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Abstract—We present the details of our energy-

efficient asynchronous floating-point multiplier 

(FPM). We discuss design trade-offs of various 

multiplier implementations. A higher radix array 

multiplier design with operand-dependent carry-

propagation adder and low handshake overhead 

pipeline de-sign is presented, which yields 

significant energy savings while preserving the 

average throughput. Our FPM also includes a 

hardware implementation of denormal and 

underflow cases. When compared against a custom 

synchronous FPM design, our asynchronous FPM 

consumes 3X less energy per operation while 

operating at 2.3X higher throughput. To our 

knowledge, this is the first detailed design of a high-

performance asynchronous IEEE-754 compliant 

double-precision floating-point multiplier. 

   Keywords-Floating-pointarithmetic;asynchronous 

logic circuits; very-large-scale integration; pipeline 

processing 

               1. Introduction 

   Energy-efficient floating-point computation is 

important for a wide range of applications. 

Traditionally, VLSI designers primarily relied on 

CMOS technology and voltage scaling to reduce 

power consumption. With the transistor threshold 

voltage fixed, VDD has been scaling very slowly if at 

all, which means all performance improvements 

come at in increased energy consumption. 

Furthermore, process variations in deep sub-micron 

range have made devices far less robust, which are 

increasingly making it difficult for synchronous 

designers to overcome the problems associated with 

clock skew rates and clock distribution. The findings 

of a recent in-depth study, to explore and devise ways 

to further scale supercomputer peta FLOP 

performance by 1000X, indicate the inadequacy of 

current design practices and technologies to achieve 

the desired throughput within a sustainable power 

budget. This underscores a pressing need for alternate 

de-sign practices, to reduce energy consumption 

behavior in advanced technology nodes. Basically in 

a computer processor operation the floating point 

operations plays very important role. 

At the other end of the spectrum, embedded 

systems that have traditionally been considered low 

performance are demanding higher and higher 

throughput for the same power budget to support 

compute-intensive floating-point applications that 

improve the user experience. Since these applications 

have to be deployed on portable devices with limited 

battery-life, it is critical that we develop energy-

efficient floating-point hardware for these embedded 

systems, not simply high performance floating-point 

hardware. 

1.1.IEEE 754 Standard for  floating-

point 

     The IEEE 754 standard for binary floating-point 

arithmetic provides a precise specification of 

floating-point number formats computation 

operations, and exceptions and their handling. The 

combination of a vast range of inputs, special cases, 

and rounding modes makes the hardware 

implementation of fully IEEE 754 standard compliant 

floating-point arithmetic a very challenging task. 

Ignoring certain aspects of the standard can lead to 

unexpected consequences in the context of numerical 

algorithms. The IEEE format specifies two main 

groups of floating-point format: single-precision and 

double-precision. In this work, we primarily focus on 

double-precision format since it is commonly used in 

most scientific and emerging applications. We 

introduce a number of micro-architectural and circuit 

level optimizations to reduce the power 
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Consumption in the floating-point multiplier (FPM) 

data path. A floating-point multiplier consumes 

significantly more energy compared to a floating- point 

adder (FPA). This combined with the knowledge that 

the frequency of floating-point multiplication operations 

in emerging applications is similar to that of floating-

point addition computations makes energy and power 

optimizations in the FPM data path highly essential for 

an efficient full floating-point unit (FPU) design. 
 

 

       2. Background and Related work 
  

In terms of micro-architectural complexity, the 

floating-point multiplier (FPM) data path is simpler than 

the FPA data path. The FPM data path for double 

precision multiplication operation is shown in Figure2.1. 

The double-precision inputs into the data path, A and B, 

comprise 1-bit of sign, 11-bits of exponent, and 52-bits 

of mantissa (also known as the significant) each. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Fig.2.1:  Floating-point Multiplier Data path. 

 
       The following summarizes the key steps in an 

IEEE compliant FPM data path: 1).The first step in the 

FPM data path is to unpack the IEEE representation and 

analyze the sign, exponent, and mantissa bits of each 

input to determine if the inputs are standard normalized 

or are of one of the special types (NaN, infinity, 

denormal).  

2).The mantissa bits are extended with the implicit bit. It 

is set to one for normal inputs and zero for a denormal 

input.  

3).The 53-bit long mantissas of both inputs are used to 

generate partial products corresponding to 106-bit 

product. Since high throughput and low latency are of 

essence in floating-point applications, most FPMs use 

some form of an array multiplier, such as a booth-

encoded multiplier as shown Figure 1, to meet the 

performance demands. Most array multipliers employ an 

array of carry-save-adders (CSAs) to reduce the large 

number of partial products to two final full product-

length bit streams. 

4).The most significant 53-bits of the two output bit 

streams from the CSA array are summed up using a 

carry propagation adder (CPA) to generate a 53-bit 

mantissa. The least significant 53-bits are used to 

generate the carry input to the CPA as well as compute 

the guard, round, and sticky bits to be used in post 

normalization rounding. In parallel, the exponent logic 

computes the resulting exponent, which is a sum of the 

exponent values of both inputs minus the bias. The bias 

has a value of 1023 in case of double-precision 

operations. The sign of final product is also computed.  

5).The post multiplication step includes normalization 

of the 53-bit mantissa. For normal inputs and non-

underflow cases, either the mantissa is already 

normalized or it may require a right shift by a single bit 

position, in which scenario the exponent is adjusted, in 

parallel, by adding one to it. The guard, round, and 

sticky bits are updated and are used, along with the 

round mode, to determine if the product needs to be 

rounded or not.  

6).In case of rounding, the mantissa is incremented by 

one. If rounding yields a carry out, the exponent is 

adjusted by adding one to it and right shifting the 

mantissa by one bit position. 

7).The final stage checks for a NaN, infinity, or a de 

normal outcome before outputting the correct result in 

the IEEE format.  

     With normalization step limited to a simple shift of 

no more than one-bit position and the exponent logic 

comprising only 11-bit long arithmetic, the FPM’s 

complexity is largely a function of its 53x53 multiplier, 

sticky bit computation block, and the final carry 

propagation adder. We present various structural and 

circuit-level optimization techniques to reduce the 
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complexity and power consumption footprint of the 

aforesaid logic blocks. 
 

    3. Asynchronous Multipliers and Floating-

Point Arithmetic 
 

In terms of the multiplier design, the delay variability 

nature of iterative multipliers makes them a popular 

choice amongst asynchronous designers. An iterative 

multiplier utilizes a few functional units repeatedly to 

produce the result. In a simple iterative n by n multiplier 

implementation, where n is the number of bits, the 

product is computed after n iterations. Each iteration 

comprises a minimum n-bit addition and a serial shift by 

one-bit position. Furber et al. proposed a low power 

integer multiplier which exploits the commonly 

occurring pattern of low number of significant bits in 

integer inputs as means to reduce the total number of 

iterations. These iterative multiplier designs, though 

compact in terms of area, are not feasible to be used in 

floating-point multiplier hardware due to their very high 

latency and low throughput and the fact that unlike the 

inputs in integer arithmetic, the most significant bits of 

floating-point mantissa inputs are non zero.  
     Joel Noche et al. used asynchronous circuits in their 

design of a single-precision FPU. However, their FPU is 

completely non-pipelined, doesn’t include any energy 

optimization techniques, and does not implement 

rounding logic. Their FPU has many orders of 

magnitude higher latency compared to all recent 

floating-point designs from synchronous domain Sheikh 

et al employed fine-grain asynchronous circuit 

techniques for various operand-dependent optimization 

techniques to reduce average-case power consumption 

in the FPA data path. However, their work is restricted 

to FPA design only. 

 

      3.SynchronousFloating-Point Multipliers 

 

There is a large body of work on synchronous FPM 

design..Ercegovac and Lang contain an overview of the 

different techniques used to optimize floating-point 

multiplication. The focus of prior work has been the 

array multiplier block, which is the single largest logic 

structure within the FPM data path. Earlier designs have 

employed various architecture and circuit-level 

optimizations to reduce array multiplier latency and 

increase its throughput [18, 20, 22, and 28]. However, 

there is relatively much less work on improving the 

energy efficiency of multiplier data path, which is one of 

our primary contributions. 

 

4. Floating Multiplier and Power 

breakdown 

 
We use quasi-delay-insensitive (QDI) asynchronous 

circuits for our baseline FPM design. The fine-grain 

asynchronous pre-charge-enable-half-buffer (PCeHB) 

pipelines in our design contain only a small amount of 

logic (e.g. a two-bit full-adder). The actual computation 

is combined with data latching, which removes the 

overhead of explicit output registers. This pipeline style 

has been used in previous high-performance 

asynchronous designs, including a fully-implemented 

and fabricated asynchronous microprocessor. 

Unlike in the FPA data path where total power is 

distributed roughly evenly amongst a number of 

different logic blocks, the FPM’s complexity is largely a 

function of its 53x53 multiplier. This is highlighted in 

which shows the power breakdown estimates of our 

baseline fully QDI FPM data path. The booth-encoded 

array multiplier accounts for roughly 76% of the total 

power consumption. Hence, in this work, we primarily 

focus on reducing energy/power of the array multiplier 

block. 

 

    The Front-End/Exponent block corresponds to the 

logic that unpacks IEEE format inputs and analyzes the 

sign, exponent, and mantissa bits of each input to 

determine if the inputs are standard normalized or are of 

one of the special types (NaN, infinity, de normal). It 

also includes the logic to compute the resultant exponent 

of the FPM product. The array multiplier outputs two 

106-bit streams. The most significant 53-bits of the two 

output bit streams from the array multiplier are summed 

up using a carry propagation adder (CPA) to generate a 

53-bit mantissa. The least significant 53-bits are used to 

generate the carry input to the CPA as well as compute 

the guard, round, and sticky bits to be used in post 

normalization rounding. The sticky bit computation 

block and the final carry propagation adder are the other 

power consuming structures within the FPM data path. 

In this work, we present various structural and circuit-

level optimization techniques to reduce the complexity 

and power consumption footprint of the aforesaid logic 

blocks. 
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              5. Multiplier Design Trade–offs 

The choice of a particular multiplier design depends on a 

number of factors. These include: desired throughput 
The choice of a particular multiplier design depends on a 

number of factors. These include: desired throughput, 

overall latency, circuit complexity, and the allowed 

power budget. Traditionally, high performance has been 

the key driving factor in multiplier design. However, as 

power consumption has become a major design 

constraint lately, a number of low-power multiplier 

designs have been proposed both in synchronous and 

asynchronous domains. 

 

  5.1. Iterative Multipliers 

  
 Iterative multipliers represent a low complexity 

design choice. An iterative multiplier utilizes a few 

functional units repeatedly to produce the result. 

Iterative multipliers can be used to reduce energy 

consumption by exploiting input data patterns; stages 

which add zero to the partial product could be detected 

in advance and skipped, hence reducing delay and 

energy consumption. Though compact in terms of area, 

iterative multipliers are not feasible to be used in 

floating-point multiplier hardware due to their very high 

latency and low throughput. 

 

Reduction in the total number of partial products is 

the key goal of all multiplier optimization techniques, as 

it helps to reduce both latency as well as energy 

consumption. Along these lines, Efthymious et al. [7] 

proposed an asynchronous multiplier implementation 

based on the original Booth algorithm [3]. Their design 

scans the multiplier operand and skips chains of 

consecutive ones or zeros. This can greatly reduce the 

number of partial product additions required to produce 

the product. The downside is that it requires a variable 

length shifter to correctly align multiplicands for 

generating each partial product row. The effectiveness 

of this algorithm for high performance FPM hardware is 

dependent on the number of variable length shifts, which 

in turn depends on the number of partial product rows 

that are to be generated. 

 

Our application profiling results for a number of 

scientific and emerging floating-point applications, 

using Intel’s PIN [14] toolkit, indicate that although the 

original Booth algorithm is able to reduce the number of 

partial products from the maximum of 27, a sufficiently 

large number of partial products rows, more than 18 on 

average, still need to be generated, each of which 

requires the use of variable shifter. The latency overhead 

of such a large number of variable shift operations is too 

costly for any high performance FPM design. Hence, we 

did not pursue this algorithm any further. 

 

  5.2. Array Multipliers 

 
 Array multipliers are the common choice for high 

through-put and low latency multiplication operations in 

most com-mercial FPM designs [20, 26]. They produce 

a pre-determined fixed number of partial products, 

which greatly minimizes if not fully eliminates the 

opportunities for exploiting data dependent 

optimizations. For example, introducing logic to bypass 

a zero partial product instance may add the same amount 

of delay as summing the extra term in a carry save adder 

(CSA) used to reduce the partial product terms. As array 

multipliers present very limited opportunities for data 

dependent optimizations, there has not been much work 

on asynchronous array multiplier solutions. The simplest 

implementation of an n by n array multiplier produces n 

partial products in parallel, which are then summed up 

using CSAs. The large number of partial products makes 

this simple design unfeasible for both latency and power 

consumption perspective. As a result, many advanced 

multiplier implementations from academia [21] and 

industry [20, 26, and 28] use some form of radix-4 

modified booth algorithm, which cuts the number of 

partial products to n/2. The reduction in the number of 

partial products yields significant savings in energy 

consumption, latency, as well as the total transistor 

count. 

For a 53x53-bit multiplier in an FPM data path, with 

inputs Y and X, a radix-4 booth-encoded algorithm 

produces 27 partial products. Each of the Y and X inputs 

is in a radix-4 format. The multiplier bits, X, are used to 

generate booth control signals for each partial product 

row. One of the big advantages of radix-4 booth 

multiplication is the relative simplicity of the logic 

which generates partial product rows. The only 

multiples of the multiplicand that are needed are: 0, Y, 

and 2Y. Partial product term Y is generated by simply 

assigning it the multiplicand. The 2Y multiple can be 

generated with relative ease by assigning it one bit right 

shifted value of the multiplicand. Bitwise inversion is 

used to generate complemented multiples. To reduce 
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these 27 partial product rows to two partial product 

rows, a reduction tree comprising 7 stages of 3:2 

counters/carry-save-adders (CSAs), is usually employed. 

The energy consumption of the multiplier array is 

directly correlated to the number of partial product 

terms. With more partial product terms, more logic is 

needed first to produce those terms and then to sum and 

reduce those terms using a reduction tree. To further 

improve energy efficiency, one of the alternatives is to 

use a radix-8 Booth-encoded multiplier which reduces 

the number of partial product rows from 27 down to 18. 

The biggest disadvantage of a radix-8 multiplier is that it 

requires a 3Y multiple which needs a full length carry 

propagation adder to compute. Since the 3Y multiple 

must be available before any partial product term is 

computed, a tree adder topology such as a hybrid 

Kogge-Stone carry-select adder must be used to 

minimize any latency degradation in a synchronous 

design. 

Table I compares three different radix length 

implementations of a 53x53-bit multiplication unit in 

terms of the total partial products bits and the number of 

logic stages required to reduce the total number of 

partial product rows to two rows. A radix-8 Booth-

encoded implementation produces 62.4% and 31.3% 

less partial products bits compared to bitwise radix-2 

and Booth-encoded radix-4 multipliers respectively. But 

in terms of latency, when compared to a radix-8 version, 

a radix-4 implementation needs only one extra logic 

stage because partial product terms are summed and 

reduced using CSAs in a tree structure, which has 

logarithmic logic depth. This gives a radix-8 multiplier a 

single logic stage cushion to compute the tough 3Y 

multiple. Hence, for any radix-8 Booth multiplier to be 

considered a viable alternative, it must provide a very 

low latency 3Y computation unit with energy 

consumption significantly lower than the savings 

attained with the use of 31.3% less partial product bits. 

The use of power intensive tree adders greatly 

diminishes the savings that result from the reduction in 

the the number of partial product terms. As a result, 

radix-8 multipliers are not commonly used in 

synchronous FPM implementations. 

 

 

 

 

 

 

                                     TABLE I 
                            ARRAY MULTIPLIER 
 
 Multiplier Type  Partial Product Bits Reduction Stages 

 Radix-2 Bitwise  2809 9 

 Radix-4 Booth  1539 7 

 Radix-8 Booth  1056 6 
 
            53X53-BIT RADIX-8 ARRAY MULTIPLIER  

 

                    6. 3Y Adder  

 

The highly operand dependent nature of the 3Y 

multiple computation makes it a strong potential target 

for asynchronous circuit optimizations. The application 

profiling results in Figure 3 show that the longest carry 

chain in a radix-4 3Y ripple-carry addition is limited to 3 

ripple positions for over 90% of the operations across 

most floating-point application benchmarks. The delay 

of an adder depends on how fast the carry reaches each 

bit position. For input patterns that yield such small 

carry chain lengths on average, we need not resort to an 

expensive tree adder topology designed for the worst-

case input pattern of carry propagating through all bits. 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig.6.1: Radix-4 3Y Adder Longest Carry Length 

  
The interleaved adder topology provides an energy 

efficient solution for computing the bottleneck 3Y 

multiple terms required in radix-8 Booth multiplication. 

It comprises two 53-bit radix-4 ripple-carry adders, 

where each 3Y block shown in Figure 4 computes the 

3Y multiple for the corresponding Y input. The first 

arriving data tokens YRs are forwarded to the right 3Y 

adder. In standard PCeHB reshuffling, the interleave 

split stage has to wait for the acknowledge signal from 

ripple-carry adder before it can enter neutral stage and 

accept new tokens. However, this would cause the 

pipeline to stall in case of a long carry chain. The 
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interleaved adder topology circumvents this problem by 

instead issuing the next arriving data tokens to the left 

3Y adder. Hence, the two ripple-carry adders could be in 

operation at the same time on different input operands. 

The interleave merge stage receives outputs from both 

right and left adders and forwards them to the next stage 

in the same interleaved order. With our pipeline cycle 

time of approximately 18 logic transitions (gate delays), 

the next data tokens for the right adder are scheduled to 

arrive after 36 transitions of the first one. This gives 

ample time to quite rare inputs with very long carry-

chains to ripple through as well without causing any 

throughput stalls. 

 

For inputs patterns observed in our various floating-

point application benchmarks, the forward latency of 

computing the 3Y term using the interleaved adder is 

less than that attained with power-intensive tree adders, 

which are frequently used in synchronous designs to 

guarantee low latency computation. Compared to a 53-

bit hybrid Kogge-Stone carry-select tree adder 

implementation, the interleaved adder consumes 

approximately 68.1% less energy at 8.3% lower latency 

for the average case input patterns shown in Figure6.2. 

We exploit this data dependent adder design topology, 

not possible within 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig6.2: Radix-4 3Y Adder Longest Carry Length. 

 

Synchronous domain, to design an energy-efficient 

radix-8 Booth-encoded multiplier for our asynchronous 

FPM data path. 

 

                  
 
 
 
 

             7. Pipeline Design 

  
Although, the radix-8 multiplier reduces the number 

of partial products bits by 31.3% compared to a radix-4 

implementation, it still needs to produce and sum over 

1050 partial product bits. As discussed by Sheikh et al. 

[25], standard. 

PCeHB pipelines, though very robust, consume 

considerable power in handshake circuitry, which gets 

worse as the complexity of PCeHB templates increases 

with more input and output bits. The handshake 

overhead, in a two-bit full adder PCeHB pipeline 

implementation, is as high as 69% of the total power 

consumption . Therefore, for circuits with large number 

of inputs, intermediate and final outputs, such as a 

multiplier array, the PCeHB pipelines represent a non-

optimum choice from energy efficiency perspective. 

We use N-Inverter pipeline templates, are first 

proposed , to implement the multiplier array. An N-

Inverter pipeline reduces the total handshake overhead 

by packing multiple stages of logic computation within a 

single pipeline block, in contrast to PCeHB template 

which contains only one effective logic computation per 

pipeline. The handshake complexity is amortized over a 

large number of computation stacks within the pipeline 

stage. Sheikh et al showed that compared to a PCeHB 

pipelined implementation the N-Inverter pipelines can 

reduce the overall energy consumption by 52.6% while 

maintaining the same throughput. These improvements 

come at the cost of some timing assumptions and require 

the use of single-track handshake protocol. The The 

design trade-offs associated with N-Inverter templates 

are discussed extensively in . 

 The block-level pipeline breakdown of our 

radix-8 multiplier array is depicted in Figure 8.2. The 

granularity at which the array is split is critical from 

both performance and energy efficiency perspective. 

The N-Inverter templates allow us to pack considerable 

logic within each stage, which helps to reduce the 

handshake associated power consumption significantly. 

However, as the number of logic computations 6within a 

pipeline blocks increase, so do the number of outputs. 

With more outputs, although the number of transitions 

per pipeline cycle remain the same with the use of wide 

NOR completion detection logic, each of these 

transitions incur a higher latency. The choice of 8x4 

pipeline blocks, with 15 outputs per each stage, was 

made to provide a good balance of low power and high 
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throughput. The pipeline block labeled 8x4 Sign is 

identical to an 8x4 block except that it includes a sign bit 

for each partial product row. The sign bit acts as an 

input of one in the least significant position for any of 

the cases involving a complemented partial product 

multiple of - Y, -2Y, -3Y, or -4Y. The pipeline blocks 

labeled 10x4 Sign Ext are similar in design to the 

frequent 8x4 block, except that it provides support for 

sign extension bits required for supporting 

complemented multiples. The 8x2 block is a reduced 

version of an 8x4 block with only two booth rows. The 

similarity between these different pipeline blocks and 

the frequent use of the 8x4 pipeline block provides us 

with great design modularity, which helped to reduce the 

overall design effort required to optimize the multiplier 

array for throughput and energy efficiency. Due to the 

similarity between different pipeline blocks, we only 

present the details of the 8x4 block. Each 8x4 pipeline 

block receives Booth-control, Y and 3Y input tokens. 

The eight bits of Y and 3Y inputs are encoded as four 1-

of-4 tokens each. Figure8.3 shows the intermediate and 

final logic outputs within an 8x4 pipeline. It also shows 

the corresponding mapping of these outputs to a 

simplified circuit level depiction of an N-Inverter 

pipeline template. The NMOS stacks in the first stage 

compute four rows of eight bit partial  

 

 

 

 

 

 

 

 

 

 

                 Fig7.1: Radix 8 Multiplier. 

Product terms in inverted sense. These inverted outputs 

drive the inverters in the second stage of the pipeline 

block to produce corresponding partial product, PP, 

outputs. The next stage of NMOS stacks implements 

carry-save addition logic to sum and reduce these four 

rows of partial products to two rows of inverted sum and 

carry outputs. These inverted outputs drive the PMOS 

transistors in the last stage to produce sum and carry 

outputs, SS and CC, in correct sense for the following 

pipeline blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

         Fig7.2: 8x4 Multiply Logic Block. 

For array multiplication, all pipeline blocks have to be 

in Operation in parallel. The parallel operation requires 

multiples copies of input tokens to be consumed 

simultaneously by multiple pipeline blocks. For 

example, each booth control token is required in seven 

different pipeline blocks. To facilitate this, we include 

multiple copy stages prior to initiating the array 

computation. These copy blocks generate the desired 

number of copies for each input token. These tokens are 

then forwarded to the pipeline blocks which consume 

them to produce sum and carry outputs. 

Propagation adder uses four-phase handshake 

protocol, the output tokens from the reduction tree are 

converted back to four-phase protocol. We hide the 

latency of this conversion stage by implementing the 

final stage of the reduction tree within these conversion 

templates. 

The energy, latency, and throughput estimates of FPM 

implementations with radix-4 and radix-8 array 

multipliers are presented in Figure 7. The results are 

normalized to FPM data path with a radix-4 multiplier. 

The 31.3% reduction in the number of partial product 

bits translates into 19.8% reduction in energy per 

operation. But this improvement in energy efficiency 

comes at a cost of 5.9% increase in the FPM latency 

because of the 3Y partial product computation that 

needs to determined prior to initiating the multiplier 

array logic. A part of the 3Y computation latency is 

masked within booth control token-generation and copy 

pipelines. Since the radix-4 multiplier requires one extra 

computation stage in the reduction tree compared to a 

radix-8 multiplier implementation, the latency overhead 

of the 3Y computation can be further hidden. The 5.9% 

latency increase is attributed to the 3Y multiple 

computation part which is not masked. Despite the 

increase in latency, the throughput for both 
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implementations remains the same due to sufficient 

slack availability within the interleaved 3Y computation 

block. The choice of a particular multiplier 

implementation represents a design trade-off. Since our 

goal was to optimize for energy consumption and 

throughput, we chose the radix-8 multiplier 

implementation in our final FPM design. 

 

  7.1. Sticky-Bit logic and Carry-Propagation Adder 

  
The multiplier array outputs two rows of 106-bit long 

partial sum and carries terms. The next step is to 

compute the 53-bit mantissa of the FPM output. This 

requires the summation of the most significant 53-bits of 

the two incoming partial sum and carry terms using a 

carry-propagation adder (CPA). The least significant 53-

bits of the partial sum and carry terms are needed to 

compute the carry input into the CPA as well as the 

guard, round, and sticky terms required during the 

rounding step. 
 
 7.2. Carry Computation and Sticky-bit Logic 

  
The multiplier array requires relatively less number of 

summation steps to produce its least significant output 

bits. This is because there are less partial product terms 

to be summed since each successive partial product row 

is skewed by three bit positions from the previous one in 

radix-8 multiplication. As a result, the least significant 

bits are available relatively earlier than rest of the 

multiplier array outputs. We take advantage of our fine-

grain pipelining by initiating the carry computation as 

soon as the least significant bits arrive. Furthermore, the 

application profiling results in Figure 8 show that for 

over 90% operations across all applications the longest 

ripple-carry length to compute the carry input term is 

less than four radix-4 bit positions. These average-case 

patterns indicate that the carry term could be computed 

well in time for the CPA operation, hence alleviating the 

need of any speculative CPA implementations as is 

usually done in the case of most high performance 

synchronous FPMs. 

 
Fig. 7.3.  Radix-4 Multiplier vs. Radix-8 Multiplier  

 

The micro-architecture of carry and sticky-bit 

computation is depicted in Figure 10.1. It uses 

interleaved split and merge pipelines, first introduced 

with the design of interleaved adder. The inputs A and B 

in Figure10.1 are in one-of-four encoded format and 

correspond to 52 least significant bits of partial sum and 

carry output terms from the multiplier array. The odd 

data tokens are sent on the output channels labeled with 

R prefix, while the next arriving even data tokens are 

sent on channels with L prefix. Each Carry Sticky block 

computes the carry and sticky bit terms at that bit 

position. With carry chain lengths of less than four, as 

seen in Figure 8, the final carry term is computed within 

four logic levels on average. This represents logarithmic 

average latency. The odd tokens are used to compute the 

carry term Cin R used as carry input in the odd ripple-

carry adder of our interleaved CPA, whereas the next 

arriving even data tokens compute the carry term Cin L 

used as carry input in the even ripple-carry adder of our 

interleaved CPA topology. 
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Fig. 7.4:  Interleaved topology to compute sticky-

bit and carry input. 

For sticky-bit computation, we use parallel tree topology 

which combines bitwise sticky-bit values to compute the 

final sticky-bit. A ripple flow architecture similar to the 

one used to compute carry input term was deemed not 

feasible as it yielded consistently long ripple chains, 

which caused throughput degradation. Our interleaved 

topology prevents throughput degradation up to ripple 

lengths of 14 bit positions only. The application 

profiling results yield ripple lengths of 15 or more quite 

frequently. The sticky-bit is set to one if any of the bits 

is one, but for it to be set to zero it has to ensure that all 

prior bits in the sequence are zero. This is what causes 

the long ripple chains and renders ripple-flow design 

infeasible. 

 

         8. 53-bit Carry-Propagation Adder 

 

We harness the timing flexibility of our underlying 

asynchronous circuits by using interleaved adder 

topology for the 53-bit carry-propagation adder design. 

The interleaved adder comprises two ripple-carry 

adders. The adder topology is identical to the one used 

earlier for 3Y multiple computation. Our choice of the 

interleaved adder was made on the basis of application 

profiling results, which indicate very small carry chain 

lengths on average across all application benchmarks. It 

yields average throughput similar to that attained with 

expensive tree adder designs while consuming up to 4X 

less energy per operation. 

 

9. Denormal, Underflow and zero input 

 

While discussing the various trade-offs involved in 

the FPM data path design, we have so far ignored certain 

special cases specified in the IEEE format [19]. Two of 

these special cases: the denormal numbers and 

underflow case represent the most difficult operations to 

implement in an FPM data path. The scenarios under 

which these two special cases arise and the tasks that 

need to be performed are summarized as follows: 

1).One of the FPM inputs is a denormal number, 

which yields a mantissa with zeroes in its most 

significant bit positions. If the non-bias exponent 

for the product is greater than the minimum value 

of one, the product needs to be left shifted while 

decrementing the exponent until it is normalized or 

the exponent reaches the value of one. We refer to 

this scenario as the Denormal case.  

2).One of the FPM inputs is a denormal number or 

both FPM inputs are very small numbers and the 

resulting exponent is less than the minimum value 

of one. In this case, the mantissa needs to be right 

shifted. The value of right shift is equal to the 

difference between the minimum value and 

resulting exponent or an amount which zeroes out 

the mantissa, whichever of the two is smaller. We 

refer to this scenario as the Underflow case.  

The need of variable left shift and right shift logic 

blocks makes the hardware support for denormal and 

underflow cases expensive. However, the infrequent 

occurrence of these special case inputs and the extensive 

hardware complexity required to support these 

operations has meant that many FPM designs do not 

fully support these operations in hardware. Instead, these 

operations are implemented in software via traps. This 

yields very long execution time. It also means that the 

FPM hardware is no longer fully IEEE compliant. 

We use serial shifters to provide full hardware support 

for these special case inputs. Using conditional split 

pipelines, the output bits from the CPA are directed to 

either Normal or Denormal/Underflow logic path. The 

Normal data path includes single-bit normalization shift 

block and rounding logic. The Denormal/Underflow unit 

comprises serial left and right shift blocks and a 

combined rounding block. For input tokens diverted to 

the Normal data path, no dynamic power is consumed 

within the Denormal/Underflow block and likewise for 

input tokens headed for Denormal/Underflow block, 

there is no dynamic power consumption in the Normal 

data path. In contrast, synchronous design requires 

significant control overhead to attain fine-grain clock 

gating. 

Once the mantissa has been correctly aligned using 

variable left or right shift block, a subsequent rounding 

operation may be required to increment the 53-bit 

mantissa by one. We utilize ripple-carry 1-of-4 encoded 

increment logic to implement rounding. An expensive 

increment logic topology would have been futile since 

the output from variable shift blocks arrives in bitwise 

fashion. The rounding logic is shared between the 

Denormal and Underflow data paths as shown in Figure 

10 to further minimize the area overhead of supporting 

these special case operations. The Rnd block receives 

incoming guard, round, sticky, and rounding mode bits 

from both special case data paths. It selects the correct 
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set of inputs to determine whether to increment the 

mantissa or not. 

 

 

Fig.9.1.Unified rounding hardware for 

denormal/underflow cases 

Prior to the final Pack pipeline, there is a merge 

pipeline stage, which selects the output from either the 

Normal or the Denormal/Underflow data path. Since 

these special case inputs happen very infrequently as 

shown in Figure 11, the throughput degradation due to 

the use of serial shifters does not effect the average FPM 

throughput. 

 

 9.1. Zero-input Operands 

  
Operand profile of floating-point multiplication 

instructions reveals that a few application benchmarks 

have a significant proportion of zero input operands. 

These primarily include applications with sparse matrix 

manipulations, such as 447.deal and 437.leslie3d, 

despite their use of specialized sparse matrix libraries. 

For other benchmarks, the zero-input percentage varies 

widely as shown in Figure9.1. In most state-of-the-art 

synchronous FPM designs that we came across, the 

zero-input operands flow through the full FPM data 

path. They yield similar latency and consume same 

power as any other non-zero operand computation. This 

is highly non optimum since if one or both of the FPM 

operands are zero, the final zero output could be 

produced much earlier and at much reduced energy 

consumption by skipping most of the compute intensive 

power consuming logic blocks such as the multiplier 

array, carry propagation adder, normalization, and 

rounding unit. 

 
Fig. 9.1: Operand profile of floating-point 

multiplication instructions 

 

We provide a zero bypass path in the FPM data path 

to optimize its latency and energy consumption in the 

case of zero operands. To activate the bypass path, the 

FPM utilizes the zero flag control output from Unpack 

stage, which checks if any of the input operands is zero. 

But this information is not available in time before the 

start of pipeline stages pertaining to Booth control and 

3Y multiple generations. One possible solution was to 

delay these pipeline stages until the zero flag is 

computed and then use it to divert the tokens to either 

the regular or the bypass path. Since this solution incurs 

a latency hit for non-zero operands, it was discarded. In 

our design, instead of delaying the multiplier array, we 

inhibit the flow of tokens much deeper in the data path. 

As a result, in our design the energy footprint of zero 

operand computations includes the overhead of 

computing Booth control token as well as some parts of 

the 3Y multiple computation. But this still yields 

roughly 82% reduction in energy consumption for each 

zero operand computation, while preserving same 

latency and throughput for non-zero operand operations. 

 
10. Floating-Point Multiplier 

 

This section presents the SPICE simulation results of 

our proposed FPM data path. The transistors in the FPM 

were sized using standard transistor sizing techniques. 

To meet high performance targets and to minimize 

charge sharing problems, each NMOS stack was 

restricted to a maximum of four transistors in series. 

Since HSIM/HSPICE simulations do not account for 

wire capacitances, we included an additional wire load 

equivalent to a wire length of 8.75 m in the SPICE file 

for every gate in the circuit. Our simulations use 65nm 

bulk CMOS process at 1V nominal VDD and typical-
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typical (TT) process corner. 

 

For non-zero operands, the FPM registers a highest 

through-put of 1.53 GHz. In applications with a 

considerable percentage of zero operands, the average 

FPM throughput rises to as high as 1.78 GHz, since zero 

input operations skip throughput constraining N-Inverter 

templates in the multiplier array. The FPM energy per 

operation results across all application benchmarks are 

shown in Figure 10.1. Applications with considerable 

zero-input operands consume significantly less energy 

per operation as zero-input operations skip various logic 

blocks. 

In Table II, we compare our proposed asynchronous 

FPM design against a custom FPM design by Quinn ell 

et al in 65nm SOI process at 1.3V nominal VDD. The 

energy, throughput, and latency results include only 

non-zero operand operations in order to provide the 

worst-case comparison. Despite using 65 nm bulk 

processes, our FPM design consumes 3X less energy 

per operation while operating at 2.3X higher 

throughput.  
 

 
Fig. 10.1: FPM energy per operation across 

various floating-point applications. 

 

Both designs have similar latency at 1.3V. However, 

the custom FPM latency results do not include any 

internal pipeline latches, which account for a 

significant proportion of overall latency especially in 

high throughput de-signs. Our asynchronous FPM 

design compares quite favorably against the custom 

synchronous FPM implementation despite employing 

radix-8 Booth-encoded multiplier, which has an 

average 5.9% higher latency than a radix-4 Booth-

encoded multiplier design. 

 

 

 
 

TABLE II 
ASYNCHRONOUS FPM VS SYNCHRONOUS FPM 

 
 Design  Energy/op Throughput Latency @1.3V 
 Proposed FPM  92.1 pJ 1.53 GHz 705 ps 
 Quinnell FPM  280.8 pJ 666 MHz 701 ps 

 

For frequently occurring zero input operations in 

sparse matrix applications, our proposed FPM yields 

an even lower latency and energy per operation. The 

results for zero input operands are shown in Table III, 

which highlights the efficacy of zero bypass paths. 
 
TABLE III 

ZERO OPERAND FEATURES 
 

 Design Energy/op  Latency  

 Proposed FPM 15.8 pJ  464 ps @ 1V  

 Quenelle FPM 280.8 pJ  701 ps @ 1.3V  

 
Since leakage power has become an important 

design constraint, our simulations model sub-threshold 

and gate leakage effects in detail. The total leakage 

power of our FPM in idle mode was estimated at 1.62 

mW using typical-typical process corner at 90 C and a 

VDD of 1V. 

                    

      

             Fig: 10.2 Longest ripple carry Length for 

Computing CPA Carry input.    
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                        Conclusion 

 
 
      We presented the detailed design of an asynchronous 

high-performance energy-efficient IEEE 754 compliant 

double-precision floating-point multiplier. We provide 

thorough analysis of the trade-offs involved in using 

radix-4 and radix-8 array multiplier designs. The radix-8 

design was preferred since it further reduced the total 

FPM energy consumption by 19.8% while preserving 

the average throughput. The full FPM data path with 

numerous operand-dependent and pipeline optimizations 

are fully quantified using 65nm bulk process. When 

compared against a custom synchronous FPM design is 

referred in Quinn El. An implementation of a floating 

point multiplier that supports the IEEE 754-2008 binary 

interchange format; the multiplier doesn’t implement 

rounding and just presents the significand multiplication 

result as is (48 bits); this gives better precision if the 

whole 48 bits are utilized in another unit; i.e. a floating 

point adder to form a MAC unit. The design has three 

pipelining stages and after implementation on a Xilinx 

Virtex5 FPGA it achieves 301 MFLOPs. 
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