

Design and Implementation of Efficient Parallel

Prefix Adders on FPGA

 Sarnala Butchibabu (M.Tech), Sannikanti Kishore Babu M.Tech (P.hD),
 E.C.E Department, Associate Professor, E.C.E Department,

 Vikas college of Engineering &Technology, Vikas college of Engineering &Technology

 Nunna, Vijayawada Rural. Nunna, Vijayawada Rural

Abstract --Binary adders are known as important elements in

the circuit designs. Many fastest adders have been created

and developed. Parallel Prefix Adders (PPA) are one among

them. We use adders frequently in digital design and VLSI

designs, in digital design we use adders such as half adder, full

adder. By using both adders we can implement ripple carry

adder, using ripple carry adder we can perform addition for

any number of bits. It is a serial adder. It has a huge delay

problem. With the use of half adder, full adder delay

increases. To overcome this Parallel Prefix Adders are

preferred. In VLSI implementation parallel prefix adders are

known to have the best performance. This paper presents an

implementation of various types of carry tree adders (the

Kogge- Stone, Sparse Kogge- Stone, Brent Kung, Han

Carlson, and Ladner Fischer) and compares them to a ripple

Carry adder and carry look ahead adders. We report on

delay, area requirements. These designs of varied on different

bit widths and simulated using modelsim6.5e and

implemented on a xilinx14.2 version Spartan 3E FPGA, These

carry tree adders support bit width of 256.

1. INTRODUCTION

Binary addition is fundamental operation in most of the

digital circuits. There are so many adders in the digital

design. The selection of adder depends on its performance

parameters. Adders are important elements in

microprocessors, digital signal processors.ALU and in

floating point arithmetic units. and memory addressing ,in

booth multipliers .they are also used in real time signal

processing like signal processing, image processing etc. for

human beings arithmetic calculations are easy to calculate

when they are decimals i.e. base ten. But they became

pragmatic if binary numbers are given. Therefore binary

addition is essential any improvement in binary addition

can improve the performance of system. The fast and

accuracy of system depends mainly on adder performance.

In this paper designing and implementation of various

parallel prefix adders on FPGA are described. Parallel

Prefix Adders are also known as Carry Tree Adders.

Parallel prefix adders are designed from carry look ahead

adder as a base. Parallel prefix adders consist of three

stages similar to CLA. Figure 1 shows the PPA structure.

Figure 1.1 Block diagram of PPA

The parallel prefix adder employs three stages in pre-

processing stage the generation of Propagate and Generate

signals is carried out. The calculation of Generate (Gi) and

Propagate (Pi) are calculated when the inputs A, B are

given. As follows

Gi=Ai AND Bi

Pi=Ai XOR Bi

Gi indicates whether the Carry is generated from that bit. Pi

indicates whether Carry is propagated from that bit.

In carry generation stage of PPA, prefix graphs can be used

to describe the tree structure. Here the tree structure

consists of grey cells, black cells, and buffers. In carry

generation stage when two pairs of generate and propagate

signals (Gm, Pm), (Gn, Pn) are given as inputs to the carry

generation stage. It computes a pair of group generates and

group propagate signals (Gm: n, Pm: n) which are

calculated as follows

Gm: n=Gm+ (Pm.Gn)

Pm: n=Pm. Pn

The black cell computes both generate and propagate

signals as output. It uses two and gates and or gate. The

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070349 239

grey cell computes the generate signal only. It uses only

and gate, or gate.

In post processing stage simple adder to generate the sum,

Sum and carry out are calculated in post processing stage

as follows

Si=Pi XOR Ci-1

Cout=Gn-1 XOR (Pn-1 AND Gn-2)

 If Cout is not required it can be neglected.

2. CARRY TREE ADDER STRUCTURES

Parallel prefix adders also known as carry tree adders

They pre-compute propagate and generate signals. These

signals are combined using fundamental carry operator

(fco).

(g1, p1) o (g2, p2) = (g1+g2.p1, p1.p2)

Due to associative law of the fundamental carry operator

these operators can be combined in different ways to form

various adder structures. For example 4 bit carry look

ahead generator is given by

C4= (g4, p4) o [(g3, p3) o [(g2, p2) o (g1, p1)]]

 Now in parallel prefix adders allow parallel operation

resulting in more efficient tree structure for this 4 bit

example.

C4= [(g4, p4) o (g3, p3)] o [(g2, p2) o (g1, p1)]

It is a key advantage of tree structured adders is that the

critical path due to carry delay is of order log2N for N bit

wide adder. So the arrangement of the prefix network gives

rise to various families of adders. For this study the focus is

on Kogge-Stone, Sparse Kogge stone, Brent Kung, Han-

Carlson and Ladner Fischer adders for 32, 64 bit width.

Here we designate black cell as BC and grey cell as GC.

2.1. Kogge-Stone adder

Kogge-Stone adder is one among the parallel prefix adders.

This has regular layout which makes them favoured adder

in electronic technology. It has the minimum fan-out. A 16

bit Kogge stone adder is shown in the figure 2.

The maximum fan-out is 2 in all the logic levels for all

width Kogge-stone prefix trees. The key of building any

prefix tree is to implement the equation according to the

specific features and apply the rules above described in the

previous section. The number of stages for a Kogge stone

adder is calculated by log2 power N. It consists of 34 BC’s

and 15 GC’s and buffers are given.

Figure 2.1 Block Diagram of 16 bit Kogge Stone Adder

2.2. Sparse Kogge-Stone adder

 The Sparse Kogge stone adder consists of several small

ripple carry adders on its lower part, a carry tree is on its

upper part. It terminates with ripple carry adders. Number

of carries generated is less in this adder compared to Kogge

stone adder. The function of grey cells and black cells is

same as discussed in previous sections. Figure .3 shows the

block diagram of Sparse Kogge Stone adder.

Figure 2.2 Block Diagram of 16 bit Sparse Kogge Stone Adder

2.3. Brent Kung adder

Brent Kung adder is one among the parallel prefix adders.

Which has low number of cells and it is power efficient.

Number of cells in the adder is defined by 2(N-1)-log2

power N. Number of bits are defined by N. it consists of

11 BC’s and 15 GC’s. A simple tree structure could be

formed if only the carry at every power of two positions is

computed .it consists of inverse carry tree is added to

compute intermediate carries. Figure .4 shows Block

diagram of Brent Kung 16 bit adder.

Figure 2.3 Block Diagram of 16 bit Brent-Kung Adder

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070349 240

2.4. Han-Carlson adder

This adder is the mix of Brent-Kung and Kogge stone

adders .it has the maximum fan-out of 2.The Block

Diagram of 16 bit Han-Carlson adder is shown in the figure

below.

Figure 2.4 Block Diagram of 16 bit Han-Carlson Adder

2.5. Ladner Fischer adder

This adder is the mix of Brent Kung and sklansky parallel

prefix adder’s .it has high fan-out. Figure.5 shows the

block Diagram of 16 bit Ladner Fischer adder.

Figure 2.5 Block Diagram of 16 bit Ladner Fischer Adder

Figure 2.6 Block Diagram of 64 bit Kogge-Stone Prefix tree.

When we apply for Higher Bit widths the carry Tree

changes accordingly.

3. RELATED WORK

We compared the design of the ripple carry adder with

carry look ahead adder and different Parallel prefix trees.

The Previous authors considered several Parallel prefix

adders implemented on Xilinx vertex 5 FPGA.it is found

that ripple carry adder performs better than carry tree

designs because RCA can take advantage of fast carry

chain on the FPGA, H.K .Hoe, Chris Martinez and

Jyothsna Vundavalli concluded Kogge stone adder is best

in terms of delay. But it takes larger area..Now in this

paper we focus on carry tree adders implemented on Xilinx

Spartan 3E FPGA. Here we design different carry tree

adders and compared with Ripple carry adder in terms of

delay. We also compare with Kogge-Stone Adder in terms

of area by counting of number of LUT’s and Slices.

4. METHODOLOGY

. The adders to be studied were designed with varied bit

width bits and they are coded in VERILOG. The

verification of the adders was verified by using Model-sim

Simulator. The Xilinx ISE 14.2 software was used to

synthesize the designs onto Spartan 3E FPGA .By using

the Generate and Propagate and by BC and GC we are able

to develop the Carry trees. It is found that the Kogge Stone

Prefix trees provide better delay performance for higher

order bits. We seen area is high. Han-Carlson adder has

less delay and its area also less compared to Kogge-Stone

.The critical path for both adders Kogge stone and Han-

Carlson adders are less. Brent Kung adder has less area

compared to all the adders.

5. SIMULATION AND SYNTHESIS REPORT

The Ripple carry adders, Carry look ahead adder, and

Kogge-Stone adder, Sparse Kogge Stone Adder, Brent-

Kung adder, Han-Carlson adder, Ladner Fischer adder are

simulated and synthesised written in verilog using model-

sim and Xilinx ISE tools. We found that Kogge –Stone

occupies larger area, Brent-Kung adder occupies smaller

area. We noticed that parallel prefix adders are faster than

the ripple carry adder. The results of different parallel

prefix adders are as given below.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070349 241

Figure 5.1 Ripple carry adder Simulated waveform for 32-bit

Figure 5.2 Ripple carry adder Device Utilization Summary for 32-bit

The Device Utilization Summary and simulated waveform

of 32 bit Ripple carry adder are shown in Figure 5.1 and

5.2; The Path Delay of RCA is 37.578 ns.

Figure 5.3 Carry Look Ahead adder Simulated waveform for 32-bit

Figure 5.4 Carry look ahead adder Device Utilization Summary for 32-bit

The Device Utilization Summary and simulated waveform

of 32 bit carry look ahead adder are shown in Figure

5.3and 5.4; The Path Delay of CLA is 37.676 ns.

Figure 5.5 Kogge-Stone adder Simulated waveform for 32-bit

Figure 5.6 Kogge-Stone adder Device Utilization Summary for 32-bit

The Device Utilization Summary and simulated waveform

of 32 bit Kogge-stone adder are shown in Figure 5.5 and

5.6; The Path Delay of KS adder is 15.952ns.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070349 242

Figure 5.7 Brent-Kung adder Simulated waveform for 32-bit

Figure 5.8 Brent-Kung adder Device Utilization Summary for 32-bit

The Device Utilization Summary and simulated waveform

of 32 bit Brent-Kung adder are shown in Figure 5.7 and

5.8; The Path Delay of BK adder is 28.829ns.

Figure 5.9 Sparse Kogge-stone adder Simulated waveform for 32-bit

Figure 5.10 Sparse Kogge-Stone adder Device Utilization Summary for

32-bit

The Device Utilization Summary and simulated waveform

of 32 bit Sparse Kogge-Stone adder are shown in Figure

5.9 and 5.10; The Path Delay of SPK adder is 27.875ns

Figure 5.11 Han-Carlson adder Simulated waveform for 32-bit

Figure 5.12 Han-Carlson adder Device Utilization Summary for 32-bit

The Device Utilization Summary and simulated waveform

of 32 bit Han-Carlson adder are shown in Figure 5.11 and

5.12; The Path Delay of HC adder is 15.862ns.

Figure 5.13 Ladner Fischer adder Simulated waveform for 32-bit

Figure 5.14 Ladner Fischer adder Device Utilization Summary for 32-bit

The Device Utilization Summary and simulated waveform

of 32 bit Ladner Fischer adder are shown in Figure 5.13

and 5.14; The Path Delay of LF adder is 30.330ns

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070349 243

.Now we Synthesis and Simulate all above adders for

64 bit and tabulated the results.

64 BIT Path delay 4-i/p LUT’S Slices

RCA 70.281ns 128 96

KS 18.059ns 562 297

BK 40.490ns 188 108

HC 28.883ns 260 144

LF 33.552ns 210 121

Table 5.1 Synthesis Results for 64-Bit width Adders

6. CONCLUSION

In this paper we have designed efficient parallel prefix

adders to achieve better speed performance with less area.

We noticed that Parallel Prefix Adders are not best as

Ripple Carry adder at low bit widths. We noticed that

Kogge-Stone adder Performs with less delay. Brent-Kung

adder has low area. We have seen Kogge-stone adder

occupies larger area since it uses High number of LUT’s

and Slices. If the area of adder increases the cost increases,

requires more wires for connection. The calculation of path

delay is based on timing analysis. We can say that the

adder has good performance when it has less area and

delay. Both are important parameters of adders. We have

seen that Han-Carlson, Ladner-Fischer have good

performance with less area and delay. The Results show

our methodology of addition performs the addition with

less delay and area. This is required for larger adders used

in arithmetic and cryptographic applications where the

addition for larger number of bits is performed.

ACKNOWLEDGEMENT

I Sarnala Butchibabu would like to thank Mr. Sannikanti

Kishore Babu M.Tech (P.hD) E.C.E Department who had

been guided throughout the project and supporting me in

giving technical ideas about the paper and motivating to

complete the work successfully.

REFERENCES

 [1]. Designing and Characterization of koggestone, Sparse Kogge

stone, Spanning tree and Brentkung Adders. Vol. 3, Issue. 4, July-

august. 2013 pp-2266-2270 International Journal of Modern
Engineering Research (IJMER).

[2] David h, k hoe, Chris Martinez and Sri Jyothsna vundavalli

“Design and characterization of parallel prefix adders using
FPGAs“, Pages.168-172, march2011 IEEE..

 [3]. K. Vitoroulis and A. J. Al-Khalili, “Performance of Parallel

Prefix Adders Implemented with FPGA technology,” IEEE

Northeast Workshop on Circuits and Systems, pp. 498-501, Aug.
2007.

[4]. N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th edition,

Pearson–Addison-Wesley, 2011

[5]. S. Xing and W. W. H. Yu, “FPGA Adders: Performance
Evaluation and Optimal Design,” IEEE Design & Test of

Computers, vol. 15, no. 1, pp. 24-29, Jan. 1998.

[6]. P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the

Efficient Solution of a General Class of Recurrence Equations,”
IEEE Trans. on Computers, Vol. C-22, No 8, August 1973.

[7]. R. P. Brent and H. T. Kung, “A regular layout for parallel

adders,” IEEE Trans. Computer., vol. C-31, pp. 260-264, 1982.

[8]. D. Harris, “A Taxonomy of Parallel Prefix Networks,” in Proc.

37th Asilomar Conf. Signals Systems and Computers, pp. 2213–7,
2003.

[9] R.E. Ladner and M.J. Fischer, “Parallel Prefix Computation,” J.
ACM, vol. 27, no. 4, pages 831-838, Oct. 1980.

[10] S. Knowles,” A family of adders,”proc.15thsymp. Comp.

Arith,pp.277-281,June2001.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070349 244

