
Design and Implementation of Radix 4 Based

Multiplication on FPGA

Supriya S. Saste1

Dept. of Electronics & Telecommunication

Trinity College of Engineering & Research

Pune, India.

Prof. Anil G. Sawant2

Dept. of Electronics & Telecommunication

Trinity College of Engineering & Research

Pune, India.

Abstract—

With the recent rapid increase in scale of integration,

many sophisticated signal processing as well as video processing

systems are being implemented on VLSI chip in which

multiplication is dominant operation. The performance of these

systems is based on computation capacity and power

consumption. This paper presents novel approach of

multiplication scheme based on Radix 4 and its implementation

on FPGA which results in great computational capacity and

reduced power consumption. This system has been designed and

simulated using Xilinx 13.4 for 8x8 bit numbers.

Key Words—Booth’s Algorithm, Radix 4, VLSI, Xilinx 13.4.

I. INTRODUCTION

Multiplication is one of the most important arithmetic

operations which is used in high performance systems such as

microprocessors, digital signal processors and multimedia

applications [1][2][5]. Previously multiplication was done by

repetitive sequence of other two basic arithmetic operations

viz., addition, subtraction along with shift operations. Hence,

multiplication is repetitive addition of numbers. The

‘multiplicand’ is a number which is to be added and number

of times it is added is called as ‘multiplier’. The repetitive

addition method to employ multiplication is comparatively

slow.

 Multiplication is mainly performed in three different

stages: In first stage partial products are generated.

The next stage i.e. stage two deals with reduction of partial

products and finally in stage three all the partial products are

summed together to get the final result of multiplication

operation. The fundamental principle of multiplication is

generation of partial products and accumulation of partial

products [2]. Multiplication can be performed both on signed

as well as unsigned numbers [3]. However signed

multiplication is careful operation. Signed numbers cannot be

multiplied in same manner as that of the unsigned numbers.

Here the Booth’s algorithm comes in.

The motivation of Booth’s multiplication scheme is to

increase the speed of multiplication process. As compared to

conventional methods Booth’s multiplication helps to reduce

the number of iteration steps and results in faster

computation. In this paper we present 8 bit multiplication by

using modified Booth’s (Radix 4) algorithm and its

implementation on hardware platform.

II. BOOTH’S RECODING (RADIX 2) ALGORITHM

The Booth’s algorithm was invented by Andrew D.

Booth which employs multiplication of both signed and

unsigned numbers. This algorithm has been used to generate

the partial products which firstly encode the multiplier bits.

Radix-2 and Radix-4 are two algorithms which generate

reduced and efficient partial products for multiplication [3].

The basic technique stated by Booth is explained further.

The technique invented by Booth allows for smaller and

faster multiplication of binary integers in 2’s complement

representation. In order to do multiplication by Booth’s

recoding algorithm, we have to recode the multiplier first.

Each bit of the recoded multiplier can take any value from: 0,

1 and -1. In order to do this, 2 bits of multiplier are compared

at a time by overlapping technique. Thus, in Radix-2

grouping of multiplier bits starts from LSB for which the first

block uses only single bit of multiplier and another bit is

assumed zero [4]. The recoded multiplier for Radix-2 is

obtained by performing following steps:

i) Add a zero to the LSB side of given multiplier.

ii) By using overlapping technique, group two bits of

multiplier and recode the number using following table:

TABLE I. RADIX-2 BOOTH ENCODING

Xn Xn+1 Recoded Bits Operations Performed

0 0 0 0

0 1 +1 1*Multiplicand

1 0 -1 -1*Multiplicand

1 1 0 0

Consider following example in which multiplicand

and multiplier have 4 bits.

Multiplicand 1100

Multiplier 1010

So, according to the table shown above the recoding bits will

be obtained as partial product:

PP0=00000

PP1=00100

PP2=11100

PP3=00100

Finally, all the partial products are added to get final product

result.

The main version of Booth’s algorithm (Radix-2) had two

drawbacks:

1) With the invariability of add/subtract operations, the

algorithm became inconvenient while designing parallel

multipliers.

2) If there is a string of isolated 1s, the algorithm becomes

inefficient [10].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090557

Vol. 5 Issue 09, September-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 619

The drawbacks enlisted in Booth’s algorithm are overcome

by using Modified Booth’s Algorithm (Radix-4).

III. MODIFIED BOOTH’S (RADIX 4) ALGORITHM

The number of bits multiplier/multiplicand is composed of,

gives exact number of partial products generated in

multiplication operation. So, to perform the addition of partial

product is main bottleneck in multiplication operation and

considered as the important factor to speed up multiplication.

In Booth’s recoding (Radix-2) algorithm, if 2 ‘n’ bit numbers

are multiplied then ‘n’ partial products will be generated. The

desired high speed can be achieved if the partial products are

reduced. Modified Booth’s (Radix 4) Algorithm uses the

technique of partial product reduction to speed up

multiplication operation. So, if 2 even ‘n’ bit numbers are

multiplied, the number of partial products generated is ‘n/2’

and if ‘n’ is odd, number of partial products are ‘n+1/2’.Thus,

in Radix 4 the number of partial products is reduced to half.

To have high speed multipliers, Modified Booth’s Algorithm

is an ultimate solution. This algorithm scans strings of three

bits at a time.

The numbers of steps involved in Radix 4 multiplication

algorithm are shown below:

Fig.1 Radix 4 multiplication steps

In Modified Booth’s (Radix 4) Algorithm, the

multiplicand is recoded based on bits of multiplier which can

take any value from + 1, + 2 or 0. Three bits of multiplier are

compared at a time, by using overlapping technique. Similar

to Radix 2, we have to group bits of multiplier starting from

LSB for which first block only uses two bits, considering

third bit as zero. Following steps are to be performed in order

to generate recoded multiplier of Radix-4:

a) In order to ensure that n is even, extend the sign bit

1 position (if necessary).

b) Add a 0 to right of the LSB of multiplier.

c) Based on the value of each recoded bit, each partial

product will be 0, +M, -M, +2M or -2M.

For Radix 4 bit pairing is done as shown below:

 0 1 1 1 0 0 1 1 0

Following table depicts the functional operation of Radix 4

Booth encoder:

TABLE II. RADIX-4 ENCODING RULES

Xn Xn+1 Xn-

1

Recoded

Bits

Operations Performed

0 0 0 0 0

0 0 1 +1 +M

0 1 0 +1 +M

0 1 1 +2 +2M

1 0 0 -2 -2M

1 0 1 -1 -1M

1 1 0 -1 -1M

1 1 1 0 0

In above table ‘M’ is nothing but multiplicand

Consider multiplicand and multiplier is composed of

4 bits respectively.

Multiplicand 1100

Multiplier 1010

So, according to Radix 4 recoding rules, partial products

obtained are:

PP0= 1000

PP1= 0100

From above example, it can be concluded that if

there is 4 bit number, obtained partial products are 2 i.e. for

‘n’ bit number we get ‘n/2’ partial products. Since, the

number of partial products are reduced, speed of

multiplication process increases. Final product of

multiplication is obtained by adding partial products.

IV. RESULTS AND DISCUSSION

Fig.2 RTL schematic of Radix-4 Booth Multiplier

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090557

Vol. 5 Issue 09, September-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 620

Fig.3 Internal RTL Schematic

Fig.4 Simulation result of Radix-4 multiplication for unsigned number

Fig.5 Simulation result of Radix-4 multiplication for signed number

TABLE III. DEVICE UTILIZATION OF RADIX-4 BOOTH

MULTIPLIER

Logic Utilization

Used

Available

Utilization

Number of 4 input

LUTs

169

7,168

2%

Number of occupied

slices

86

3,584

2%

Number of slices

containing only

related logic

86

86

100%

Number of bonded

IOBs

33

141

23%

The multiplication based on Radix-4 Booth algorithm has

been simulated on ISim simulator of Xilinx 13.4 software and

implemented on FPGA platform for which above results are

obtained. Table III gives device utilization information of

Radix-4 Booth multiplication.

V. CONCLUSION

When taken into consideration the examples of Radix-2

and Radix-4 multiplication, it can be concluded that, Radix-4

Booth multiplication halves the number of partial products

and helps to increase the speed of multiplication operation.

This algorithm can be extended to Radix-8 for which

complexity is somewhat high, but the generated partial

products will reduce to ‘n/3’.

ACKNOWLEDGMENT

I am sincerely thankful to my project guide Prof. Anil G.

Sawant who has always been guiding and motivating

throughout the project time. I could not have achieved desired

objective without his support. It has been a great pleasure for

me to work under his guidance.

I am also proud to thank Prof. V. S. Hendre, Head of our

Department, for approving our project work with great

interest.

This project could never have been completed without

referring works of many other people whose details are

mentioned in references section. I thank everyone and

acknowledge my indebtedness to all these people.

REFERENCES

[1] Sukhmeet Kaur, Suman and Manpreet Signh Manna,

“Implementation of Modified Booth Algorithm (Radix 4) and

its Comparison with Booth Algorithm (Radix 2)”, Advance in

Electronic and Electric Engineering, Vol. 3, No.6, pp.683-690,

2013.

[2] Shubhi Shrivastva, Pankaj Gulhane, “Optimized model of

Radix-4 Booth Multiplier in VHDL”, International Journal of

Emerging Technology and Advanced Engineering, Vol.4, Issue

9, September 2014.

[3] Prof .V .R. Raut, P. R .Loya, “FPGA Implementation of Low

Power Booth Multiplier Using Radix-4 Algorithm”,

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, vol.3, Issue 8,

August 2014.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090557

Vol. 5 Issue 09, September-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 621

[4] K. Babulu, G. Parasuram, “FPGA Realization of Radix-4

Booth Multiplication Algorithm for High Speed Arithmetic

Logics”, International Journal of Computer Science and

Information Technologies, vol.2 (5), 2011.

[5] Bodasingi Vijay Bhaskar, Valiveti Ravi Tejesvi, Reddi Surya

Prakash Rao, “Implementation of Radix-4 Multiplier with a

parallel MAC unit using MBE Algorithm”, International

Journal of Advanced Research in Computer Engineering and

Technology, vol.1, Issue 5,July2012.

[6] Wai-Leong Pang, Kah-Yoong Chan, Sew-Kin Wong, Choon-

Siang Tan, “VHDL Modeling of Booth Radix-4 Floating Point

Multiplier for VLSI Designer’s Library” WSEAS TRANS. on

SYSTEMS. Issue 12, Vol. 12, December 2013.

[7] Rashmi Ranjan, Pramodini Mohanty, “A New VLSI

Architecture of Parallel Multiplier Based on Radix-4 Modified

Booth Algorithm using VHDL”, International Journal of

Computer Science and Engineering Technology (IJCSET),

vol.3, No.4, April 2012.

[8] Khalid Javeed, Xiaojun Wang, Mike Scott, “Serial and Parallel

Interleaved Modular Multipliers on FPGA Platform”, 2015 25th

International conference on Field Programmable Logic and

Applications (FPL), pp.1-4.

[9] S.Shafiulla Basha, Syed. Jahangir Badashah, “Design and

Implementation of Radix-4 Based High Speed Multiplier using

Minimal Partial Products”, International Journal of Advances

in Engineering & Technology, vol.4, Issue 1, pp.314-325, July

2012.

[10] A. B. Pawar, “Radix-2 Vs Radix-4 High Speed Multiplier”,

International Journal of Advanced Research in Computer

Science and Software Engineering, Vol.5, Issue 3, March 2015.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090557

Vol. 5 Issue 09, September-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 622

