

Design And Verification Of High Speed And Efficient Asynchronous Floating

Point Multiplier

M. Pravallika (M.Tech), V. Vamsi Mohana Krishna M.Tech,(PhD)

NIMRA COLLEGE OF ENGINEERING & TECHNOLOGY, ASSOCIATE PROFESSOR,

NIMRA NAGAR,JUPUDI, NIMRA COLLEGE OF ENGINEERING & TECHNOLOGY,

VIJAYAWADA, NIMRA NAGAR,JUPUDI,

KRISHNA (DIST)-521456 VIJAYAWADA,KRISHNA (DIST)-521456

Abstract—We present the details of our energy-

efficient asynchronous floating-point multiplier

(FPM). We discuss design trade-offs of various

multiplier implementations. A higher radix array

multiplier design with operand-dependent carry-

propagation adder and low handshake overhead

pipeline de-sign is presented, which yields

significant energy savings while preserving the

average throughput. Our FPM also includes a

hardware implementation of denormal and

underflow cases. When compared against a custom

synchronous FPM design, our asynchronous FPM

consumes 3X less energy per operation while

operating at 2.3X higher throughput. To our

knowledge, this is the first detailed design of a high-

performance asynchronous IEEE-754 compliant

double-precision floating-point multiplier.

 Keywords-Floating-pointarithmetic;asynchronous

logic circuits; very-large-scale integration; pipeline

processing

 1. Introduction

 Energy-efficient floating-point computation is

important for a wide range of applications.

Traditionally, VLSI designers primarily relied on

CMOS technology and voltage scaling to reduce

power consumption. With the transistor threshold

voltage fixed, VDD has been scaling very slowly if at

all, which means all performance improvements

come at in increased energy consumption.

Furthermore, process variations in deep sub-micron

range have made devices far less robust, which are

increasingly making it difficult for synchronous

designers to overcome the problems associated with

clock skew rates and clock distribution. The findings

of a recent in-depth study, to explore and devise ways

to further scale supercomputer peta FLOP

performance by 1000X, indicate the inadequacy of

current design practices and technologies to achieve

the desired throughput within a sustainable power

budget. This underscores a pressing need for alternate

de-sign practices, to reduce energy consumption

behavior in advanced technology nodes. Basically in

a computer processor operation the floating point

operations plays very important role.

At the other end of the spectrum, embedded

systems that have traditionally been considered low

performance are demanding higher and higher

throughput for the same power budget to support

compute-intensive floating-point applications that

improve the user experience. Since these applications

have to be deployed on portable devices with limited

battery-life, it is critical that we develop energy-

efficient floating-point hardware for these embedded

systems, not simply high performance floating-point

hardware.

1.1.IEEE 754 Standard for floating-

point

 The IEEE 754 standard for binary floating-point

arithmetic provides a precise specification of

floating-point number formats computation

operations, and exceptions and their handling. The

combination of a vast range of inputs, special cases,

and rounding modes makes the hardware

implementation of fully IEEE 754 standard compliant

floating-point arithmetic a very challenging task.

Ignoring certain aspects of the standard can lead to

unexpected consequences in the context of numerical

algorithms. The IEEE format specifies two main

groups of floating-point format: single-precision and

double-precision. In this work, we primarily focus on

double-precision format since it is commonly used in

most scientific and emerging applications. We

introduce a number of micro-architectural and circuit

level optimizations to reduce the power

2034

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

Consumption in the floating-point multiplier (FPM)

data path. A floating-point multiplier consumes

significantly more energy compared to a floating- point

adder (FPA). This combined with the knowledge that

the frequency of floating-point multiplication operations

in emerging applications is similar to that of floating-

point addition computations makes energy and power

optimizations in the FPM data path highly essential for

an efficient full floating-point unit (FPU) design.

 2. Background and Related work

In terms of micro-architectural complexity, the

floating-point multiplier (FPM) data path is simpler than

the FPA data path. The FPM data path for double

precision multiplication operation is shown in Figure2.1.

The double-precision inputs into the data path, A and B,

comprise 1-bit of sign, 11-bits of exponent, and 52-bits

of mantissa (also known as the significant) each.

 Fig.2.1: Floating-point Multiplier Data path.

 The following summarizes the key steps in an

IEEE compliant FPM data path: 1).The first step in the

FPM data path is to unpack the IEEE representation and

analyze the sign, exponent, and mantissa bits of each

input to determine if the inputs are standard normalized

or are of one of the special types (NaN, infinity,

denormal).

2).The mantissa bits are extended with the implicit bit. It

is set to one for normal inputs and zero for a denormal

input.

3).The 53-bit long mantissas of both inputs are used to

generate partial products corresponding to 106-bit

product. Since high throughput and low latency are of

essence in floating-point applications, most FPMs use

some form of an array multiplier, such as a booth-

encoded multiplier as shown Figure 1, to meet the

performance demands. Most array multipliers employ an

array of carry-save-adders (CSAs) to reduce the large

number of partial products to two final full product-

length bit streams.

4).The most significant 53-bits of the two output bit

streams from the CSA array are summed up using a

carry propagation adder (CPA) to generate a 53-bit

mantissa. The least significant 53-bits are used to

generate the carry input to the CPA as well as compute

the guard, round, and sticky bits to be used in post

normalization rounding. In parallel, the exponent logic

computes the resulting exponent, which is a sum of the

exponent values of both inputs minus the bias. The bias

has a value of 1023 in case of double-precision

operations. The sign of final product is also computed.

5).The post multiplication step includes normalization

of the 53-bit mantissa. For normal inputs and non-

underflow cases, either the mantissa is already

normalized or it may require a right shift by a single bit

position, in which scenario the exponent is adjusted, in

parallel, by adding one to it. The guard, round, and

sticky bits are updated and are used, along with the

round mode, to determine if the product needs to be

rounded or not.

6).In case of rounding, the mantissa is incremented by

one. If rounding yields a carry out, the exponent is

adjusted by adding one to it and right shifting the

mantissa by one bit position.

7).The final stage checks for a NaN, infinity, or a de

normal outcome before outputting the correct result in

the IEEE format.

 With normalization step limited to a simple shift of

no more than one-bit position and the exponent logic

comprising only 11-bit long arithmetic, the FPM’s

complexity is largely a function of its 53x53 multiplier,

sticky bit computation block, and the final carry

propagation adder. We present various structural and

circuit-level optimization techniques to reduce the

2035

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

complexity and power consumption footprint of the

aforesaid logic blocks.

 3. Asynchronous Multipliers and Floating-

Point Arithmetic

In terms of the multiplier design, the delay variability

nature of iterative multipliers makes them a popular

choice amongst asynchronous designers. An iterative

multiplier utilizes a few functional units repeatedly to

produce the result. In a simple iterative n by n multiplier

implementation, where n is the number of bits, the

product is computed after n iterations. Each iteration

comprises a minimum n-bit addition and a serial shift by

one-bit position. Furber et al. proposed a low power

integer multiplier which exploits the commonly

occurring pattern of low number of significant bits in

integer inputs as means to reduce the total number of

iterations. These iterative multiplier designs, though

compact in terms of area, are not feasible to be used in

floating-point multiplier hardware due to their very high

latency and low throughput and the fact that unlike the

inputs in integer arithmetic, the most significant bits of

floating-point mantissa inputs are non zero.
 Joel Noche et al. used asynchronous circuits in their

design of a single-precision FPU. However, their FPU is

completely non-pipelined, doesn’t include any energy

optimization techniques, and does not implement

rounding logic. Their FPU has many orders of

magnitude higher latency compared to all recent

floating-point designs from synchronous domain Sheikh

et al employed fine-grain asynchronous circuit

techniques for various operand-dependent optimization

techniques to reduce average-case power consumption

in the FPA data path. However, their work is restricted

to FPA design only.

 3.SynchronousFloating-Point Multipliers

There is a large body of work on synchronous FPM

design..Ercegovac and Lang contain an overview of the

different techniques used to optimize floating-point

multiplication. The focus of prior work has been the

array multiplier block, which is the single largest logic

structure within the FPM data path. Earlier designs have

employed various architecture and circuit-level

optimizations to reduce array multiplier latency and

increase its throughput [18, 20, 22, and 28]. However,

there is relatively much less work on improving the

energy efficiency of multiplier data path, which is one of

our primary contributions.

4. Floating Multiplier and Power

breakdown

We use quasi-delay-insensitive (QDI) asynchronous

circuits for our baseline FPM design. The fine-grain

asynchronous pre-charge-enable-half-buffer (PCeHB)

pipelines in our design contain only a small amount of

logic (e.g. a two-bit full-adder). The actual computation

is combined with data latching, which removes the

overhead of explicit output registers. This pipeline style

has been used in previous high-performance

asynchronous designs, including a fully-implemented

and fabricated asynchronous microprocessor.

Unlike in the FPA data path where total power is

distributed roughly evenly amongst a number of

different logic blocks, the FPM’s complexity is largely a

function of its 53x53 multiplier. This is highlighted in

which shows the power breakdown estimates of our

baseline fully QDI FPM data path. The booth-encoded

array multiplier accounts for roughly 76% of the total

power consumption. Hence, in this work, we primarily

focus on reducing energy/power of the array multiplier

block.

 The Front-End/Exponent block corresponds to the

logic that unpacks IEEE format inputs and analyzes the

sign, exponent, and mantissa bits of each input to

determine if the inputs are standard normalized or are of

one of the special types (NaN, infinity, de normal). It

also includes the logic to compute the resultant exponent

of the FPM product. The array multiplier outputs two

106-bit streams. The most significant 53-bits of the two

output bit streams from the array multiplier are summed

up using a carry propagation adder (CPA) to generate a

53-bit mantissa. The least significant 53-bits are used to

generate the carry input to the CPA as well as compute

the guard, round, and sticky bits to be used in post

normalization rounding. The sticky bit computation

block and the final carry propagation adder are the other

power consuming structures within the FPM data path.

In this work, we present various structural and circuit-

level optimization techniques to reduce the complexity

and power consumption footprint of the aforesaid logic

blocks.

2036

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

 5. Multiplier Design Trade–offs

The choice of a particular multiplier design depends on a

number of factors. These include: desired throughput
The choice of a particular multiplier design depends on a

number of factors. These include: desired throughput,

overall latency, circuit complexity, and the allowed

power budget. Traditionally, high performance has been

the key driving factor in multiplier design. However, as

power consumption has become a major design

constraint lately, a number of low-power multiplier

designs have been proposed both in synchronous and

asynchronous domains.

 5.1. Iterative Multipliers

 Iterative multipliers represent a low complexity

design choice. An iterative multiplier utilizes a few

functional units repeatedly to produce the result.

Iterative multipliers can be used to reduce energy

consumption by exploiting input data patterns; stages

which add zero to the partial product could be detected

in advance and skipped, hence reducing delay and

energy consumption. Though compact in terms of area,

iterative multipliers are not feasible to be used in

floating-point multiplier hardware due to their very high

latency and low throughput.

Reduction in the total number of partial products is

the key goal of all multiplier optimization techniques, as

it helps to reduce both latency as well as energy

consumption. Along these lines, Efthymious et al. [7]

proposed an asynchronous multiplier implementation

based on the original Booth algorithm [3]. Their design

scans the multiplier operand and skips chains of

consecutive ones or zeros. This can greatly reduce the

number of partial product additions required to produce

the product. The downside is that it requires a variable

length shifter to correctly align multiplicands for

generating each partial product row. The effectiveness

of this algorithm for high performance FPM hardware is

dependent on the number of variable length shifts, which

in turn depends on the number of partial product rows

that are to be generated.

Our application profiling results for a number of

scientific and emerging floating-point applications,

using Intel’s PIN [14] toolkit, indicate that although the

original Booth algorithm is able to reduce the number of

partial products from the maximum of 27, a sufficiently

large number of partial products rows, more than 18 on

average, still need to be generated, each of which

requires the use of variable shifter. The latency overhead

of such a large number of variable shift operations is too

costly for any high performance FPM design. Hence, we

did not pursue this algorithm any further.

 5.2. Array Multipliers

 Array multipliers are the common choice for high

through-put and low latency multiplication operations in

most com-mercial FPM designs [20, 26]. They produce

a pre-determined fixed number of partial products,

which greatly minimizes if not fully eliminates the

opportunities for exploiting data dependent

optimizations. For example, introducing logic to bypass

a zero partial product instance may add the same amount

of delay as summing the extra term in a carry save adder

(CSA) used to reduce the partial product terms. As array

multipliers present very limited opportunities for data

dependent optimizations, there has not been much work

on asynchronous array multiplier solutions. The simplest

implementation of an n by n array multiplier produces n

partial products in parallel, which are then summed up

using CSAs. The large number of partial products makes

this simple design unfeasible for both latency and power

consumption perspective. As a result, many advanced

multiplier implementations from academia [21] and

industry [20, 26, and 28] use some form of radix-4

modified booth algorithm, which cuts the number of

partial products to n/2. The reduction in the number of

partial products yields significant savings in energy

consumption, latency, as well as the total transistor

count.

For a 53x53-bit multiplier in an FPM data path, with

inputs Y and X, a radix-4 booth-encoded algorithm

produces 27 partial products. Each of the Y and X inputs

is in a radix-4 format. The multiplier bits, X, are used to

generate booth control signals for each partial product

row. One of the big advantages of radix-4 booth

multiplication is the relative simplicity of the logic

which generates partial product rows. The only

multiples of the multiplicand that are needed are: 0, Y,

and 2Y. Partial product term Y is generated by simply

assigning it the multiplicand. The 2Y multiple can be

generated with relative ease by assigning it one bit right

shifted value of the multiplicand. Bitwise inversion is

used to generate complemented multiples. To reduce

2037

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

these 27 partial product rows to two partial product

rows, a reduction tree comprising 7 stages of 3:2

counters/carry-save-adders (CSAs), is usually employed.

The energy consumption of the multiplier array is

directly correlated to the number of partial product

terms. With more partial product terms, more logic is

needed first to produce those terms and then to sum and

reduce those terms using a reduction tree. To further

improve energy efficiency, one of the alternatives is to

use a radix-8 Booth-encoded multiplier which reduces

the number of partial product rows from 27 down to 18.

The biggest disadvantage of a radix-8 multiplier is that it

requires a 3Y multiple which needs a full length carry

propagation adder to compute. Since the 3Y multiple

must be available before any partial product term is

computed, a tree adder topology such as a hybrid

Kogge-Stone carry-select adder must be used to

minimize any latency degradation in a synchronous

design.

Table I compares three different radix length

implementations of a 53x53-bit multiplication unit in

terms of the total partial products bits and the number of

logic stages required to reduce the total number of

partial product rows to two rows. A radix-8 Booth-

encoded implementation produces 62.4% and 31.3%

less partial products bits compared to bitwise radix-2

and Booth-encoded radix-4 multipliers respectively. But

in terms of latency, when compared to a radix-8 version,

a radix-4 implementation needs only one extra logic

stage because partial product terms are summed and

reduced using CSAs in a tree structure, which has

logarithmic logic depth. This gives a radix-8 multiplier a

single logic stage cushion to compute the tough 3Y

multiple. Hence, for any radix-8 Booth multiplier to be

considered a viable alternative, it must provide a very

low latency 3Y computation unit with energy

consumption significantly lower than the savings

attained with the use of 31.3% less partial product bits.

The use of power intensive tree adders greatly

diminishes the savings that result from the reduction in

the the number of partial product terms. As a result,

radix-8 multipliers are not commonly used in

synchronous FPM implementations.

 TABLE I
 ARRAY MULTIPLIER

 Multiplier Type Partial Product Bits Reduction Stages

 Radix-2 Bitwise 2809 9

 Radix-4 Booth 1539 7

 Radix-8 Booth 1056 6

 53X53-BIT RADIX-8 ARRAY MULTIPLIER

 6. 3Y Adder

The highly operand dependent nature of the 3Y

multiple computation makes it a strong potential target

for asynchronous circuit optimizations. The application

profiling results in Figure 3 show that the longest carry

chain in a radix-4 3Y ripple-carry addition is limited to 3

ripple positions for over 90% of the operations across

most floating-point application benchmarks. The delay

of an adder depends on how fast the carry reaches each

bit position. For input patterns that yield such small

carry chain lengths on average, we need not resort to an

expensive tree adder topology designed for the worst-

case input pattern of carry propagating through all bits.

 Fig.6.1: Radix-4 3Y Adder Longest Carry Length

The interleaved adder topology provides an energy

efficient solution for computing the bottleneck 3Y

multiple terms required in radix-8 Booth multiplication.

It comprises two 53-bit radix-4 ripple-carry adders,

where each 3Y block shown in Figure 4 computes the

3Y multiple for the corresponding Y input. The first

arriving data tokens YRs are forwarded to the right 3Y

adder. In standard PCeHB reshuffling, the interleave

split stage has to wait for the acknowledge signal from

ripple-carry adder before it can enter neutral stage and

accept new tokens. However, this would cause the

pipeline to stall in case of a long carry chain. The

2038

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

interleaved adder topology circumvents this problem by

instead issuing the next arriving data tokens to the left

3Y adder. Hence, the two ripple-carry adders could be in

operation at the same time on different input operands.

The interleave merge stage receives outputs from both

right and left adders and forwards them to the next stage

in the same interleaved order. With our pipeline cycle

time of approximately 18 logic transitions (gate delays),

the next data tokens for the right adder are scheduled to

arrive after 36 transitions of the first one. This gives

ample time to quite rare inputs with very long carry-

chains to ripple through as well without causing any

throughput stalls.

For inputs patterns observed in our various floating-

point application benchmarks, the forward latency of

computing the 3Y term using the interleaved adder is

less than that attained with power-intensive tree adders,

which are frequently used in synchronous designs to

guarantee low latency computation. Compared to a 53-

bit hybrid Kogge-Stone carry-select tree adder

implementation, the interleaved adder consumes

approximately 68.1% less energy at 8.3% lower latency

for the average case input patterns shown in Figure6.2.

We exploit this data dependent adder design topology,

not possible within

 Fig6.2: Radix-4 3Y Adder Longest Carry Length.

Synchronous domain, to design an energy-efficient

radix-8 Booth-encoded multiplier for our asynchronous

FPM data path.

 7. Pipeline Design

Although, the radix-8 multiplier reduces the number

of partial products bits by 31.3% compared to a radix-4

implementation, it still needs to produce and sum over

1050 partial product bits. As discussed by Sheikh et al.

[25], standard.

PCeHB pipelines, though very robust, consume

considerable power in handshake circuitry, which gets

worse as the complexity of PCeHB templates increases

with more input and output bits. The handshake

overhead, in a two-bit full adder PCeHB pipeline

implementation, is as high as 69% of the total power

consumption . Therefore, for circuits with large number

of inputs, intermediate and final outputs, such as a

multiplier array, the PCeHB pipelines represent a non-

optimum choice from energy efficiency perspective.

We use N-Inverter pipeline templates, are first

proposed , to implement the multiplier array. An N-

Inverter pipeline reduces the total handshake overhead

by packing multiple stages of logic computation within a

single pipeline block, in contrast to PCeHB template

which contains only one effective logic computation per

pipeline. The handshake complexity is amortized over a

large number of computation stacks within the pipeline

stage. Sheikh et al showed that compared to a PCeHB

pipelined implementation the N-Inverter pipelines can

reduce the overall energy consumption by 52.6% while

maintaining the same throughput. These improvements

come at the cost of some timing assumptions and require

the use of single-track handshake protocol. The The

design trade-offs associated with N-Inverter templates

are discussed extensively in .

 The block-level pipeline breakdown of our

radix-8 multiplier array is depicted in Figure 8.2. The

granularity at which the array is split is critical from

both performance and energy efficiency perspective.

The N-Inverter templates allow us to pack considerable

logic within each stage, which helps to reduce the

handshake associated power consumption significantly.

However, as the number of logic computations 6within a

pipeline blocks increase, so do the number of outputs.

With more outputs, although the number of transitions

per pipeline cycle remain the same with the use of wide

NOR completion detection logic, each of these

transitions incur a higher latency. The choice of 8x4

pipeline blocks, with 15 outputs per each stage, was

made to provide a good balance of low power and high

2039

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

throughput. The pipeline block labeled 8x4 Sign is

identical to an 8x4 block except that it includes a sign bit

for each partial product row. The sign bit acts as an

input of one in the least significant position for any of

the cases involving a complemented partial product

multiple of - Y, -2Y, -3Y, or -4Y. The pipeline blocks

labeled 10x4 Sign Ext are similar in design to the

frequent 8x4 block, except that it provides support for

sign extension bits required for supporting

complemented multiples. The 8x2 block is a reduced

version of an 8x4 block with only two booth rows. The

similarity between these different pipeline blocks and

the frequent use of the 8x4 pipeline block provides us

with great design modularity, which helped to reduce the

overall design effort required to optimize the multiplier

array for throughput and energy efficiency. Due to the

similarity between different pipeline blocks, we only

present the details of the 8x4 block. Each 8x4 pipeline

block receives Booth-control, Y and 3Y input tokens.

The eight bits of Y and 3Y inputs are encoded as four 1-

of-4 tokens each. Figure8.3 shows the intermediate and

final logic outputs within an 8x4 pipeline. It also shows

the corresponding mapping of these outputs to a

simplified circuit level depiction of an N-Inverter

pipeline template. The NMOS stacks in the first stage

compute four rows of eight bit partial

 Fig7.1: Radix 8 Multiplier.

Product terms in inverted sense. These inverted outputs

drive the inverters in the second stage of the pipeline

block to produce corresponding partial product, PP,

outputs. The next stage of NMOS stacks implements

carry-save addition logic to sum and reduce these four

rows of partial products to two rows of inverted sum and

carry outputs. These inverted outputs drive the PMOS

transistors in the last stage to produce sum and carry

outputs, SS and CC, in correct sense for the following

pipeline blocks.

 Fig7.2: 8x4 Multiply Logic Block.

For array multiplication, all pipeline blocks have to be

in Operation in parallel. The parallel operation requires

multiples copies of input tokens to be consumed

simultaneously by multiple pipeline blocks. For

example, each booth control token is required in seven

different pipeline blocks. To facilitate this, we include

multiple copy stages prior to initiating the array

computation. These copy blocks generate the desired

number of copies for each input token. These tokens are

then forwarded to the pipeline blocks which consume

them to produce sum and carry outputs.

Propagation adder uses four-phase handshake

protocol, the output tokens from the reduction tree are

converted back to four-phase protocol. We hide the

latency of this conversion stage by implementing the

final stage of the reduction tree within these conversion

templates.

The energy, latency, and throughput estimates of FPM

implementations with radix-4 and radix-8 array

multipliers are presented in Figure 7. The results are

normalized to FPM data path with a radix-4 multiplier.

The 31.3% reduction in the number of partial product

bits translates into 19.8% reduction in energy per

operation. But this improvement in energy efficiency

comes at a cost of 5.9% increase in the FPM latency

because of the 3Y partial product computation that

needs to determined prior to initiating the multiplier

array logic. A part of the 3Y computation latency is

masked within booth control token-generation and copy

pipelines. Since the radix-4 multiplier requires one extra

computation stage in the reduction tree compared to a

radix-8 multiplier implementation, the latency overhead

of the 3Y computation can be further hidden. The 5.9%

latency increase is attributed to the 3Y multiple

computation part which is not masked. Despite the

increase in latency, the throughput for both

2040

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

implementations remains the same due to sufficient

slack availability within the interleaved 3Y computation

block. The choice of a particular multiplier

implementation represents a design trade-off. Since our

goal was to optimize for energy consumption and

throughput, we chose the radix-8 multiplier

implementation in our final FPM design.

 7.1. Sticky-Bit logic and Carry-Propagation Adder

The multiplier array outputs two rows of 106-bit long

partial sum and carries terms. The next step is to

compute the 53-bit mantissa of the FPM output. This

requires the summation of the most significant 53-bits of

the two incoming partial sum and carry terms using a

carry-propagation adder (CPA). The least significant 53-

bits of the partial sum and carry terms are needed to

compute the carry input into the CPA as well as the

guard, round, and sticky terms required during the

rounding step.

 7.2. Carry Computation and Sticky-bit Logic

The multiplier array requires relatively less number of

summation steps to produce its least significant output

bits. This is because there are less partial product terms

to be summed since each successive partial product row

is skewed by three bit positions from the previous one in

radix-8 multiplication. As a result, the least significant

bits are available relatively earlier than rest of the

multiplier array outputs. We take advantage of our fine-

grain pipelining by initiating the carry computation as

soon as the least significant bits arrive. Furthermore, the

application profiling results in Figure 8 show that for

over 90% operations across all applications the longest

ripple-carry length to compute the carry input term is

less than four radix-4 bit positions. These average-case

patterns indicate that the carry term could be computed

well in time for the CPA operation, hence alleviating the

need of any speculative CPA implementations as is

usually done in the case of most high performance

synchronous FPMs.

Fig. 7.3. Radix-4 Multiplier vs. Radix-8 Multiplier

The micro-architecture of carry and sticky-bit

computation is depicted in Figure 10.1. It uses

interleaved split and merge pipelines, first introduced

with the design of interleaved adder. The inputs A and B

in Figure10.1 are in one-of-four encoded format and

correspond to 52 least significant bits of partial sum and

carry output terms from the multiplier array. The odd

data tokens are sent on the output channels labeled with

R prefix, while the next arriving even data tokens are

sent on channels with L prefix. Each Carry Sticky block

computes the carry and sticky bit terms at that bit

position. With carry chain lengths of less than four, as

seen in Figure 8, the final carry term is computed within

four logic levels on average. This represents logarithmic

average latency. The odd tokens are used to compute the

carry term Cin R used as carry input in the odd ripple-

carry adder of our interleaved CPA, whereas the next

arriving even data tokens compute the carry term Cin L

used as carry input in the even ripple-carry adder of our

interleaved CPA topology.

2041

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

Fig. 7.4: Interleaved topology to compute sticky-

bit and carry input.

For sticky-bit computation, we use parallel tree topology

which combines bitwise sticky-bit values to compute the

final sticky-bit. A ripple flow architecture similar to the

one used to compute carry input term was deemed not

feasible as it yielded consistently long ripple chains,

which caused throughput degradation. Our interleaved

topology prevents throughput degradation up to ripple

lengths of 14 bit positions only. The application

profiling results yield ripple lengths of 15 or more quite

frequently. The sticky-bit is set to one if any of the bits

is one, but for it to be set to zero it has to ensure that all

prior bits in the sequence are zero. This is what causes

the long ripple chains and renders ripple-flow design

infeasible.

 8. 53-bit Carry-Propagation Adder

We harness the timing flexibility of our underlying

asynchronous circuits by using interleaved adder

topology for the 53-bit carry-propagation adder design.

The interleaved adder comprises two ripple-carry

adders. The adder topology is identical to the one used

earlier for 3Y multiple computation. Our choice of the

interleaved adder was made on the basis of application

profiling results, which indicate very small carry chain

lengths on average across all application benchmarks. It

yields average throughput similar to that attained with

expensive tree adder designs while consuming up to 4X

less energy per operation.

9. Denormal, Underflow and zero input

While discussing the various trade-offs involved in

the FPM data path design, we have so far ignored certain

special cases specified in the IEEE format [19]. Two of

these special cases: the denormal numbers and

underflow case represent the most difficult operations to

implement in an FPM data path. The scenarios under

which these two special cases arise and the tasks that

need to be performed are summarized as follows:

1).One of the FPM inputs is a denormal number,

which yields a mantissa with zeroes in its most

significant bit positions. If the non-bias exponent

for the product is greater than the minimum value

of one, the product needs to be left shifted while

decrementing the exponent until it is normalized or

the exponent reaches the value of one. We refer to

this scenario as the Denormal case.

2).One of the FPM inputs is a denormal number or

both FPM inputs are very small numbers and the

resulting exponent is less than the minimum value

of one. In this case, the mantissa needs to be right

shifted. The value of right shift is equal to the

difference between the minimum value and

resulting exponent or an amount which zeroes out

the mantissa, whichever of the two is smaller. We

refer to this scenario as the Underflow case.

The need of variable left shift and right shift logic

blocks makes the hardware support for denormal and

underflow cases expensive. However, the infrequent

occurrence of these special case inputs and the extensive

hardware complexity required to support these

operations has meant that many FPM designs do not

fully support these operations in hardware. Instead, these

operations are implemented in software via traps. This

yields very long execution time. It also means that the

FPM hardware is no longer fully IEEE compliant.

We use serial shifters to provide full hardware support

for these special case inputs. Using conditional split

pipelines, the output bits from the CPA are directed to

either Normal or Denormal/Underflow logic path. The

Normal data path includes single-bit normalization shift

block and rounding logic. The Denormal/Underflow unit

comprises serial left and right shift blocks and a

combined rounding block. For input tokens diverted to

the Normal data path, no dynamic power is consumed

within the Denormal/Underflow block and likewise for

input tokens headed for Denormal/Underflow block,

there is no dynamic power consumption in the Normal

data path. In contrast, synchronous design requires

significant control overhead to attain fine-grain clock

gating.

Once the mantissa has been correctly aligned using

variable left or right shift block, a subsequent rounding

operation may be required to increment the 53-bit

mantissa by one. We utilize ripple-carry 1-of-4 encoded

increment logic to implement rounding. An expensive

increment logic topology would have been futile since

the output from variable shift blocks arrives in bitwise

fashion. The rounding logic is shared between the

Denormal and Underflow data paths as shown in Figure

10 to further minimize the area overhead of supporting

these special case operations. The Rnd block receives

incoming guard, round, sticky, and rounding mode bits

from both special case data paths. It selects the correct

2042

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

set of inputs to determine whether to increment the

mantissa or not.

Fig.9.1.Unified rounding hardware for

denormal/underflow cases

Prior to the final Pack pipeline, there is a merge

pipeline stage, which selects the output from either the

Normal or the Denormal/Underflow data path. Since

these special case inputs happen very infrequently as

shown in Figure 11, the throughput degradation due to

the use of serial shifters does not effect the average FPM

throughput.

 9.1. Zero-input Operands

Operand profile of floating-point multiplication

instructions reveals that a few application benchmarks

have a significant proportion of zero input operands.

These primarily include applications with sparse matrix

manipulations, such as 447.deal and 437.leslie3d,

despite their use of specialized sparse matrix libraries.

For other benchmarks, the zero-input percentage varies

widely as shown in Figure9.1. In most state-of-the-art

synchronous FPM designs that we came across, the

zero-input operands flow through the full FPM data

path. They yield similar latency and consume same

power as any other non-zero operand computation. This

is highly non optimum since if one or both of the FPM

operands are zero, the final zero output could be

produced much earlier and at much reduced energy

consumption by skipping most of the compute intensive

power consuming logic blocks such as the multiplier

array, carry propagation adder, normalization, and

rounding unit.

Fig. 9.1: Operand profile of floating-point

multiplication instructions

We provide a zero bypass path in the FPM data path

to optimize its latency and energy consumption in the

case of zero operands. To activate the bypass path, the

FPM utilizes the zero flag control output from Unpack

stage, which checks if any of the input operands is zero.

But this information is not available in time before the

start of pipeline stages pertaining to Booth control and

3Y multiple generations. One possible solution was to

delay these pipeline stages until the zero flag is

computed and then use it to divert the tokens to either

the regular or the bypass path. Since this solution incurs

a latency hit for non-zero operands, it was discarded. In

our design, instead of delaying the multiplier array, we

inhibit the flow of tokens much deeper in the data path.

As a result, in our design the energy footprint of zero

operand computations includes the overhead of

computing Booth control token as well as some parts of

the 3Y multiple computation. But this still yields

roughly 82% reduction in energy consumption for each

zero operand computation, while preserving same

latency and throughput for non-zero operand operations.

10. Floating-Point Multiplier

This section presents the SPICE simulation results of

our proposed FPM data path. The transistors in the FPM

were sized using standard transistor sizing techniques.

To meet high performance targets and to minimize

charge sharing problems, each NMOS stack was

restricted to a maximum of four transistors in series.

Since HSIM/HSPICE simulations do not account for

wire capacitances, we included an additional wire load

equivalent to a wire length of 8.75 m in the SPICE file

for every gate in the circuit. Our simulations use 65nm

bulk CMOS process at 1V nominal VDD and typical-

2043

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

typical (TT) process corner.

For non-zero operands, the FPM registers a highest

through-put of 1.53 GHz. In applications with a

considerable percentage of zero operands, the average

FPM throughput rises to as high as 1.78 GHz, since zero

input operations skip throughput constraining N-Inverter

templates in the multiplier array. The FPM energy per

operation results across all application benchmarks are

shown in Figure 10.1. Applications with considerable

zero-input operands consume significantly less energy

per operation as zero-input operations skip various logic

blocks.

In Table II, we compare our proposed asynchronous

FPM design against a custom FPM design by Quinn ell

et al in 65nm SOI process at 1.3V nominal VDD. The

energy, throughput, and latency results include only

non-zero operand operations in order to provide the

worst-case comparison. Despite using 65 nm bulk

processes, our FPM design consumes 3X less energy

per operation while operating at 2.3X higher

throughput.

Fig. 10.1: FPM energy per operation across

various floating-point applications.

Both designs have similar latency at 1.3V. However,

the custom FPM latency results do not include any

internal pipeline latches, which account for a

significant proportion of overall latency especially in

high throughput de-signs. Our asynchronous FPM

design compares quite favorably against the custom

synchronous FPM implementation despite employing

radix-8 Booth-encoded multiplier, which has an

average 5.9% higher latency than a radix-4 Booth-

encoded multiplier design.

TABLE II
ASYNCHRONOUS FPM VS SYNCHRONOUS FPM

 Design Energy/op Throughput Latency @1.3V
 Proposed FPM 92.1 pJ 1.53 GHz 705 ps
 Quinnell FPM 280.8 pJ 666 MHz 701 ps

For frequently occurring zero input operations in

sparse matrix applications, our proposed FPM yields

an even lower latency and energy per operation. The

results for zero input operands are shown in Table III,

which highlights the efficacy of zero bypass paths.

TABLE III

ZERO OPERAND FEATURES

 Design Energy/op Latency

 Proposed FPM 15.8 pJ 464 ps @ 1V

 Quenelle FPM 280.8 pJ 701 ps @ 1.3V

Since leakage power has become an important

design constraint, our simulations model sub-threshold

and gate leakage effects in detail. The total leakage

power of our FPM in idle mode was estimated at 1.62

mW using typical-typical process corner at 90 C and a

VDD of 1V.

 Fig: 10.2 Longest ripple carry Length for

Computing CPA Carry input.

2044

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

 Conclusion

 We presented the detailed design of an asynchronous

high-performance energy-efficient IEEE 754 compliant

double-precision floating-point multiplier. We provide

thorough analysis of the trade-offs involved in using

radix-4 and radix-8 array multiplier designs. The radix-8

design was preferred since it further reduced the total

FPM energy consumption by 19.8% while preserving

the average throughput. The full FPM data path with

numerous operand-dependent and pipeline optimizations

are fully quantified using 65nm bulk process. When

compared against a custom synchronous FPM design is

referred in Quinn El. An implementation of a floating

point multiplier that supports the IEEE 754-2008 binary

interchange format; the multiplier doesn’t implement

rounding and just presents the significand multiplication

result as is (48 bits); this gives better precision if the

whole 48 bits are utilized in another unit; i.e. a floating

point adder to form a MAC unit. The design has three

pipelining stages and after implementation on a Xilinx

Virtex5 FPGA it achieves 301 MFLOPs.

 Acknowledgement

 M.Pravallika would like to thanks Mr. V.Vamsi

Mohana Krishna, Associate professor, in the Department

of ECE who had been guiding throughout the project

and supporting me in giving technical ideas about the

paper and motivating me to complete the work

efficiently and successfully.

 References

[1] Exascale computing study: Technology

challenges.

www.science.energy.gov/ascr/Research/CS/

DARPAexascale-hardware(2008).pdf.

[2] SPECbenchmaie
. www.spec.org.

[3] A. D. Booth. A signed binary multiplication technique. Quarterly
Journal of Mechanics and Applied Mathematics, 4(2):236–240,
June 1951.

[4] S. Borkar. Design challenges of technology scaling. IEEE Micro,
19(4), July-August 1999.

[5] B. S. Cherkauer and E. G. Friedman. A hybrid radix-4/radix-8
low power signed multiplier architecture. IEEE Transactions on
Circuits and Systems, 44(8), August 1997.

[6] W. J. Dally and J. Poulton. Digital Systems Engineering.
Cambridge University Press, Cambridge, UK, 1998.

[7] A. Efthymious, W. Suntiamorntut, J. Garside, and L. E. M. Bracken bury.
An asynchronous, iterative implementation of the original booth multi-
plication algorithm. In Proceedings of the International Symposium on
Asynchronous Circuits and Systems, 2004.

[8] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan-
Kaufmann, 2004.

[9] J. Hensley, A. Lastra, and M. Singh. A scalable counter flow-
pipelined asynchronous radix-4 booth multiplier. In Proceedings of

the International Symposium on Asynchronous Circuits and Systems,
2005.

[10] M. Horowitz. Scaling, power and the future of CMOS. In
Proceedings of the 20th International Conference on VLSI Design,
2007.

[11] Z. Huang and M. D. Ercegovac. High-performance low-power
left-to-right array multiplier design. IEEE Transactions on
Computers, 54(3), March 2005.

[12] D. Kearny and N. W. Bergmann. Bundled data asynchronous multipliers
with data dependent computation times. In Proceedings of the Advanced
Research in Asynchronous Circuits and Systems, 1997.

[13] Y. Liu and S. Furber. The design of a low power asynchronous
multiplier. In Proceedings of the International Symposium on
Low Power Electronics and Design, 2004.

[14] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. In Proceedings of the Conference on
Programming Language Design and Implementation, 2005.

[15] A. J. Martin, A. Lines, R. Manohar, M. Nystrom,¨ P. Penzes, R.
South-worth, U. V. Cummings, and T.-K. Lee. The design of an
asynchronous MIPS R3000. In Proceedings of Conference on
Advanced Research in VLSI, 1997.

[16] A. Naini, A. Dhablania, W. James, and D. D. Sarma. 1-ghz hal
sparc65 dual floating point unit with RAS features. In
Proceedings of the International Symposium on Computer
Arithmetic, 2001.

[17] J. R. Noche and J. C. Araneta. An asynchronous IEEE floating-
point arithmetic unit. Proceedings of Science Diliman, 19(2),
2007.

[18] S. F. Oberman, H. Al-Twaijry, and M. Flynn. The SNAP project:
Design of floating point arithmetic units. In Proceedings of the
International Symposium on Computer Arithmetic, 1997.

[19] The Institute of Electrical and Inc. Electronic Engineers. IEEE
standard for binary floating-point arithmetic. ansi/ieee std 754,
1985.

[20] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K.
Sasaki, and Y. Nakagome. A 4.4 ns CMOS 54 x 54-b multiplier
using pass-transistor multiplexor. IEEE Journal of Solid-State
Circuits, 30(3), March 1995.

[21] E. Quinn ell, Jr E. E. Swartzlander, and C. Lemonds. Floating-
point fused multiply-add architectures. In Proceedings of the
Fortieth Asilomar Conference on Signals, Systems, and
Computers, 2007.

[22] E. M. Schwarz, R. M. Averill, and L. J. Signal. A radix-8 cmos
s/390 multiplier. In Proceedings of the International Symposium
on Computer Arithmetic, 1997.

[23] E. M. Schwarz, M. Schmookler, and S. D. Trong. FPU
implementations with denormalized numbers. IEEE Transactions
on Computers, 54(7), July 2005.

[24] B. R. Sheikh and R. Manohar. An operand-optimized
asynchronous IEEE 754 double-precision floating-point adder. In
Proceedings of IEEE International Symposium on Asynchronous
Circuits and Systems, 2010.

[25] B. R. Sheikh and R. Manohar. Energy-efficient pipeline
templates for high-performance asynchronous circuits. ACM
Journal on Emerging Technologies in Computing Systems, 7(4),
November 2011.

[26] S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener.
P6 binary floating-point unit. In Proceedings of the International
Symposium on Computer Arithmetic, 2007.

[27] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. Addison-Wesley, 2004.

[28] R. K. Yu and G. B. Zyner. 167 MHz radix-4 floating point
multiplier. In
Proceedings of the International Symposium on Computer
Arithmetic, 1995.

2045

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70701

