K .Hoe, Chris Martinez and 

Jyothsna Vundavalli concluded Kogge stone adder is best 

in terms of delay. But it takes larger area..Now in this 

paper we focus on carry tree adders implemented on Xilinx 

Spartan 3E FPGA. Here we design different carry tree 

adders and compared with Ripple carry adder in terms of 

delay. We also compare with Kogge-Stone Adder in terms 

of area by counting of number of LUT’s and Slices.  

 

4. METHODOLOGY 

 

. The adders to be studied were designed with varied bit 

width bits and they are coded in VERILOG. The 

verification of the adders was verified by using Model-sim 

Simulator. The Xilinx ISE 14.2 software was used to 

synthesize the designs onto Spartan 3E FPGA .By using 

the Generate and Propagate and by BC and GC we are able 

to develop the Carry trees. It is found that the Kogge Stone 

Prefix trees provide better delay performance for higher 

order bits. We seen area is high. Han-Carlson adder has 

less delay and its area also less compared to Kogge-Stone 

.The critical path for both adders Kogge stone and Han-

Carlson adders are less. Brent Kung adder has less area 

compared to all the adders.  

 

5. SIMULATION AND SYNTHESIS REPORT 

 

The Ripple carry adders, Carry look ahead adder, and 

Kogge-Stone adder, Sparse Kogge Stone Adder, Brent-

Kung adder, Han-Carlson adder, Ladner Fischer adder are 

simulated and synthesised written in verilog using model-

sim and Xilinx ISE tools. We found that Kogge –Stone 

occupies larger area, Brent-Kung adder occupies smaller 

area. We noticed that parallel prefix adders are faster than 

the ripple carry adder. The results of different parallel 

prefix adders are as given below. 
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Figure 5.1 Ripple carry adder Simulated waveform for 32-bit 

 

 
 

Figure 5.2 Ripple carry adder Device Utilization Summary for 32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit Ripple carry adder are shown in Figure 5.1 and 

5.2; The Path Delay of RCA is 37.578 ns. 

 

 
 

Figure 5.3 Carry Look Ahead adder Simulated waveform for 32-bit 

  
 
Figure 5.4 Carry look ahead adder Device Utilization Summary for 32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit carry look ahead adder are shown in Figure 

5.3and 5.4; The Path Delay of CLA is 37.676 ns. 

 

 
 

Figure 5.5 Kogge-Stone adder Simulated waveform for 32-bit 

 

 
 
Figure 5.6 Kogge-Stone adder Device Utilization Summary for 32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit Kogge-stone adder are shown in Figure 5.5 and 

5.6; The Path Delay of KS adder is 15.952ns. 
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Figure 5.7 Brent-Kung adder Simulated waveform for 32-bit 

 

 
 
Figure 5.8 Brent-Kung adder Device Utilization Summary for 32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit Brent-Kung adder are shown in Figure 5.7 and 

5.8; The Path Delay of BK adder is 28.829ns. 

 

 
 
Figure 5.9 Sparse Kogge-stone adder Simulated waveform for 32-bit 

 

 
 

Figure 5.10 Sparse Kogge-Stone adder Device Utilization Summary for 

32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit Sparse Kogge-Stone adder are shown in Figure 

5.9 and 5.10; The Path Delay of SPK adder is 27.875ns 

 

 
 

Figure 5.11 Han-Carlson adder Simulated waveform for 32-bit 

 

 
 

Figure 5.12 Han-Carlson adder Device Utilization Summary for 32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit Han-Carlson adder are shown in Figure 5.11 and 

5.12; The Path Delay of HC adder is 15.862ns. 

 

 
 

Figure 5.13 Ladner Fischer adder Simulated waveform for 32-bit 

 

 
 
Figure 5.14 Ladner Fischer adder Device Utilization Summary for 32-bit 

 

The Device Utilization Summary and simulated waveform 

of 32 bit Ladner Fischer adder are shown in Figure 5.13 

and 5.14; The Path Delay of LF adder is 30.330ns 
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.Now we Synthesis and Simulate all above adders for  

64 bit and tabulated the results. 

 

64 BIT Path delay 4-i/p LUT’S Slices 

RCA 70.281ns 128 96 

KS 18.059ns 562 297 

BK 40.490ns 188 108 

HC 28.883ns 260 144 

LF 33.552ns 210 121 

 

Table 5.1 Synthesis Results for 64-Bit width Adders 

 

6. CONCLUSION 

 

In this paper we have designed efficient parallel prefix 

adders to achieve better speed performance with less area. 

We noticed that Parallel Prefix Adders are not best as 

Ripple Carry adder at low bit widths. We noticed that 

Kogge-Stone adder Performs with less delay. Brent-Kung 

adder has low area. We have seen Kogge-stone adder 

occupies larger area since it uses High number of LUT’s 

and Slices. If the area of adder increases the cost increases, 

requires more wires for connection. The calculation of path 

delay is based on timing analysis. We can say that the 

adder has good performance when it has less area and 

delay. Both are important parameters of adders. We have 

seen that Han-Carlson, Ladner-Fischer have good 

performance with less area and delay. The Results show 

our methodology of addition performs the addition with 

less delay and area. This   is required for larger adders used 

in arithmetic and cryptographic applications where the 

addition for larger number of bits is performed.  
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