
 Design and Optimization of Secure Byzantine

Fault-Tolerant MapReduce on Large Cluster

Boopalan Mani

1
, Sudha T

2

Department of Computer Science and Engineering,

Muthayammal Engineering College, Anna University, Chennai, India

Abstract— Most Byzantine fault-tolerant state machine replication

(BFT) algorithms have a primary replica that is in change of

ordering the clients requests. Recently it was shown that this

dependence allows a faulty primary to degrade the performance

of the system to a small fraction of what the environment allows.

In this paper we present Kerberos-based model with tokens for

data blocks and processing nodes. We also especially interested in

the performance of Byzantine fault-tolerant MapReduce

framework that can run in two modes: (a) non-speculative (b)

speculative. We designed the framework that they used around

twice more resource instead of three times of alternative solutions.

This novel mode of operation deals with those attacks at much

lower cost.

Keywords— MapReduce, Byzantine Fault Tolerance, Kerberos

based model

I. INTRODUCTION

 Many applications with high security and fault tolerance

requirements can benefit from Byzantine fault-tolerant

algorithms. These algorithms allow systems to continue to

provide a correct service even when some of their components

fail, either accidentally (e.g., by crashing) or due to malicious

faults (arbitrarily). Several algorithms have already been

presented in the literature: secure parallel algorithm [2],

DRAM errors [9], sabotage tolerance mechanism [4], state

machine approach [5].

Intrusion-tolerant systems are usually built using replications

techniques. The idea is that there is a service that is replicated

in a set of servers that execute requests from the clients. State

machine replication (SMR) is one of these techniques, which

allows making any deterministic distributed service fault or

intrusion tolerant. In this form of replication all (non-faulty)

servers have to execute all client’s requests in the same order.

Among these algorithms, Castro and Liskov’s

PBFT [7] is often considered to be a baseline in terms of
performance, probably because it was the first efficient
algorithm in the area and many others derive from it.

Although it is crucial to tolerate crashes of tasks and data

corruptions in disk, other faults that can affect the correctness

of results of MapReduce are known to happen and will

probably happen more often in the future [8]. A recent 2.5-year

long study of DRAM errors in a large number of servers in

Google datacenters,concluded that these errors are more

prevalent than previously believed, with more than 8% DIMMs

affected by errors yearly, even if protected by error correcting

codes (ECC) [9]. A Microsoft study of 1 million consumer PCs

showed that CPU and core chipset faults are also frequent.

MapReduce is designed to work on large clusters and process

large data, so errors will tend to occur.

Sarmenta proposed a similar approach in the context of

volunteer computing to tolerate malicious volunteers that

returned false results of tasks they were supposed to execute

[4].However, he considered only bag-of-tasks applications,

which are simpler than MapReduce jobs. A similar but more

generic solution consists in using the state machine replication

approach [5]. This approach is not directly applicable to the

replication of MapReduce tasks, only to replicate the jobs,

which is expensive. In the yearly 2010 Yahoo! Developers

(O’Malley et al. 2010) attempted to improve the state of

security [11]. Many security loopholes like poor default SASL

(Simple Authentication Security Layer) quality of protection,

incomplete authentication and lack of data security that flows

between the nodes were identified (Wei et al., 2009).

This paper introduces a replication based verification scheme

which is decentralized scheme to run MapReduce securely.

They also proposed a way to detect misbehavior of malicious

users. Major concerns like SASL, and securing the channel are

achieved through Kerberos based Authentication and through
Remote Procedure Call via Secure Shell mechanism. In this

study, the three technical challenges identified were resolved

by transferring the tokens securely between mappers and

reducers. Also presents a Byzantine fault-tolerant (BFT)

MapReduce runtime system that tolerates arbitrary faults by

executing each task more than once and comparing the outputs.

The challenge was to do this efficiently, without the need of

running 3f +1replicas to tolerate at most f faulty, which would

be the case with state machine replication. The system uses

several techniques to reduce the overhead. With f =1, it

manages to run only two copies of each task when there are no

faults plus one replica of a task per faulty replica, instead of a

533

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20391

replica of the whole job as in the result comparison scheme. In

this paper we are especially interested in the performance of

the BFT MapReduce system. Therefore, we designed it to work

in two modes: non-speculative and speculative. What

differentiates them is the moment when reduce tasks start to

run. In non-speculative mode, f +1 replicas of all map tasks

have to complete successfully for reduce tasks to be launched.

In speculative execution, reduce tasks start after one replica of

all map tasks finish. While the reduce tasks are running, it is

necessary to validate the remaining map replicas’ outputs. If at

some point it is detected that the input used in the reduce tasks

was not correct, the tasks will be restarted with the correct

input.

II. MAPREDUCE AND HADOOP

MapReduce is a mechanism used by Hadoop to distribute work

across a cluster. There is a single master managing a number of

slaves. The input file, which resides on a Hadoop distributed

file-system (HDFS) throughout the cluster, is split into even-

sized chunks replicated for fault-tolerance. HDFS is used to

store the input the input splits and the final output of the job,

but not the intermediate results (map outputs, reduce outputs)

which are saved in local disc. Hadoop divides each MapReduce

job into a set of tasks. Each chunk of input is first processed by

a map task, which outputs a list of key-value pairs generated by

a user-defined map function. Map outputs are split into buckets

based on key. When all maps have finished, reduce tasks apply

a reduce function to the list of map outputs with each key.

Hadoop runs several maps and reduces concurrently on each

slave – two of each by default to overlap computation and I/O.

Each slave tells the master when it has empty task slots. The

scheduler then assigns it tasks to accept new tasks of

MapReduce process.
HDFS is implemented by using a single name node, the master

node that manages the file name space operations (open, close,

rename) and controls access to nodes, usually one per node in

the cluster, which manage storage attached to the nodes that

they run on, and serve block operations(create, read, write,

remove, replicate). Data nodes communicate to move blocks

around, for load balancing and to keep the replication level on

failures. MapReduce jobs are submitted to and managed by a

centralized service called job tracker. This service creates one

map task per input split and a predefined number of reduce

tasks. Each node available to run Hadoop tasks run a software

service called task tracker that launches the tasks. Using

different nodes, the job tracker runs speculative tasks for those

lagging behind and restarts the failed ones. The goal of

speculative execution is to minimize a job’s response time.

Response time is most important for short jobs where a user

wants an answer quickly, such as queries on log data for

debugging, monitoring and business intelligence. Short jobs are

a major use case for MapReduce. Response time is also clearly

important in a pay-by-the-hour environment like EC2.

Speculative execution is less useful in long jobs, because only

the last wave of tasks is affected, and it may be inappropriate

for batch jobs if throughput is the only metric of interest,

because speculative tasks imply wasted work. However, even

in pure throughput systems, speculation may be beneficial to

prevent the prolonged life of many concurrent jobs all suffering

from straggler tasks. Such nearly complete jobs occupy

resources on the master and disk space for map outputs on the

slaves until they terminate. Nonetheless, in our work, we focus

on improving response time for short jobs.

A. Tokens for security:

The new Hadoop version 0.21 provides improved security

performance by creation of tokens at different layers of

MapReduce process. Token is a Secret Key created by the

Name node and Job tracker and is shared between the clients,

Task tracker and Data nodes. Name nodes create Delegation

Token and BlockAccess Token and Job tracker creates Job

tokens to perform MapReduce job. Tokens like BlockAccess

and Job token are designed with timestamp inorder to verify

the tokens authenticity and its validity.

B. Delegation tokens:

Delegation token generated by Name node is created to

enhance the security of Hadoop by allowing user authentication

and pass credentials to all tasks of a job. It is generated to

prevent flooding of
authentication requests at the start of a job and is shared as a

secret key between the client and Name node/ Job tracker. For

subsequent calls, Delegation token alone can be verified by

Name node for each user instead of using Kerberos tickets.

C. BlockAccess token:

Inorder to securely access the contents of HDFS BlockAccess

token is created. Actually Name node creates such tokens and

is accessed by Data node. To access a file, clients communicate

with Name node to find out which Data node the user intends

to access inorder to fetch the file. Data nodes need to know

from the Name node whether the client is authorized the client,

information about the client block_id is passed using

BlockAccess token from Name node to the owner of the file.

Using the token, the owner/client can access the data block.

D. Job token:

The token is created to securely run MapReduce jobs. It is

generated by Job tracker and distributed to all MapReduce

tasks (Task tracker nodes) in order to run jobs by providing a

check as whoever comes with the token is authentic to run.

When task communicates with Task tracker for results or

computational purposes, Job token is used. Job tracker

automatically renews tokens while jib is running and cancels

tokens when jib is finished and hence it is not persistent.

E. Flow of tokens:

All communication between the nodes of distributed the nodes

of distributed environment takes place via SecureShell (SSH).

Despite transferring tokens via SecureShell, Hadoop services

534

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20391

are authentication protocol. Hadoop users who access services

are authenticated through a Kerberos authentication protocol.

Hadoop clients access its service via Hadoops Remote

Procedure Call (RPC) library. Each users login name sent

across the connection setup is authenticate through Kerberos

based authentication to Name node in existing Hadoop 0.21

version. Kerberos has a key distribution center (KDC) which

maintains Authentication Server and Ticket Granting Server.

Ticket Granting Server is used to request a service ticket from

ticket granting server. Client uses the service ticket to accept

the delegation token from the Name node through RPC call.

The three step Kerberos authentication for each call overloads

the KDC on cluster for which a Delegation token is introduced.

Figure 1 describes how the Kerberos service ticket and tokens

flow during a MapReduce process. After inital user

authentication through Kerberos the whole process involves

running MapReduce jobs on a Hadoop cluster

Fig 1: Map Reduce Architecture describing flow of tokens

and accessing HDFS blocks. To access HDFS using

BlockAccess token, the access information of a BlockAccess

token issued by Name node is used on Data node to verify its

authenticity, The token enables its owner to access certain Data

blocks. Here Data nodes do not enforce access control on data

blocks. This allows an unauthorized client to read a data block

when it knows the block_id. So, insecure channels in between

the nodes allow malicious users/attacks to fetch other blocks.

MapReduce jobs running on a cluster accepts the job tokens

created, while running the task. The authenticity is checked

with the users Delegation and Job token.
 Handling attacks associated with token: Client Server

interaction in a distributed environment like HDFS or

MapReduce is prone to numerous attacks. So such an

environment needs to be authenticated. Tokens are created and

assumed to follow a secure channel. Besides communication

security threats such as Denial of Service attacks,

eavesdropping attacks, replay attacks, MapReduce faces issues

while maintaining the integrity, confidentiality of data (Malley,

2010). Authenticated users obtaining a delegation tokens shares

the token between the user and the Name node. The Delegation

token need to be protected when passed over insecure channels.
 An Attacker can affect the integrity of the MapReduce
process in two ways.

1. When a client asks Name node for block_ids

(location) of a file on HDFS, Name node checks that

the client is authorized to access the file and send back

block_ids along with a BlockAccess token for each

block.

2. While running jobs on HDFS cluster an intruder who
is capable of acquiring Job tokens can modify the
results of a Map or Reduce task.

III. SYSTEM MODEL

Several risks related to HDFS data integrity, privacy and

confidentiality of Hadoop users needs to be reduced by

performing cryptographic encryption techniques on tokens

when traversed from one node to another in Hadoop

environment.

A. Using Asymmetric encryption mechanism:

The proposed technique is to replace the symmetric HMAC-

SHA 1 system supported in the version Hadoop 0.21 by a

public key system. In the case of BlockAccess token, instead of

storing the same symmetric key over several Data nodes, a

public-private key pair is generated between the Name node

and every Data node. Similarly, job token are encrypted using a

public key shared by the Job tracker and the task. When a job is

submitted by a Hadoop client, the Job tracker first generates

key pairs with each of the Task tracker. When a job is split to

the various Task trackers, the job token ensures as secure

communication. In this case, the token is encrypted by the key

which is available only at the encrypting end i.e., Job tracker

and sent to the corresponding Task tracker node. At this end,

the task tracker decrypts the token using its private key and

checks the authenticity. Inorder to ensure that token is arrived

from the appropriate Job tracker; its digital signature is

appended with the tokens. Similarly, during data access from

HDFS, public keys for encryption are stored in the Name node

and each of the Data nodes has the corresponding private keys.

The blocks at the respective Data nodes can be retrieved by

verifying the corresponding encrypted tokens.

B. Using symmetric encryption mechanism:

The symmetric hashing is replaced by a symmetric encryption

mechanism. In the case of BlockAccess token, instead of

storing the same symmetric key over several Data nodes a

private key is generated between the Name node and every

Data node. Similarly job tokens are encrypted using a private

key and is shared by the Job tracker and each of the tasks.

When a job is submitted by the user, the Job tracker generates

private keys and shares it with each of the Task trackers. When

a job is split to the various Task trackers, the job token ensures

the secure communication. The Job tracker encrypts the Job

token by the private key. It is decrypted using the same private

key and checked accordingly at the Task tracker node. Inorder

to access data from HDFS, BlockAccess tokens are encrypted

using private keys that are maintained by Name node and each

of the Data nodes which receives the encrypted form of

block_id from the user, checks the token by decrypting it with

535

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20391

the same private key sent by the Name node.

Fig 2: Depicting an attacker stealing Block access Token, Symmetric key and
Job token when traversed between Name node and Data

C. Refinement in the existing HMAC-SHA 1 mechanism of

Hadoop’s MapReduce:

The model shares the same secret key across nodes to compute

the hash value of tokens like BlockAccess and Job token. The

algorithm designed generates a unique secret key for each and

every node instead of using the same key. Such concept

introduced, reduces the risk of stealing or destroying the

contents of all blocks and is exposed only to the block of

HDFS. An even malicious user who steals a secret key is

unable to access the contents from other blocks and is exposed

only to the block for which the secret key is assigned. The

implementation of such mechanism involves key_init method

to set the default parameters for the key. But generate keys

method in this case uses the actual crypto method to generates

as many secret keys as the mapper nodes. After that the

processes are connected by secure channels, so no messages

are lost, duplicated or corrupted. In practice this is provided by

TCP connections. We assume the existence of a hash function

to produce message digests. This function is collision-resistant,

i.e., it is infeasible to find two inputs that produce the same

output (e.g., SHA- 1 or SHA-3, recently chosen by the NIST).

Our algorithm is configured with a parameter f. In distributed

fault-tolerant algorithms f is usually the maximum number of

faulty replicas but in our case the meaning of f is different: f is

the maximum number of faulty replicas that can return the

same output given the same input. Consider a function F, map

or reduce, and that the algorithm executes several replicas of

the function with the same input I, so all correct replicas return

the same output O. Consider also the worst case in which there

are f faulty replicas that execute the function F and F1(I)

= F2(I) = ... = Ff(I) = ≠ O. The rationale is that f is the

maximum number of replicas that can be faulty and still allow
the system to find out that the correct result is .

If the system selects the correct output by picking the
output returned by f +1task replicas, it will never select O

because it is returned by at most f replicas. Similarly to the

usual parameter f, our f has a probabilistic meaning (hard to

quantify precisely): it means that the probability of more than f

faulty replicas of the same task returning the same output is

negligible.

IV. SECURE BFT MAPREDUCE ALGORITHM

The algorithm designed to generates a unique secret key for

each and every node instead of using the same key. By using

key_init method for setting up the default parameters and

generate_keys function for generating public and private keys.

The private keys generated were based on different values of

commonly used public key values such as 17,257 and 6553.

The public and private key pair created in the Name node of

cluster show in Table 1. The Job token are encrypted using

public key shared by Job tracker would start 2f+1 replica of

each map task in different nodes and task trackers. Job tracker

start also 2f+1 replica of each reduce task. Each reduce task

fetches the output from all replicas, picks the most voted

results, processes them and stores the output in HDFS. At this

end, the task tracker decrypts the token using its private key

and check for authenticity.

Nodes of Cluster scheduled Private Key Public
to run Map/Reduce tasks key

Node 31 4 59E+029 65537
Node 8 6 14E+017 17

Node 23 2 71041713 65537
Node 32 2 50889438643593 17
Node 17 5 70E+017 65537
Node 26 1 54E+020 65537

Table 1: Asymmetric Keys created in Name node and Distributed to nodes of

Cluster

The first simplistic solution is very expensive because it

replicates everything 2f +1times: task execution, map task

inputs reading, communication of map task outputs, and

storage of reduce task outputs. Starting from this solution, we

propose a set of techniques to avoid these costs:

A. Deferred execution:

Crash faults, which happen more often, are detected using

Hadoop standard heartbeats, while arbitrary faults are dealt

using replication and voting. Given the expected low

probability of arbitrary

536

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20391

Fig 3: Flowchart of (a) non-speculative and (b) speculative execution

faults, there is no point in always executing 2f+1 replicas to

obtain the same result almost every time. Therefore, our job

trackers start only f +1 replicas of map and reduce tasks. After

map tasks finish, the reduce tasks check if all f +1replicas of

every map tasks produced the same output. If some outputs do

not match, more replicas are started until there are f +1

matching replies. At the end of execution, the reduce output is

also checked to see if it is necessary to launch more reduce

replicas. This algorithm is represented as a flowchart in Figure

3(a).

B. Digest outputs:

f+1 map outputs and f+1 reduce outputs must be matched to be

considered correct. These outputs tend to be large, so it is

useful to fetch only one output from some task replica and

compare its digest with those of the remaining replicas. With

this solution, we avoid transferring the same data several times

causing additional network traffic, and we just transfer data

from one replica and the digests from the rest.

C. Tight storage replication:

We write the output of all reduce tasks to HDFS with a
replication factor of 1, instead of 3 (the default value). We are
already replicating the tasks and their outputs will be written on
different locations, so we do not need to replicate these outputs
even more. A job starts reading replicated data from HDFS, but
from this point forward, the data that is saved in the HDFS by
each (replicated) task is no longer replicated.

D. Speculative execution:

Waiting for f +1matching map results before starting a reduce

task can worsen the time for the job completion. A way to deal

with the problem is for the job tracker to start executing the

reduce tasks immediately after receiving the first copy of every

map output (see Figure 3(b)). Whenever f +1replicas of a map

task finish, if the results do not match, another replica is

executed. If f +1replicas of a map finish with matching results

but these results do not match the result of the first copy of the

task, then the reduces are stopped and launched again with the

correct inputs. For a job to complete, f +1matching map and

reduce results must be found for all tasks, and the reduces must

have been executed with matching map outputs.

V. CONCLUSION AND DISCUSSION

The paper presents RSA encryption algorithm, a novel

Byzantine fault-tolerant algorithm that tolerates performance

attacks by changing the primary replica whenever a batch of

pending requests is accepted for execution. This way of

tolerating these attacks is much simpler and more efficient than

other solutions in the literature. This novel mode of operation

also does some load balancing among the servers, allowing an

improvement of Practical BFT’s throughput in the fault-free

case.

The model is designed with providing three levels of security

first at user level, second at the MapReduce process level and

third at the HDFS level. To reduce the complexity involved in

maintaining the tokens, a simple hashing technique

methodology is explained that offers a reliable way to run the

MapReduce process. Such mechanism prevent Distributed

Denial of Service attack, Replay attacks on nodes involved in

MapReduce process and stealing of keys from the nodes of

cluster. As well as our algorithm masks these faults by

executing each tasks more than once, comparing the outputs of

these execution, and disregarding non-matching outputs. This

simple but powerful idea allows our secure BFT MapReduce to

tolerate any number of faulty task executions at the cost of one

re-execution per faulty task. The framework is designed that

they used around twice more resources instead of three times of

alternative solutions. And also supports considerable
cost for critical applications.

As future work, we plan to study the possibility of running

MapReduce in several datacenters in order to tolerate faults

that severely impact a subset of them. Furthermore, we aim to

537

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20391

study to what extend similar schemes can be applied to

generalizations of MapReduce like Dryad or Pig Latin.

REFERENCES
[1] Pedro Costa, Marcelo Pasin, Alysson Bessani, Miguel Correia, “ n the

Performance of Byzantine Fault-Tolerant MapReduce,” in IEEE
Transactions on Dependable and Secure Computing, vol.22,
no.4.,Mar.2013

[2] M.K.Suresh Gautham and Sowmy Narayanan, “Improving Security of

Parallel Algorithm Using Key Encryption Techniques,” in Proceedings of
the 12th asian network for scientific information Publications, vol.1,
no.12, 2013.

[3] T. White, Hadoop: The Definitive Guide. ’Reilly, 2009.

[4] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer

computing systems,” Future Generation Computer Systems, vol. 18, pp.
561–572, Mar. 2002.

[5] F. B. Schneider, “Implementing fault-tolerant service using the state

machine aproach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[6] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, vol. 20,
no. 4, Nov. 2002.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in

Proceedings of the 19th ACM
 Symposium on Operating Systems Principles, 2003, pp. 29–43.

[8] B. Schroeder and G. A. Gibson, “Understanding failures in petascale

computers,” Journal of Physics: Conference Series, vol. 78, no. 1, 2007.

[9] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:

a large-scale field study,” in Proceedings of the 11th International Joint
Conference on Measurement and Modeling of Computer Systems,

 2009, pp. 193–204.

[10] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”

ACM Transactions on Programing Languages and Systems, vol. 4, no. 3,
pp. 382–401, Jul. 1982.

[11] ’Malley, ., K.Zhang, S. Radia, R.Marti and C.Harell, 2010.

Hadoop security design,
[12] http://carfield.com.hk/document/distributed/hadoop-security-

design.pdf.

[12] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” in Proceedings of the 6th Symposium on Operating Syste

538

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20391

