

Design and Simulation of Pipelined Double Precision Floating Point

Adder/Subtractor and Multiplier Using Verilog

Onkar Singh (1) Kanika Sharma (2)

Dept. ECE, Arni University, HP (1) Dept. ECE, NITTTR Chandigarh (2)

Abstract

A floating-point unit (FPU) is a part of

a computer system specially designed to carry out

operations on floating point numbers. This paper

presents FPGA implementation of a single unit

named Adder/Subtractor which is able to perform

both double precision floating point addition and

subtraction and a double precision floating point

multiplier. Both the design is based on pipelining

so the overall throughput is increased. Both units

are implemented using Verilog and the code is

dumped into vertex-5 FPGA.

1. Introduction

An arithmetic unit (AU) is the part of a computer

processing unit that carries out arithmetic operations on

the operands in computer instruction words. Generally

arithmetic unit (AU) performs arithmetic operations

like addition, subtraction, multiplication and division.

Some processors contain more than one AU for

example, one for fixed-point operations and another

for floating-point operations. To represent very large or

small values, large range is required as the integer

representation is no longer appropriate. These values

can be represented using the IEEE-754 standard based

floating point representation. Typical operations

are addition, subtraction, multiplication and division. In

most modern general purpose computer architectures,

one or more FPUs are integrated with the CPU;

however many embedded processors, especially older

designs, do not have hardware support for floating-

point operations. Almost every language has a floating-

point data type; computers from PC‘s to

supercomputers have floating-point accelerators; most

compilers will be called upon to compile floating-point

algorithms from time to time; and virtually every

operating system must respond to floating-point

exceptions such as overflow.

In the proposed design both adder/subtractor and

multiplier units are designed by using pipelining so the

throughput of operation can be increased.

Basically in designing floating point units there are

three stages to do for completing the tasks and these

stages are:

Pre-normalize: The operands are transformed into

formats that makes them easy and efficient to handle

internally.

Arithmetic core: The basic arithmetic operation are

done here for example addition, subtraction or

multiplication

Post-normalize: The result will be normalized if

possible and then transformed into the format specified

by the IEEE standard.

The pipelining concept is used in between these three

stages. When certain inputs are come into pre-

normalize stage after pre-normalizing these inputs are

transferred into arithmetic core and this time the first

unit named pre-normalize unit is free to serve for next

inputs so the throughput of overall design can be

improved.

Inputs Pipeline Stages

1
st
 pair of

inputs

Pre-

normalize

Arithmetic

core

Post-

normalize

2
nd

 pair of

inputs

 Pre-

normalize

Arithmetic

core

3
rd

 pair of

inputs

 Pre-

normalize

Figure 1.1: Pipelining operation

The IEEE 754 is a floating point standard established

by IEEE in 1985. It contains two representations for

115

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

floating-point numbers, the IEEE single precision

format and the IEEE double precision format.

1.1 IEEE Single Precision Format: The IEEE

single precision format uses 32 bits for representing a

floating point number, divided into three subfields, as

illustrated in figure 1.2

S Exponent Fraction

1 bit 8 bits 23 bits

Figure 1.2: IEEE single precision floating point format

1.2 IEEE Double Precision Format: The IEEE

double precision format uses 64 bits for representing a

floating point number, as illustrated in figure 1.3

S Exponent Fraction

1 bit 11 bits 52 bits

Figure 1.3: IEEE double precision floating-point format

2. Floating Point Adder/Subtractor

The block diagram of the proposed adder/subtractor unit

is shown in figure 2.1 the unit supports double precision

floating point addition and subtraction. In this design

pipelining concept is used so the throughput of the design

is increased.

Two floating point numbers are added as shown.

(F1 * 2
E1

) + (F2 * 2
E2

) = F * 2
E

Two floating point numbers are subtracted as shown.

(F1 * 2
E1

) - (F2 * 2
E2

) = F * 2
E

In order to add/Subtract two fractions, the associated

exponents must be equal. Thus, if the exponents E1 and

E2 are different, we must unnormalize one of the

fractions and adjust the exponents accordingly. The

smaller number is the one that should adjusted so that if

significant digits are lost, the effect is not significant

2.1 The unit has following inputs:

1. Two 64-bit operands (opa, opb)

2. Four rounding mode

00=Round to nearest even: This is the standard default

rounding. The value is rounded up or down to the

nearest infinitely precise result. If the value is exactly

halfway between two infinitely precise results, then it

should be rounded up to the nearest infinitely precise

even.

01=Round-to-Zero: Basically in this mode the number

will not be rounded. The excess bits will simply get

truncated, e.g. 3.47 will be truncated to 3.5

10=Round-Up: In this mode the number will be

rounded up towards +∞, e.g. 5.2 will be rounded to 6,

while -4.2 to -4

11=Round-Down: The opposite of round-up, the

number will be rounded up towards -∞, e.g. 5.2 will be

rounded to 5, while -4.2 to -5

3. Clock (Global)

4.Enable (set high to start operation)

5. Fpu_op (0=add, 1=sbtract)

6. Restart (global)

Figure 2.1: Double precision floating point

adder/subtractor

116

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

2.2 The unit has following outputs:

1. 64-bit output (63:0)

2. Ready (goes high when output is available)

2.3 Steps required to carry out floating point

addition/Subtraction are as follows

1. Compare exponents. If the exponents are not equal,

shift the fraction with the smaller

exponent right and add 1 to its exponent; repeat until

the exponents are equal.

2. Add/Subtact the fractions.

3. If the result is 0, set the exponents to the appropriate

representation for 0 and exit.

4. If fraction overflow occurs, shift right and add 1 to

the exponent to correct the overflow.

5. If the fraction is unnormalized, shift left and

subtracts 1 from the exponent until the

fraction is normalized.

6. Check for exponent overflow. Set overflow

indicator, if necessary

7. Round to the appropriate number of bits.

3. Floating Point Multiplier

In this section, the design of multiplier for floating

point numbers is proposed.

Given two floating point numbers, the product is

(F1 * 2
E1

) * (F2 * 2
E2

) = (F1 * F2) * 2
(E1+E2)

 = F * 2
E

3.1 The unit has following inputs:
1. Two 64-bit operands (opa, opb)

2. Four rounding mode (00=Round to nearest even,

01=Round to zero, 10=Round up, 11=Round down)

3. Clock (Global)

4. Enable (set high to start operation)

5. Restart (global)

3.2 The unit has following outputs:

1. 64-bit output (63:0)

2. Ready (goes high when output is available)

3.3 Double Precision Floating Point

Multiplication Operation:
There are two operand named operand A and operand

B to be multiplied. The mantissa of operand A and the

leading ‗1‘ (for normalized numbers) are stored in the

53-bit register (mul_a). The mantissa of operand B and

the leading ‗1‘ (for normalized numbers) are stored in

the 53-bit register (mul_b). Multiplying all 53 bits of

mul_a by 53 bits of mul_b would result in a 106-bit

product. Depending on the synthesis tool used, this

might be synthesized in different ways that would not

take efficient advantage of the multiplier resources in

the target device. 53 bit by 53 bit multipliers are not

available in the most popular Xilinx and Altera FPGAs,

so the multiply would be broken down into smaller

multiplies and the results would be added together to

give the final 106-bit product. Instead of relying on the

synthesis tool to break down the multiply, which might

result in a slow and inefficient layout of FPGA

resources, the module (fpu_mul) breaks up the multiply

into smaller 24-bit by 17-bit multiplies. The Xilinx

Virtex5 device contains DSP48E slices with 25 by 18

twos complement multipliers, which can perform a 24-

bit by 17-bit unsigned multiply. The breakdown of the

53-bit by 53-bit floating point multiply into smaller

components

Figure 3.1: Double precision floating point multiplier

The multiply is broken up as follows:
product_a = mul_a[23:0] * mul_b[16:0]

product_b = mul_a[23:0] * mul_b[33:17]

product_c = mul_a[23:0] * mul_b[50:34]

product_d = mul_a[23:0] * mul_b[52:51]

117

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

product_e = mul_a[40:24] * mul_b[16:0]

product_f = mul_a[40:24] * mul_b[33:17]

product_g = mul_a[40:24] * mul_b[52:34]

product_h = mul_a[52:41] * mul_b[16:0]

product_i = mul_a[52:41] * mul_b[33:17]

product_j = mul_a[52:41] * mul_b[52:34]

The mantissa output from the (fpu_mul) module is in

56-bit register (product_7). The MSB is a leading ‗0‘ to

allow for a potential overflow in the rounding module.

The first bit ‗0‘ is followed by the leading ‗1‘ for

normalized numbers, or ‗0‘ for denormalized numbers.

Then the 52 bits of the mantissa The products (a-j) are

added together, with the appropriate offsets based on

which part of the mul_a and mul_b arrays they are

multiplying. The summation of the products is

accomplished by adding one product result to the

previous product result instead of adding all 10

products (a-j) together in one summation. The final

106-bit product is stored in register (product). The

output will be left-shifted if there is not a ‗1‘ in the

MSB of product. The exponent fields of operands A

and B are added together and then the value (1022) is

subtracted from the sum of A and B. If the resultant

exponent is less than 0, than the (product) register

needs to be right shifted by the amount. The final

exponent of the output operand will be 0 in this case,

and the result will be a denormalized number.

4. Synthesis Report

These are the final results which are obtained in the

synthesis report when we are going to synthesis Verilog

code of floating point adder/subtractor and multiplier

on Virtex 5. Table 1 shows the device utilization

summary for adder/subtractor and Table 2 shows

device utilization summary for multiplier. The

parameters such as number of slices registers, number

of slice flip flop, GCLKs etc are outline in the synthesis

report are as follows.

Table 1 Device utilization summary for

adder/subtractor

Slice Logic Utilization Used Availa

ble

Utili

zatio

n

Number of Slice Registers 2,462 19,200 12%

Number used as Flip Flops 2,462

Number of Slice LUTs 2,557 19,200 13%

Number used as logic 2,358 19,200 12%

Number used as Memory 198 5,120 3%

Number used as Shift

Register
198

Number used as exclusive

route-thru
1

Number of route-thrus 106

Number of occupied Slices 944 4,800 19%

Number of LUT Flip Flop

pairs used
3,341

Number of fully used LUT-

FF pairs
1,678 3,341 50%

Number of bonded IOBs 199 220 90%

Number of

BUFG/BUFGCTRLs
2 32 6%

 Number used as BUFGs 2

Average Fanout of Non-

Clock Nets

4.18

Table 2 Device utilization summary for Multiplier

Slice Logic Utilization Used Availa

ble

Utiliz

ation

Number of Slice Registers 1,655 19,200 8%

Number used as Flip Flops 1,654

Number of Slice LUTs 1,100 19,200 5%

Number used as logic 954 19,200 4%

Number used as Memory 145 5,120 2%

Number used as Shift

Register

145

Number used as exclusive

route-thru

1

Number of route-thrus 126

Number of occupied

Slices
519 4,800 10%

Number of LUT Flip Flop

pairs used
1,780

 Number of fully used

LUT-FF pairs
975 1,780 54%

Number of bonded IOBs 198 220 90%

Number of

BUFG/BUFGCTRLs
1 32 3%

Number used as BUFGs 1

Number of DSP48Es 9 32 28%

Average Fanout of Non-

Clock Nets
2.92

118

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

5. Simulation Result
The simulation results of double precision floating

point adder/subtractor (Addition, Subtraction) are

shown in figures 5.1 and 5.2 respectively and the

simulation result for double precision floating point

multiplication is shown in figure 5.3

In the waveform ready is 1 that means the output is

available at the output. Clock is 1 that means clock is

applied to the code. Reset is 0 that define the out is not

zero if the value of reset is 1 that means out is zero. The

value of enable is 1 that means particular operation is

started. fpu_op is 0 for addition and 1 for subtraction.

Opa1 and Opa1 defines the operand one and operand

two respectively and out define the final result. The

r_mode signal defines the various rounding modes.

Figure 5.1: Simulation waveform of double precision floating point addition

Figure 5.2: Simulation waveform of double precision floating point subtraction

119

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

Figure 5.3: Simulation waveform of double precision floating point multiplication

6. Conclusion and Future Work

This paper presents the implementation of double

precision floating point adder/subtractor and multiplier.

The whole design was captured in Verilog Hardware

description language (HDL), tested in simulation using

Model Tech‟s modelsim, placed and routed on a Vertex

5 FPGA from Xilinx. The proposed VLSI design of the

Double Precision adder/subtractor increases the

precision over the Single Precision arithmetic unit and

also throughput. For future work the whole design can

be implemented on vertex-6 FPGA and also other

mathematical units such as divider can be designed.

7. References

[1] Deepa Saini , Bijender M‘dia ―Floating Point Unit

Implementation on FPGA‖ International Journal Of

Computational Engineering Research(IJCER), Vol. 2 ,

pp.972-976, Issue No.3, May-June 2012

[2] Karan Ghmber, Sharmelle Thangjam ―Performance

Analysis of Floating Point Adder using VHDL on

Reconfigurable Hardware‖ International Journal of Computer

Application, Vol.46-No 9, May 2012

 [3] Addanki Purna Ramesh, Pradeep ―FPGA based

Implementation of Double Precision Floating Point

Adder/subtractor using Verilog‖ International Journal of

Emerging Technology and Advanced Engineering, pp.13-

142Volume 2, Issue 7, July 2012

 [4] Dhiraj Sangwan , Mahesh K. Yadav ―Design and

Implementation of Adder/Subtractor and Multiplication Units

for Floating-Point Arithmetic‖ International Journal of

Electronics Engineering, 2(1), pp. 197-203, 2010

[5] Sateesh Reddy, Vinit T Kanojia ―Unified Reconfigurable

Floating-Point Pipelined Architecture‖ International Journal

of Advanced Engineering Sciences and Technologies, Vol

No. 7, Issue No. 2, pp. 271 – 275, 2011

 [6] Rathindra Nath Giri, M.K.Pandit ―Pipelined Floating-

Point Arithmetic Unit (FPU) for Advanced Computing

Systems using FPGA‖ International Journal of Engineering

and Advanced Technology (IJEAT), Volume-1, Issue-4, pp.

168-174, April 2012

[7] Shrivastava Purnima, Tiwari Mukesh, Singh Jaikaran and

Rathore Sanjay ―VHDL Environment for Floating point

120

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

Arithmetic Logic Unit - ALU Design and Simulation‖

Research Journal of Engineering Sciences, Vol. 1(2), pp.1-6,

August -2012

[8] Jongwook Sohn, Earl E. Swartzlander ―Improved

Architectures for a Fused Floating Point Add-Subtract Unit‖

IEEE Transactions on Circuits and Systems—I: regular

papers, Vol. 59, No. 10, pp. 2285-2291, October 2012

 [9] Per Karlstrom, Andreas Ehliar, Dake Liu ―High

Performance, Low Latency FPGA based Floating Point

Adder and Multiplier Units in a Virtex 4‖, 24th Norchip

Conference, pp. 31 – 34, Nov. 2006.

 [10] Liangwei Ge, Song Chen, yuichi Nakamura ―A

Systhesis Method of General Floating Point Arithmetic Units

by Aligned Partition‖, 23rd International Conference on

Circuitd/Systems, Computers and Communications, pp. 1177-

1180, 2008

121

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10099

