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Abstract— Most Byzantine fault-tolerant state machine replication 

(BFT) algorithms have a primary replica that is in change of 

ordering the clients requests. Recently it was shown that this 

dependence allows a faulty primary to degrade the performance 

of the system to a small fraction of what the environment allows. 

In this paper we present Kerberos-based model with tokens for 

data blocks and processing nodes. We also especially interested in 

the performance of Byzantine fault-tolerant MapReduce 

framework that can run in two modes: (a) non-speculative (b) 

speculative. We designed the framework that they used around 

twice more resource instead of three times of alternative solutions. 

This novel mode of operation deals with those attacks at much 

lower cost. 
 

Keywords— MapReduce, Byzantine Fault Tolerance, Kerberos 

based model 

I.  INTRODUCTION   

 Many applications with high security and fault tolerance 

requirements can benefit from Byzantine fault-tolerant 

algorithms. These algorithms allow systems to continue to 

provide a correct service even when some of their components 

fail, either accidentally (e.g., by crashing) or due to malicious 

faults (arbitrarily). Several algorithms have already been 

presented in the literature: secure parallel algorithm [2], 

DRAM errors [9], sabotage tolerance mechanism [4], state 

machine approach [5]. 
 

Intrusion-tolerant systems are usually built using replications 

techniques. The idea is that there is a service that is replicated 

in a set of servers that execute requests from the clients. State 

machine replication (SMR) is one of these techniques, which 

allows making any deterministic distributed service fault or 

intrusion tolerant. In this form of replication all (non-faulty) 

servers have to execute all client’s requests in the same order. 

Among these algorithms, Castro and Liskov’s 
 

PBFT [7] is often considered to be a baseline in terms of 
performance, probably because it was the first efficient 
algorithm in the area and many others derive from it. 

 
Although it is crucial to tolerate crashes of tasks and data 

corruptions in disk, other faults that can affect the correctness 

of results of MapReduce are known to happen and will 

probably happen more often in the future [8]. A recent 2.5-year 

long study of DRAM errors in a large number of servers in 

Google datacenters,concluded that these errors are more 

prevalent than previously believed, with more than 8% DIMMs 

affected by errors yearly, even if protected by error correcting 

codes (ECC) [9]. A Microsoft study of 1 million consumer PCs 

showed that CPU and core chipset faults are also frequent. 

MapReduce is designed to work on large clusters and process 

large data, so errors will tend to occur. 

 
Sarmenta proposed a similar approach in the context of 

volunteer computing to tolerate malicious volunteers that 

returned false results of tasks they were supposed to execute 

[4].However, he considered only bag-of-tasks applications, 

which are simpler than MapReduce jobs. A similar but more 

generic solution consists in using the state machine replication 

approach [5]. This approach is not directly applicable to the 

replication of MapReduce tasks, only to replicate the jobs, 

which is expensive. In the yearly 2010 Yahoo! Developers 

(O’Malley et al. 2010) attempted to improve the state of 

security [11]. Many security loopholes like poor default SASL 

(Simple Authentication Security Layer) quality of protection, 

incomplete authentication and lack of data security that flows 

between the nodes were identified (Wei et al., 2009). 

 
This paper introduces a replication based verification scheme 

which is decentralized scheme to run MapReduce securely. 

They also proposed a way to detect misbehavior of malicious 

users. Major concerns like SASL, and securing the channel are 

achieved through Kerberos based Authentication and through 
Remote Procedure Call via Secure Shell mechanism. In this 

study, the three technical challenges identified were resolved 

by transferring the tokens securely between mappers and 

reducers. Also presents a Byzantine fault-tolerant (BFT) 

MapReduce runtime system that tolerates arbitrary faults by 

executing each task more than once and comparing the outputs. 

The challenge was to do this efficiently, without the need of 

running 3f +1replicas to tolerate at most f faulty, which would 

be the case with state machine replication. The system uses 

several techniques to reduce the overhead. With f =1, it 

manages to run only two copies of each task when there are no 

faults plus one replica of a task per faulty replica, instead of a 
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replica of the whole job as in the result comparison scheme. In 

this paper we are especially interested in the performance of 

the BFT MapReduce system. Therefore, we designed it to work 

in two modes: non-speculative and speculative. What 

differentiates them is the moment when reduce tasks start to 

run. In non-speculative mode, f +1 replicas of all map tasks 

have to complete successfully for reduce tasks to be launched. 

In speculative execution, reduce tasks start after one replica of 

all map tasks finish. While the reduce tasks are running, it is 

necessary to validate the remaining map replicas’ outputs. If at 

some point it is detected that the input used in the reduce tasks 

was not correct, the tasks will be restarted with the correct 

input. 

II. MAPREDUCE AND HADOOP 

MapReduce is a mechanism used by Hadoop to distribute work 

across a cluster. There is a single master managing a number of 

slaves. The input file, which resides on a Hadoop distributed 

file-system (HDFS) throughout the cluster, is split into even-

sized chunks replicated for fault-tolerance. HDFS is used to 

store the input the input splits and the final output of the job, 

but not the intermediate results (map outputs, reduce outputs) 

which are saved in local disc. Hadoop divides each MapReduce 

job into a set of tasks. Each chunk of input is first processed by 

a map task, which outputs a list of key-value pairs generated by 

a user-defined map function. Map outputs are split into buckets 

based on key. When all maps have finished, reduce tasks apply 

a reduce function to the list of map outputs with each key. 

Hadoop runs several maps and reduces concurrently on each 

slave – two of each by default to overlap computation and I/O. 

Each slave tells the master when it has empty task slots. The 

scheduler then assigns it tasks to accept new tasks of 

MapReduce process. 
HDFS is implemented by using a single name node, the master 

node that manages the file name space operations (open, close, 

rename) and controls access to nodes, usually one per node in 

the cluster, which manage storage attached to the nodes that 

they run on, and serve block operations( create, read, write, 

remove, replicate). Data nodes communicate to move blocks 

around, for load balancing and to keep the replication level on 

failures. MapReduce jobs are submitted to and managed by a 

centralized service called job tracker. This service creates one 

map task per input split and a predefined number of reduce 

tasks. Each node available to run Hadoop tasks run a software 

service called task tracker that launches the tasks. Using 

different nodes, the job tracker runs speculative tasks for those 

lagging behind and restarts the failed ones. The goal of 

speculative execution is to minimize a job’s response time. 
 

Response time is most important for short jobs where a user 

wants an answer quickly, such as queries on log data for 

debugging, monitoring and business intelligence. Short jobs are 

a major use case for MapReduce. Response time is also clearly 

important in a pay-by-the-hour environment like EC2. 

Speculative execution is less useful in long jobs, because only 

the last wave of tasks is affected, and it may be inappropriate 

for batch jobs if throughput is the only metric of interest, 

because speculative tasks imply wasted work. However, even 

in pure throughput systems, speculation may be beneficial to 

prevent the prolonged life of many concurrent jobs all suffering 

from straggler tasks. Such nearly complete jobs occupy 

resources on the master and disk space for map outputs on the 

slaves until they terminate. Nonetheless, in our work, we focus 

on improving response time for short jobs. 

A. Tokens for security: 

The new Hadoop version 0.21 provides improved security 

performance by creation of tokens at different layers of 

MapReduce process. Token is a Secret Key created by the 

Name node and Job tracker and is shared between the clients, 

Task tracker and Data nodes. Name nodes create Delegation 

Token and BlockAccess Token and Job tracker creates Job 

tokens to perform MapReduce job. Tokens like BlockAccess 

and Job token are designed with timestamp inorder to verify 

the tokens authenticity and its validity. 

B. Delegation tokens: 

Delegation token generated by Name node is created to 

enhance the security of Hadoop by allowing user authentication 

and pass credentials to all tasks of a job. It is generated to 

prevent flooding of 
authentication requests at the start of a job and is shared as a 

secret key between the client and Name node/ Job tracker. For 

subsequent calls, Delegation token alone can be verified by 

Name node for each user instead of using Kerberos tickets. 

C. BlockAccess token: 

Inorder to securely access the contents of HDFS BlockAccess 

token is created. Actually Name node creates such tokens and 

is accessed by Data node. To access a file, clients communicate 

with Name node to find out which Data node the user intends 

to access inorder to fetch the file. Data nodes need to know 

from the Name node whether the client is authorized the client, 

information about the client block_id is passed using 

BlockAccess token from Name node to the owner of the file. 

Using the token, the owner/client can access the data block. 

D. Job token: 

The token is created to securely run MapReduce jobs. It is 

generated by Job tracker and distributed to all MapReduce 

tasks (Task tracker nodes) in order to run jobs by providing a 

check as whoever comes with the token is authentic to run. 

When task communicates with Task tracker for results or 

computational purposes, Job token is used. Job tracker 

automatically renews tokens while jib is running and cancels 

tokens when jib is finished and hence it is not persistent. 

E. Flow of tokens: 

All communication between the nodes of distributed the nodes 

of distributed environment takes place via SecureShell (SSH). 

Despite transferring tokens via SecureShell, Hadoop services 
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are authentication protocol. Hadoop users who access services 

are authenticated through a Kerberos authentication protocol. 

Hadoop clients access its service via Hadoops Remote 

Procedure Call (RPC) library. Each users login name sent 

across the connection setup is authenticate through Kerberos 

based authentication to Name node in existing Hadoop 0.21 

version. Kerberos has a key distribution center (KDC) which 

maintains Authentication Server and Ticket Granting Server. 

Ticket Granting Server is used to request a service ticket from 

ticket granting server. Client uses the service ticket to accept 

the delegation token from the Name node through RPC call. 

The three step Kerberos authentication for each call overloads 

the KDC on cluster for which a Delegation token is introduced. 

Figure 1 describes how the Kerberos service ticket and tokens 

flow during a MapReduce process. After inital user 

authentication through Kerberos the whole process involves 

running MapReduce jobs on a Hadoop cluster 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Map Reduce Architecture describing flow of tokens 

 
and accessing HDFS blocks. To access HDFS using 

BlockAccess token, the access information of a BlockAccess 

token issued by Name node is used on Data node to verify its 

authenticity, The token enables its owner to access certain Data 

blocks. Here Data nodes do not enforce access control on data 

blocks. This allows an unauthorized client to read a data block 

when it knows the block_id. So, insecure channels in between 

the nodes allow malicious users/attacks to fetch other blocks. 

MapReduce jobs running on a cluster accepts the job tokens 

created, while running the task. The authenticity is checked 

with the users Delegation and Job token. 
 Handling attacks associated with token: Client Server 

interaction in a distributed environment like HDFS or 

MapReduce is prone to numerous attacks. So such an 

environment needs to be authenticated. Tokens are created and 

assumed to follow a secure channel. Besides communication 

security threats such as Denial of Service attacks, 

eavesdropping attacks, replay attacks, MapReduce faces issues 

while maintaining the integrity, confidentiality of data (Malley, 

2010). Authenticated users obtaining a delegation tokens shares 

the token between the user and the Name node. The Delegation 

token need to be protected when passed over insecure channels. 
 An Attacker can affect the integrity of the MapReduce 
process in two ways. 

 
1. When a client asks Name node for block_ids 

(location) of a file on HDFS, Name node checks that 

the client is authorized to access the file and send back 

block_ids along with a BlockAccess token for each 

block.  
 

2. While running jobs on HDFS cluster an intruder who 
is capable of acquiring Job tokens can modify the 
results of a Map or Reduce task.  

III. SYSTEM MODEL 

Several risks related to HDFS data integrity, privacy and 

confidentiality of Hadoop users needs to be reduced by 

performing cryptographic encryption techniques on tokens 

when traversed from one node to another in Hadoop 

environment. 

A. Using Asymmetric encryption mechanism: 

The proposed technique is to replace the symmetric HMAC-

SHA 1 system supported in the version Hadoop 0.21 by a 

public key system. In the case of BlockAccess token, instead of 

storing the same symmetric key over several Data nodes, a 

public-private key pair is generated between the Name node 

and every Data node. Similarly, job token are encrypted using a 

public key shared by the Job tracker and the task. When a job is 

submitted by a Hadoop client, the Job tracker first generates 

key pairs with each of the Task tracker. When a job is split to 

the various Task trackers, the job token ensures as secure 

communication. In this case, the token is encrypted by the key 

which is available only at the encrypting end i.e., Job tracker 

and sent to the corresponding Task tracker node. At this end, 

the task tracker decrypts the token using its private key and 

checks the authenticity. Inorder to ensure that token is arrived 

from the appropriate Job tracker; its digital signature is 

appended with the tokens. Similarly, during data access from 

HDFS, public keys for encryption are stored in the Name node 

and each of the Data nodes has the corresponding private keys. 

The blocks at the respective Data nodes can be retrieved by 

verifying the corresponding encrypted tokens. 

B. Using symmetric encryption mechanism: 

The symmetric hashing is replaced by a symmetric encryption 

mechanism. In the case of BlockAccess token, instead of 

storing the same symmetric key over several Data nodes a 

private key is generated between the Name node and every 

Data node. Similarly job tokens are encrypted using a private 

key and is shared by the Job tracker and each of the tasks. 

When a job is submitted by the user, the Job tracker generates 

private keys and shares it with each of the Task trackers. When 

a job is split to the various Task trackers, the job token ensures 

the secure communication. The Job tracker encrypts the Job 

token by the private key. It is decrypted using the same private 

key and checked accordingly at the Task tracker node. Inorder 

to access data from HDFS, BlockAccess tokens are encrypted 

using private keys that are maintained by Name node and each 

of the Data nodes which receives the encrypted form of 

block_id from the user, checks the token by decrypting it with 
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the same private key sent by the Name node. 

 

 

  

 

 

 

 

 

Fig 2: Depicting an attacker stealing Block access Token, Symmetric key and 
Job token when traversed between Name node and Data 

 

C. Refinement in the existing HMAC-SHA 1 mechanism of 

Hadoop’s MapReduce:  

The model shares the same secret key across nodes to compute 

the hash value of tokens like BlockAccess and Job token. The 

algorithm designed generates a unique secret key for each and 

every node instead of using the same key. Such concept 

introduced, reduces the risk of stealing or destroying the 

contents of all blocks and is exposed only to the block of 

HDFS. An even malicious user who steals a secret key is 

unable to access the contents from other blocks and is exposed 

only to the block for which the secret key is assigned. The 

implementation of such mechanism involves key_init method 

to set the default parameters for the key. But generate keys 

method in this case uses the actual crypto method to generates 

as many secret keys as the mapper nodes. After that the 

processes are connected by secure channels, so no messages 

are lost, duplicated or corrupted. In practice this is provided by 

TCP connections. We assume the existence of a hash function 

to produce message digests. This function is collision-resistant, 

i.e., it is infeasible to find two inputs that produce the same 

output (e.g., SHA- 1 or SHA-3, recently chosen by the NIST). 

Our algorithm is configured with a parameter f. In distributed 

fault-tolerant algorithms f is usually the maximum number of 

faulty replicas but in our case the meaning of f is different: f is 

the maximum number of faulty replicas that can return the 

same output given the same input. Consider a function F, map 

or reduce, and that the algorithm executes several replicas of 

the function with the same input I, so all correct replicas return 

the same output O. Consider also the worst case in which there 

are f faulty replicas that execute the function F and F1(I) 
 

= F2(I) = ... = Ff(I) = ≠ O. The rationale is that f is the 

maximum number of replicas that can be faulty and still allow 
the system to find out that the correct result is .  

If the system selects the correct output by picking the 
output returned by f +1task replicas, it will never select O 

because it is returned by at most f replicas. Similarly to the 

usual parameter f, our f has a probabilistic meaning (hard to 

quantify precisely): it means that the probability of more than f 

faulty replicas of the same task returning the same output is 

negligible. 

IV. SECURE BFT MAPREDUCE ALGORITHM 

The algorithm designed to generates a unique secret key for 

each and every node instead of using the same key. By using 

key_init method for setting up the default parameters and 

generate_keys function for generating public and private keys. 

The private keys generated were based on different values of 

commonly used public key values such as 17,257 and 6553. 

The public and private key pair created in the Name node of 

cluster show in Table 1. The Job token are encrypted using 

public key shared by Job tracker would start 2f+1 replica of 

each map task in different nodes and task trackers. Job tracker 

start also 2f+1 replica of each reduce task. Each reduce task 

fetches the output from all replicas, picks the most voted 

results, processes them and stores the output in HDFS. At this 

end, the task tracker decrypts the token using its private key 

and check for authenticity. 

 
Nodes of Cluster scheduled Private Key Public 
to run Map/Reduce tasks   key 

Node 31 4 59E+029 65537 
Node 8 6 14E+017 17 

Node 23 2 71041713 65537 
Node 32 2 50889438643593 17 
Node 17 5 70E+017 65537 
Node 26 1 54E+020 65537 

 
Table 1: Asymmetric Keys created in Name node and Distributed to nodes of 

Cluster 

 
The first simplistic solution is very expensive because it 

replicates everything 2f +1times: task execution, map task 

inputs reading, communication of map task outputs, and 

storage of reduce task outputs. Starting from this solution, we 

propose a set of techniques to avoid these costs: 

A. Deferred execution:  

Crash faults, which happen more often, are detected using 

Hadoop standard heartbeats, while arbitrary faults are dealt 

using replication and voting. Given the expected low 

probability of arbitrary 
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Fig 3: Flowchart of (a) non-speculative and (b) speculative execution 

 
faults, there is no point in always executing 2f+1 replicas to 

obtain the same result almost every time. Therefore, our job 

trackers start only f +1 replicas of map and reduce tasks. After 

map tasks finish, the reduce tasks check if all f +1replicas of 

every map tasks produced the same output. If some outputs do 

not match, more replicas are started until there are f +1 

matching replies. At the end of execution, the reduce output is 

also checked to see if it is necessary to launch more reduce 

replicas. This algorithm is represented as a flowchart in Figure 

3(a). 

B. Digest outputs: 

f+1 map outputs and f+1 reduce outputs must be matched to be 

considered correct. These outputs tend to be large, so it is 

useful to fetch only one output from some task replica and 

compare its digest with those of the remaining replicas. With 

this solution, we avoid transferring the same data several times 

causing additional network traffic, and we just transfer data 

from one replica and the digests from the rest. 

C. Tight storage replication: 

We write the output of all reduce tasks to HDFS with a 
replication factor of 1, instead of 3 (the default value). We are 
already replicating the tasks and their outputs will be written on 
different locations, so we do not need to replicate these outputs 
even more. A job starts reading replicated data from HDFS, but 
from this point forward, the data that is saved in the HDFS by 
each (replicated) task is no longer replicated. 

D. Speculative execution: 

Waiting for f +1matching map results before starting a reduce 

task can worsen the time for the job completion. A way to deal 

with the problem is for the job tracker to start executing the 

reduce tasks immediately after receiving the first copy of every 

map output (see Figure 3(b)). Whenever f +1replicas of a map 

task finish, if the results do not match, another replica is 

executed. If f +1replicas of a map finish with matching results 

but these results do not match the result of the first copy of the 

task, then the reduces are stopped and launched again with the 

correct inputs. For a job to complete, f +1matching map and 

reduce results must be found for all tasks, and the reduces must 

have been executed with matching map outputs. 

V. CONCLUSION AND DISCUSSION 

The paper presents RSA encryption algorithm, a novel 

Byzantine fault-tolerant algorithm that tolerates performance 

attacks by changing the primary replica whenever a batch of 

pending requests is accepted for execution. This way of 

tolerating these attacks is much simpler and more efficient than 

other solutions in the literature. This novel mode of operation 

also does some load balancing among the servers, allowing an 

improvement of Practical BFT’s throughput in the fault-free 

case. 

 
The model is designed with providing three levels of security 

first at user level, second at the MapReduce process level and 

third at the HDFS level. To reduce the complexity involved in 

maintaining the tokens, a simple hashing technique 

methodology is explained that offers a reliable way to run the 

MapReduce process. Such mechanism prevent Distributed 

Denial of Service attack, Replay attacks on nodes involved in 

MapReduce process and stealing of keys from the nodes of 

cluster. As well as our algorithm masks these faults by 

executing each tasks more than once, comparing the outputs of 

these execution, and disregarding non-matching outputs. This 

simple but powerful idea allows our secure BFT MapReduce to 

tolerate any number of faulty task executions at the cost of one 

re-execution per faulty task. The framework is designed that 

they used around twice more resources instead of three times of 

alternative solutions. And also supports considerable 
cost for critical applications. 
 
As future work, we plan to study the possibility of running 

MapReduce in several datacenters in order to tolerate faults 

that severely impact a subset of them. Furthermore, we aim to 
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study to what extend similar schemes can be applied to 

generalizations of MapReduce like Dryad or Pig Latin. 
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