
Design and Simulation of a Wind Speed

Measuring System for Cup Anemometer using an

8-Bit Processor

Akinkuade S. T

 Science Technology Department,
 Federal Polytechnic,

 Ado-Ekiti, Nigeria

Oni S. A

Physics Department,
 Ekiti State College of Education,

Ikere-Ekiti, Nigeria

Abstract—Wind is of high importance man; accurate

measurement of the speed of wind at different locations can

provide vital information to those that are concerned. A

method of converting the number of pulses produced per

second by the rotary encoder of a three-cup anemometer to

instantaneous speed of wind is designed; the design is based on

division of a 16-bit binary number by an 8-bit number and the

conversion of 2-byte Hexadecimal number to binary coded

decimal using an 8-bit microcontroller. Results of simulation

shows that wind speed can be measured accurately with a

resolution of 0.05 m/s.

Keywords—Wind;Speed;Encoder:nemometer;Hexadecimal;

Decimal; Resolution.

I. INTRODUCTION

 A meteorological device for measuring the speed

of wind is an anemometer. [1] is of the opinion that

anemometers can be used to measure wind pressure. The

simplest type of anemometer is the cup anemometer which

consists of a vertical shaft with a number of horizontal arms

on which cups are attached, the cups catch the wind and

cause the shaft to rotate.Shortcomings of this type of

anemometer such as relative insensitivity in low wind

velocities and large inertia of cups which leads to

overestimation of velocity in a gusty windhad been removed

by careful design [2].This type of anemometer continues to

be relevant in wind speed measurement because they are the

only instruments accepted in power performance

measurements in international standards [3]. Several designs

of cup, shaft, bearing and encoder of cup anemometers as

well as combination of parts for whole anemometer system

is given by [1].Anemometers can provide useful information

to man, knowledge of wind velocity is required both in air

and sea transportation, in weather forecasting, in agriculture

to monitor soil erosion as well as evapotranspiration from

plants, in pollution and wildfire control and in determination

of safety of suspension bridges and site workers in tall

buildings. It is a major factor that must be considered if a

site will be suitable for wind farm.Since the power obtained

from the wind is proportional to the cube of the wind speed,

a small error in themeasurement will results in a much larger

error in thepredictedwind power.

Major sources of uncertainties in power performance of

wind turbinesare due to errors associated with the

measurement of wind speed [4]. For easy reading and

recording, the output of an anemometer should be electrical,

this can be in form of voltage, current or pulse signal that

can be digitized internally, displayed on readout or sent to a

data acquisition system.In a cup-anemometer where

electrical pulses are generated in proportion to the wind

speed, the number of pulses generated per revolution

depends on the rotary encoder of the anemometer, the

number can vary between one to three for a magnet-based

encoder and six to forty-four for an optoelectronics-based

system [5].The use of a microelectronics system for

processing the number of pulses generated in an

anemometer, in order to produce the output signal, will

result in better accuracy and reliability because of its ability

to perform many operational tasks over and over

automatically.However an arithmetic operation on a 16-bit

data which may be produced in the system using 8-bit

microprocessors is a challenge. In this paper, methods that

were employed to process a 16-bit binary number in order to

obtain a result in Binary Coded Decimal (BCD) are

presented.

II. THEORY OF OPERATION OF CUP ANEMOMETER

 The cups of the anemometer undergo a circular

motion in a horizontal plane as they catch the wind this is

shown in figure 1, the vertical shaft to which they are

attached rotates about a its central axis.The tangential

velocity ‘v’ of a cup is a measure of the average velocity of

the wind; it is related to the angular velocity 𝜔 of the

rotating shaft by:

v = 𝜔r (1)

Where r is the radius of the circular motion of the cups

measured in metres, it is the distance between the centre of

each cup to the centre of rotation of the shaft, v is measured

in metres per second (m/s) while 𝜔 is measured in radians

per second (rad/s). The angular displacement 𝜃 of the shaft

in a period of time t depends on 𝜔 as shown below:

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120478

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

479

Fig. 1 Circular path of rotating cups of an anemometer.

𝜔= 𝜃/t(2)

The total angular displacement in a complete revolution is

2𝜋 radians, while the time to complete the revolution is the

period T, according to (2),

𝜔=2𝜋/T(3)

The number of complete revolutions per second is the

frequency f of the shaft, it is measured in Hertz, and it is

equal to the inverse of the period.Therefore (3) can be

expressed as:

𝜔=2𝜋𝑓 (4)

The expression that relates the tangential velocity of the

wind to the frequency of rotation of the shaft of an

anemometer can be obtained from (1) and (4) as:

v =2𝜋𝑓r(5)

 The shaft of a cup anemometer is normally

attached to a rotary encoder which rotates with the shaft and

ensure that a number of electrical pulses are produced per

revolution, the encoder is expected to generate ten pulses

per revolution, it is to be made of a circular plate on which

ten equally spaced circular holes are to be drilled as depicted

in figure 2. As theencoderrotates with the shaft it will

interrupt a beam of light incident on a photo sensor; so for

each complete revolution of the shaft, ten electrical pulses

will be generated.

Fig. 2 Rotary encoder of the anemometer

 If the shaft is rotating at a constant speed, the

number of pulses nproduced per period of revolution is

given as:

n= 10/T =10f (7)

Therefore

f = n/10 (8)

Using (8) in (5),

v =2𝜋rn/10 (9)

From (9), velocity of the wind is proportional to the number

of pulses generated per unit time, the constant of

proportionality depends on the r; making r to be 0.0795 m,

makes vandn to be related as:

v =n/20 (10)

According to [5], the relationship between the frequency

and the wind speed can be expressed as:

v = Af + B (11)

Where A andB are coefficients which are obtained through

calibration in a wind tunnel.

III. COMPUTATION OF THEWIND SPEED

A. Division of 2-byte number by a byte

 The count generated in the anemometer can be

represented as D3D2D1D0(Hex) was divided by 0×14, byte

by byte as follow, register A was used to hold D3D2and

register B is used to hold the divisor 0×14.Using the DIV

A,B instruction,D3D2 was divided by 0×14, after the

execution of the instruction, the quotient Q3 in register A

was kept in a memory location while the remainder R1in

register B was multiplied by 0×10 and added to the third

digit D1, this resulted in 10R1+ D1. R1 cannot be more than

0×13, while the maximum value of D1 cannot be greater

than 0×0F, i.e.

 10R1+ D1≤ 13F (11)

The sum 10R1+ D1 is checked if the most significant bit

(MSB) is 1 or 0, If the MSB is 0, the result is a byte, it is

divided by 0×14andthe quotient Q2 is kept in another

memory location, but If MSB is 1, the division is performed

as:

(10R1+D1)/0×14= 0×100/0×14+ LM/0×14 (12)

LM being the last two digits of (10R1+ D1) in hexadecimal,

division of 0×100 by 0×14 results in 0×0C with 0×10 as its

remainder. The remainder is added to LM prior to division

by 0×14, the quotient of (0×10 + LM)/0×14 is added to

0×0C and kept as Q2in a location in the memory.

Remainder of this division is multiplied by 0×10 and added

to the last digit Z, the result is divided by 0×14 as explained.

Therefore,

WXYZ(Hex)/0×14 = Q3Q2Q1 + R (13)

Where Q3Q2Q1is the quotient of the division, and R is the

remainder. Q3, Q2, Q1, and R, are 8-bit binary numbers. Q2

and Q1are combined as a byte.

B. Fractional part of the calculation

 The remainder R in (13), being a fraction of

0×14and a fraction of 20 in decimal, R is multiplied by 5 to

make a fraction of 10 in decimal, the result is converted to

BCD then ASCII, and displayed after a decimal point.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120478

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

480

C. Conversion of 2-byte hexadecimal number to binary

coded decimal (BCD)

 A 2-byte hexadecimal number; A3A2A1A0 is

converted to BCD by starting with the least byte A1A0, this

is divided by 0×0A successively until the quotient is zero,

the remainder of the last division is the Most Significant

Bit (MSB), if the remainders are D2, D1 and D0

respectively, they are arranged as packed BCD numbers;D2

D1D0. The hexadecimal number N in the upper byte A3A2

is taken as N(FF+01) since it is generated each time a carry

is generated from lower byte, this is equivalent to 256N in

Decimal. 56 is therefore added to D1D0in decimal, the

result is kept in a register and 2 is added with carry to

D2the result is kept in another register, any carry bit

generated is taken care of, This procedure is repeated N

times, the contents of the two registers and the carry is the

BCD equivalent of A3A2A1A0.

IV. METHODOLOGY

 Timer 1 of a microcontroller AT 80C52 was used

in mode 01 i.e. as a 16-bit counter. It was made to count the

number of pulses in Hexadecimal system, for one second;

the count was held in two registers TH1 and TL1 of the

timer, it was divided by 0×14i.e. 20 in decimal, according to

(10), the integral and fractional parts of the result were

converted to Binary coded decimal, then to American

Standard Code For Information Exchange (ASCII) for it to

be displayed on a dot matrix liquid crystal display (LCD) as

the speed in m/s. The source code was written in assembly

language, compiled and simulated using the diagram shown

in figure 3, clock pulses of different frequencies were fed to

the microcontroller and the results were shown in table 1.

V. SOURCE CODE OF THE SYSTEM

ORG 0000H

MOV P2,#00H ;make P2 an output port

MOV P1,#0FFH ;make P1 an output port

MOV P0,#00H ;make P0 an input port

MOV P3,#00H ;make P3 an input port

SETB P3.5

MOV TMOD,#51H ;make timer 1 a 16-bit counter

MAIN:

MOV TH1,#00H ;Clear timer 0 register

MOV TL1,#00H

CALL DELAY ; wait for 0.5 sec

CALL COUNT ;store count into locations 38&

39

CALL FEND ;convert count to velocity by dividing by

20

CALL HEXBCD;call the subroutine to ;convert hex to

bcd

CALL DODO ;call display subroutine

CALL FINAL

JMP MAIN

DELAY:

SETB TR1 ;start counter

BACK:

MOV R3,#14H ;r3 = 20

WAS: MOV R2,#63H ;r2 = 100

DEW: MOV R1,#0FBH ;r1 = 250DJNZ R1,$

DJNZ R2,DEW

DJNZ R3,WAS

CLR TR1 ;stop counter

RET

DELAY2:

MOV R3,#00FH ;r3 = 15

DJNZ R3,$

RET

COUNT:

MOV 39,TL1 ;move low byte of the count to A

MOV 38,TH1 ;move high byte of the count to A

RET

FEND:

MOV A,38 ;copy TH1 to accumulator

MOV B,#14H ;place 14 in register B

DIV AB ;divide th1 by 14

MOV 30,A ;store Q1 in location 30

MOV A,B ;move Rem1 into A

MOV B,#10H ;pace 10 in B

MUL AB ;(Rem1 x 10)B= MS BYTE, A= LS

BYTE

MOV 36,A ;store LS BYTE in 36

MOV A,B ;copy MS Byte into A

MOV 37,A ;store ms byte into 37

MOV A,39 ;copy TL1 to A

ANL A,#0F0H ;clear lower nible of tl1

SWAP A ;

MOV 42,A ;copy upper nible of TL1 into 42

ADD A,36 ;LS byte of (Rem1 x 16)+uppernible of

TL1

MOV 43,A ;store the result in 43

MOV A,37;copy MS byte of (Rem1 x 16)into A

CJNE A,#01H,SEAT ;if A is not =1,go to SEAT

MOV 40,#00CH ;100/14= C + 10, place C ;in 40

MOV 41,#10H ;place 10 in location 41

MOV A,43 ;

ADD A,41 ;rem of 100/14;10+content of 43

SJMP SAT ;go to SAT

SEAT:

MOV 40,#00H ;if MS byte of ;Rem1*16)is not=1

MOV A,43

SAT: MOV B,#14H ;B=14

DIV AB ;A/14

ADD A,40 ;add the quotient to C

MOV 31,A ;keep the second digit in 31

MOV A,B ;mov Rem into A

MOV B,#10H

MUL AB ;A= LS BYTE, B= MS BYTE

MOV 34,A ;LS BYTE STORED

MOV A,B

MOV 35,A ;STORE MS BYTE INTO 35

MOV A,39 ;copy TL1 to A

ANL A,#00FH ;CLEAR UPPER NIBLLE OF TL1

MOV 42,A ;keep the result in 42

ADD A,34 ;add the result to LS byte of TL1

MOV 43,A ;keep result in 43

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120478

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

481

MOV A,35 ;

CJNE A,#01H,SEAT1

MOV 40,#00CH

MOV 41,#10H

MOV A,43

ADD A,41

SJMP SAT1

SEAT1:

MOV 40,#00H

MOV A,42

ADD A,34

SAT1:

MOV B,#14H

DIV AB

ADD A,40

MOV 32,A ;3rd digit MOV A,B

MOV 33,A

MOV A,31 ;combine 2nd & 3rd digits to a byte

SWAP A ;combine 2nd & 3rd digits to a byte

ORL A,32 ;combine 2nd & 3rd digits to a byte

MOV R0,A ;keep result in R0

MOV A,30 ;get 1st digit

MOV R7,A ;keep it in R7

RET

HEXBCD:

MOV A,R0 ;move the low byte of hex no into A

MOV B,#00AH ;put 10 into register B

DIV AB ;divide content of A by 10

MOV R0,B ;put the remainder in R0

MOV B,#00AH ;put 10 into register B

DIV AB; divide cont. of A by 10 ;(quotient is in A, rem in

B)

MOV R1,B ;put the remainder in R1

MOV R3,A ;put the msd of low byte in R3

MOV A,R1

SWAP A

ORL A,R0

MOV R0,A

MOV A,R7 ;move the high byte of the hex no ;into A

MOV R5,A ;copy the same number in R5

MOV R6,#00H ;set R6 to zero

CJNE R7,#00H,MORE

MOV R4,#00H ;if R7 =0, let R4 =0 and R2 =0

MOV R2,#00H

JMP SUM ;go to sum

MORE:

MOV R4,#56H ;if R7 is not zero, let R4 =56, R2=2

MOV R2,#02H

SUM:

MOV A,R0 ;put the content of R1 into A

ADD A, R4 ;add the content of R4 to A

DA A ;convert the result to BCD

MOV R0,A ;store the result in R1

MOV A,R3 ;move R3 into A

ADDC A,R2 ;add R2 to A Plus any carry earlier

;generated

DA A ;convert result to BCD

JNC REST ;if there is no carry, go to REST

INC R6 ;if there is carry, increase R6 by 1

REST: MOV R3,A ;store the sum in R3

DJNZ R5,SUM ;reduce R5 by 1, if it is not zero, go ;to

sum

OUT:

MOV A,R6 ;put the content of R6 in A

LAST:

MOV A,33

MOV B,#05H

MUL AB

MOV B,#00AH

DIV AB

MOV 45,A

MOV A,B

SWAP A

ORL A,45

SWAP A

MOV 45,A

RET

DODO:

MOV A,R3 ;mov content of R3 TO ;accumulator

ANL A,#0F0H ;clear the lower nibble

SWAP A

ORL A,#30H ;convert BCD to ASCII

MOV 48,A ;keep first digit in location 48

MOV A,R3 ;mov content of R3 TO ;accumulator

ANL A,#00FH ;clear the UPPER nibble

ORL A,#30H ;convert BCD to ASCII

MOV 49,A ;keep SECOND digit in location 49

MOV A,R0 ;;mov content of R0 TO ;accumulator

ANL A,#0F0H ;clear the lower nibble

SWAP A

ORL A,#30H ;convert BCD to ASCII

MOV 4AH,A ;keep THIRD digit in location 4A

MOV A,R0 ;;mov content of R0 TO ;accumulator

ANL A,#00FH ;;clear the UPPER nibble

ORL A,#30H ;convert BCD to ASCII

MOV 4BH,A ;keep 4th digit in location 4B

MOV A,45 ;;mov content of 45 TO ;accumulator

ANL A,#0F0H ;clear the lower nibble

SWAP A

ORL A,#30H ;convert BCD to ASCII

MOV 4CH,A ;keep FIFTH digit in location 4C

MOV A,45 ;;mov content of 45 TO ;accumulator

ANL A,#00FH ;;clear the UPPER nibble

ORL A,#30H ;convert BCD to ASCII

MOV 4DH,A ;keep SIXTH digit in location 4D

RET

FINAL:

MOV A,#0CH ;shift cursor right

ACALL COMNWRT ;call command subroutine

ACALL DELAY3 ;give LCD some time

MOV A,#80H ;cursor at line 1, pos. 0

ACALL COMNWRT ;call command subroutine

ACALL DELAY3 ;give LCD some time

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120478

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

482

MOV A,48; copy the content of location 48 to

;Accumulator

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,49;copy the content of location 49 to

;Accumulator

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,4AH;copy the content of location 4A to

;Accumulator

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,4BH;copy the content of location 4B to

;Accumulator ACALL DATAWRT ;call display

subroutine

ACALL DELAY3 ;give LCD some time

MOV A,#'.' ;display DECIMAL POINT

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,4CH;copy the content of location 4C to

;Accumulator

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,4DH;copy the content of location 4D to

;Accumulator

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,#' ' ;display a space

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,#'m' ;display letter m

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,#'/' ;display /

ACALL DATAWRT ;call display subroutine

ACALL DELAY3 ;give LCD some time

MOV A,#'s' ;display letter s

ACALL DATAWRT ;call display subroutine

RET

COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to port 1

CLR P3.0 ;RS=0 for command

CLR P3.1 ;R/W=0 for write

SETB P3.2 ;E=1 for high pulse

ACALL DELAY3 ;give LCD some time

CLR P3.2 ;E=0 for H-to-L pulse

RET

DATAWRT: ;write data to LCD

MOV P1,A ;copy reg A to port 1

SETB P3.0 ;RS=1 for data

CLR P3.1 ;R/W=0 for write

SETB P3.2 ;E=1 for high pulse

ACALL DELAY3 ;give LCD some time

CLR P3.2 ;E=0 for H-to-L pulse

RET

DELAY3: MOV R3,#50 ;50 or higher for fast CPUs

HERE2: MOV R4,#255 ;R4 = 255

HERE: DJNZ R4,HERE ;stay until R4 becomes 0

 DJNZ R3,HERE2

 RET

 END

VI. SHEMATIC OF THE DESIGN

The diagram of the system is as shown in Fig. 3

Fig. 3 Schematic of the measuring System

VII. RESULTS OF SIMULATION

 The results obtained for different frequencies

during simulation and the expected values based on

(10) is shown in table 1.

TABLE I.RESULTS OF SIMULATION

Frequency

(Hz)

Displayed

results

(m/s)

Expected

results

(m/s)

Absolute

% error

1.0 0000.05 0.05 0

50.0 0002.50 2.50 0

320.0 0016.00 16.00 0

5600.0 0280.00 280.00 0

65500.0 3274.90 3275.00 0.00305

65536.0 3276.70 3276.80 0.00305

65537.0 3276.75 3276.85 0.00305

65538.0 3276.75 3276.90 0.00457

65539.0 0000.05 3276.95 99.9984

65540.0 0000.10 3277.00 99.9969

VIII. DISCUSSION

 For low frequencies, pulses are counted accurately.

However at high frequenciesbetween65500.0 Hz and

65537.0 Hz, there is an error of 0.1in the displayed result,

this amounted to two pulses short of the expected number,

and percentage error of 0.00305; the maximum count that

can be held in TH1 and TL1 registers is FFFF in

Hexadecimal which is equivalent to 65535 in Decimal, due

to shortage of count, acceptable results were obtained up to

65538.0 Hz, above this frequency, the count in the registers

roll over and the excess count remains in them. This is

computed and shown in the display hence the sudden rise in

percentage error at 65539.0 Hz and above.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120478

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

483

IX. CONCLUSION

The result of simulation shows that the system can

be used to measure the speed of wind in a cup anemometer

accurately. The minimum and maximum speeds that can be

measured are 0.25 and 3276.75 m/s respectively. The offset

B and any other necessary corrections have be determined

during calibration, after the construction of the anemometer.

X. REFERENCES
[1] Tan Wee Choon, Churia Prakash, Lim EngAik, Teoh TheanHin,

Development of Low Wind Speed Anemometer, International

Journal on Advanced Science Engineering Information
Technology,Vol.2 No.3 ISSN 2088-5334, 2012

[2] Sheppard P A,an Improved Design of Cup Anemometer, Imperial

College of Science and Technology 1940, http://ualberta.ca 2014
[3] Troels F P, Development of Classification System for Cup

Anemometers- CLASSCUP, Pitney Bowes Management Systems,

Roskilde, 2003, pg. 5
[4] J. A. Dahlberg, T.F. Pedersen & P. Busch, ACCUWIND-Methods for

Classification of Cup Anemometers, Riso National Laboratory,

Roskidle, 2006, pg. 68, ISBN 87-550-3514-0
[5] S. Pindado, J. Cubas, & F. Sorribes-Palmer, The Cup Anemometer, a

Fundamental Meteorological Instrument for the Wind Energy

Industry, International Electronic Conference on Sensors and
Applications, www.mdpi.com/journal/sensors, 2014.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120478

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

484

