
Design Guidelines for FPGA Based

Design

Vaibbhav Taraate,
Senior Design Engineer RV-VLSI Design Center Bangalore,

Karnataka, India

Abstract—Over the past decade FPGAs are primarily used for

SOC based design and for ASIC prototyping. The architecture

of modern FPGA is complex and consists of up to few mega logic

cells or logic blocks. An FPGA consists of finite number of

resources and it is essential for a designer to implement the

design by estimating the logic requirement that is the resource

or device utilization. Modern FPGA architecture consists of sea

of array of Logic blocks or logic cells, Block RAMs, Hard and

soft IP cores, embedded multiplier, DSP blocks, Processor cores

and other glue logic. Modern FPGAs are used as prototyping

device for SOC based design and development. The major

design constraints are area, speed and power. By using proper

design and coding practices the large or medium FPGAs can be

used for SOC prototyping. The coding and design guidelines are

used to improve the design performance by optimizing design

for glitch free behavior. Good design practices always aid in

successful design migration between FPGA and ASIC for both

prototyping and production. The paper presents most of the

efficient coding and design guidelines by using Verilog HDL for

FPGA based designs.

Keywords—FPGA, Verilog, ASIC, HDL, Logic Block, STA,

FSM, SOC, Lint, CDC, PLL, DLL, IP, LUT, IOB, ,mux,

SDF,DSP.

I. INTRODUCTION

Most of the complex design fails during implementation. The

design fails due to timing violations, or due to the violation of

area or power constraints. The main reason behind this is

violation of design rules and the poor RTL logic design and

even negligence in using the proper design guidelines. FPGA

is register rich logic and the capacity of FPGA is always

estimated in the form of how many Logic blocks it has?

While writing an RTL code if designer refers coding and

design guidelines then, chances of failure during

implementation stage can be minimum. This saves the overall

design and development time and also improves the

performance, reliability and productivity of design team!

For FPGA based design the information about the FPGA

architecture with physical interpretation of the architecture of

the design always plays very crucial role during the design

and development cycle. While designing by using HDL it is

essential to understand how synthesis tool interprets different

coding styles? Coding styles used can affect the logic

utilization and design performance.

During the design cycle many times it has been observed that

by using proper design guidelines the performance of the

design can be improved. The use of design guidelines

simplifies the static timing analysis and even matching of

RTL behavior with gate level netlist becomes very easy.

Another important goal for using design guidelines is to

improve the overall testability features. The major design

guidelines are for use of efficient resources of an FPGA, use

of proper IPs and memory cores, and efficient use of low

power cells for achieving the lower dynamic power.

It is very essential that Lint tool can be used at the various

stages in the front-end FPGA design flow. Lint tools are

useful to point the design rule violations at the gate, block or

even at the system level.

The paper is organized in the following manner: The section I

describes the introduction, section II describes the Verilog

coding guidelines, the section III describes the design

guidelines for area optimization, the section IV discusses on

guidelines for clock, the section V describes the synchronous

vs asynchronous design, the section VI describes the

guidelines for use of reset, the section VII describes the

guidelines for the CDC, the section VIII discusses on the

design guidelines for low power design, section IX describes

the guidelines for the use of vendor specific IP blocks and

finally summary in section X.

II. VERILOG CODING GUIDELINES

Guidelines for using Verilog to implement efficient RTL are

listed in this section and it is always recommended to use

these guidelines during RTL design phase. Among these, few

guidelines are mainly described with reference to Verilog

Stratified Event Queue [1].

A. Blcoking Vs Non-Blcoking Assignments:

I. It is recommended to use blocking assignments while

modelling the combinational design.

II. It is recommended to use non-blocking assignments

while modelling sequential design.

III. It is recommended to use the non-blocking

assignments while modelling the latches. While

implementing RTL design, it is essential to overcome

the potential unintentional latches. Unintentional

latches are inferred due to missing else or due to

incomplete case conditions.

IV. It is recommended to use the non-blocking

assignments while modelling both sequential and

combinational logic.

V. It is recommended, not to mix the blocking and non-

blocking assignments in the same always block.

Figure 1 is the hardware inference of Verilog code for

blocking assignments. And Figure 2 is the hardware

inference of Verilog code for non-blocking assignments.

module non_blocking(a,d,clk);

output d;

input a,clk;

reg b,c,d;

always @(posedge clk)

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

368

Figure 1: Hardware Inference: Blocking Assignment

Figure 2: Hardware Inference: Non-Blocking Assignment

From Figure 1 and 2 it is observed that the blocking

assignment generates single register as it truncates the other

subsequent assignments. But non-blocking assignment

generates the pipeline structure like shift register.

B. Priority Vs. Prallel Logic:

I. It is recommended to use if-else statement for designing

priority logic. Priority encoder or priority interrupt

control logic can be modelled by using the nested if-

else statements.

Figure 3 is hardware inference of priority logic using nested

if-else statement

Figure 3: Hardware inference using if-else statement

II. It is recommended to use case statement for designing

parallel logic. Priority logic generates the longer

combinational path due to nested if-else statements, so

it is always recommended to use case statement to

generate parallel logic. Figure 4 is hardware inference

of parallel logic using case

statement

Figure 4: Hardware inference using case statement

C. FSM Guidelines:

I. Binary encoding techniques are efficient for a design

having 16 or fewer states. As number of states

increases the next state combinational logic

performs slower operation.

II. One-hot encoding technique is very efficient and

reliable as compare to the binary encoding due to

glitch free behavior. One hot encoding requires low

density nest state logic and useful in design of larger

FSM blocks. But the main drawback of one-hot

encoding is; it uses more registers!

III. While designing FSM, designer need to take care of

following key points

a. Don’t leave any undefined states. Initialize

the unused states to reset value or use the

default statements.

b. Don’t implement the FSM with

combination of registers and latches. Avoid

the unintentional latches in the FSM design

to improve the reliability.

c. Model the FSM blocks by using case

statements to infer the parallel logic.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

369

d. Separate the next state, output

combinational logic and state register logic

in different always blocks to improve the

speed of FSM and for better synthesis

results.

e. Register FSM output as it preserves the

hierarchy.

f. Use the look ahead mealy machines for

better design performance.

D. Combinational Design and combinational loops:

I. It is recommended to use continuous assignment

statement for design of combinational logic.

II. While designing the combinational logic it is essential

to avoid the combinational loops. Combinational loop

causes instability and unreliability in digital designs as

it violates the synchronous design concepts due to

infinite looping.

The combinational loop generates the oscillatory

output and the period of the oscillatory output signal is

mainly dependent on the delay introduced by

combinational logic in the feedback path.

For example as shown in Figure 5 the procedural

block infers the combinational loop during synthesis.

It is always treated as the undesirable behavior due to

oscillatory nature of output. By using the proper Lint

tool in the FPGA design flow at various stages the

combinational loops can be detected [2],[3],[4] and

can be avoided.

Figure 5: Combinational Loop

III. Use the signal grouping to improve the performance

of FPGA based design. For example if the expression

q= (x+y+z+w) can be represented as shown in the

Figure 6 and the Figure 7 is hardware inference with

grouping by using expression q= (x+y) + (z+w). Due

to grouping the timing performance of design is

improved.

Figure 6: The hardware inference without grouping

Figure 7: The hardware inference with grouping

E. Assignments:

I. It is recommended not to make the assignments to

same variable from multiple always block. It gives

error as multiple drivers to the same net or wire.

II. It is recommended not to make assignments with #0

delay [1].

F. Simulation and Synthesis mismatch:

Most of the synthesis tools ignores the sensitivity list of

combinational procedural block but simulator executes the

procedural block, only when there is event on one of the

signal in the sensitivity list parameters. Due to incomplete

sensitivity list it creates the simulation synthesis mismatch.

Consider the example shown in Figure 8. The synthesizer

ignore the sensitivity list and generates the AND logic but

due to incomplete sensitivity list the simulator generates the

output which is different from required output.

The simulation synthesis mismatch is shown in the Figure 8

for the Verilog combinational block. It is recommended to

use all the required signals or inputs as sensitivity list

parameters.

.Figure 8: Simulation Synthesis mismatch

G. Post synthesis Verification:

It is highly recommended to perform the post synthesis

verification for the FPGA based design. Post synthesis

verification with the SDF assures the correct behavior of the

gate level netlist. There should not be mismatch between the

functional verification of the design and the post synthesis

verification!

III. GUIDELINES FOR AREA OPTIMIZATION

FPGAs have finite resources so it is recommended to follow

the design guidelines to optimize the area. The area

optimization techniques are: Resource Sharing, Logic

Duplication. [Note: Many times it has been observed that,

logic duplication can even increase area and the use of logic

duplication technique is dependent on the design scenarios!].

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

370

A. Resource Sharing:

 Always it is observed that, adders consumes more area as

compare to multiplexers. The resource sharing is powerful

technique to share the common resources to minimize the

area. It is essential for the FPGA designer to consider

resource sharing of arithmatic operators used in the same

hierarchy.

The example shown in Figure 9 is hardware inference of

Verilog code without resource sharing. Here the operation is

addition (+) and it uses two adders and single multiplexer

(mux). Figure 10 is hardware inference of Verilog code by

using proper resource sharing. Due to use of only one adder

and more number of mux the overall area is optimized

Figure 9: Hardware Inference: Without Resource

Sharing

Figure 10: Hardware Inference: With Resource Sharing

Most of the time during design cycle it has been observed

that the resource sharing is one of the powerful area

minimization technique. But it is recommanded that not to

share resources from different modules or from different

hierarchy. Resources can be shared from the same module or

from the same hierarchies.

B. Logic Duplication:

Logic Duplication is the powerful technique to reduce the net

delay by enabling the placement tool to place the replicated

logic in various areas of die [2]. The major drawback of this

technique is, it increases the area of the design while

replicating the register or sequential logic.

On the other hand, as per as area minimization is concern,

logic duplication can act as very efficient tool but depends on

the design specific scenarios! Consider example of

implementing 8:256 decoder using single case statement. If

FPGA architecture has logic block with two, 4 input LUTs

and output generation LUT as shown in the Figure 11 [3] then

to implement the single output it uses 3 LUTs. So for 256 bit

output 768 LUTs are utilized. By splitting case statement to

implement two 4:16 decoders, logic duplication can be

achieved. By using logic duplication, if two 4:16 decoders are

used with 256 AND gate array then the overall device

utilization is just 288 LUTs for implementation of 8:256

decoder and it reduces the device utilization by around 480

LUTs. That is very huge reduction in the overall area. For the

8:256 decoder the logic duplication is accomplished by using

the 4 input LUTs and 2 input LUTs; the structure of logic

block is shown in the Figure 11 [3].

Figure 11: FPGA Logic Block used for Logic Duplication

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

371

IV. GUIDELINES FOR CLOCK

The performance and reliability of an FPGA based design

is based upon the clocking schemes. For the FPGA based

design and implementation it is recommended that:

a. Use single global clock.

b. Avoid use of Gated clocks.

c. Avoid mixed use of positive and negative edge

triggered flip-flops

d. Avoid use of internally generated clock signals.

e. Avoid ripple counters and asynchronous clock

division

It is recommended by most of the FPGA vendors that, do

not use the internal generated clocks as it causes the

functional and timing issues in the design. If internal

generated clocks are required in the design then use DLL

[3] or PLL [2] to generate the clocks.

The internal generated clocks by using combinational logic

are prone to glitches and it create the functionality issues

in the design. Due to the combinational delays it creates

the timing issues in the FPGA designs.

The major problem for using the internal generated clocks

is the issue during synthesis and timing analysis.

Xilinx [3] provides the library component global clock

buffers BUFGCTL [3] and BUFGMUX [3] to generate

internal clocks.

 To avoid glitches it is recommended to register the output

of the internal generated clocks. It is recommended to use

the clock generation logic shown in the Figure 12.

Figure 12: Clock Generation Logic

For low power designs it is essential to use the clock

gating but it is prone to glitches. So it is recommended to

use the clock gating cells for low power FPGA based

design.

It is recommended not to use the asynchronous pulse

generator circuit. Figure 13 represents the asynchronous

way of pulse generation. This technique should be avoided

as it is prone to glitches and very difficult to synthesize

and place and route. Depending on the pulse width

requirement replace the inverter shown in Figure 13; by

chain of odd number of inverters.

Figure 13: Asynchronous pulse generator

 Figure 14 represents the recommended pulse generator

where the pulse width is dependent on the clock period. It

is recommended to use two level synchronizer at the input

of pulse generator to avoid the metastability issues.

Figure 14: Synchronous Pulse Generator

V. SYNCHRONOUS VS ASYNCHROUNOUS

DESIGNS

In synchronous design the data input is sampled on every

active edge of clock and clock signal controls the activities of

inputs and outputs. Figure 15 represents the synchronous

design where the combinational logic (CL) drives the data to

the input of flip-flop. For the proper operation of the design it

is essential that the data input should be stable for at least

setup time of register and it should be stable for at least hold

time of register. The propagation delay of combinational

logic limits the operating frequency of the design. To meet

the timing requirement it is essential to have synchronous

relationship of all inputs and combinational inputs with the

clock signal of the flip-flop.

Use the pipelining feature to improve the performance of

synchronous design. As FPGA is register rich logic

pipelining is used for improvement of the speed of the design

at the cost of latency.

On the other hand an asynchronous design doesn’t have

common clock (Example Ripple counters) and are prone to

glitches or spikes. It is very difficult to model the timing of

asynchronous design by using timing constraints. Many times

an asynchronous design generates the glitches or short time

duration pulses shorter than the clock period. If the glitches

are passed through the combinational logic then the output

leads to an incorrect value. Figure 16 describes an

asynchronous logic prone to glitches.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

372

Figure 15: Synchronous Logic

Figure 16: Asynchronous Logic

Many times it has been observed that an asynchronous logic

reduces the device resources but prone to hazards. So it is

recommended to use the synchronous logic while

implementing the sequential design. Synchronous logic

always makes STA easy [4]!

VI. GUIDELINES FOR USE OF RESET

Resets are classified as synchronous and asynchronous resets.

Asynchronous resets are easy to implement as they don’t

depend on the clock. But STA becomes difficult and complex

while using asynchronous resets. At the same time automatic

insertion of the test structure is difficult.

On the other hand synchronous resets are difficult to

implement as it requires more resources and they are

dependent on the clock. Synchronous resets slowdowns the

design performance. It is recommended that FPGA designer

should avoid internally generated conditional resets [2], [3].

It has been observed during FPGA based designs that, reset

deasserted circuit is required while using asynchronous reset.

If reset signal is deasserted and if does not pass the setup and

hold timing check then flip-flop goes into metastable state

and it can lead to potential functional issues in the design [5].

It is recommended to use the synchronized asynchronous

resets. That is asynchronously asserted and synchronously

deasserted. Figure 17 is the recommended representation of

asynchronous active low reset (reset_n) passing through the

two level synchronizer.

Figure 17: Reset Generation Logic

For very large density or complex FPGA based designs with

multiple hierarchies it is essential to use the Linting tool

which can provide proper information about the reset and

clock trees [2], [3].

VII. GUDELINES FOR CDC

It is impossible to verify the Clock Domain Crossing (CDC)

by using functional verification and even it is impossible to

verify CDC by using timing analysis tool due to

asynchronous nature of clock path. The major problem

encountered in CDC is functionality failure due to

metastability.

To avoid a metastability it is recommended to use the dual or

three stage synchronizers while transferring signals from one

clock domain to another.

Linting tools are used to ensure the use of synchronizer chain

on the clock domain crossing paths. Use two or three level

synchronizer shown in Figure 18 to transfer the signals from

one clock domain to another. This will avoid metastability in

the design.

Figure 18: Two Level Synchronizer

VIII. GUIDELINES FOR LOW POWER DESIGN

Reducing the power for many application is very critical and

due to complexity of designs only use of power efficient

FPGA devices or architecture is not sufficient. It is essential

for designer to understand the features of EDA tools to

optimize the dynamic power. The recommendation by many

FPGA vendors is to reduce the switching activity in the

sequential logic and clock routing [2], [3]. For the low power

design it is recommended to use the gated clocks or the low

power clock gating cells. Dynamic power of a cell is

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

373

dependent on voltage, load capacitance and on clock

frequency. Due to switching at the clock input it has been

observed that the dynamic power increases. So to reduce

dynamic power it is recommended to use clock gating cells.

Figure 19 shows the clock gating cell.

Figure 19: Recommanded Clock gating

IX. GUIDELINES FOR USE OF VENDOR SPECIFIC IP

BLOCKS

It it always recommended by the FPGA vendor to have the

brief and detail understanding of the FPGA device and the

architecture of FPGA device.

It is recommended to use the vendor specific design and

coding guidelines to improve the performance of design. It is

highly recommended to encrypt the IP by using proper

security standards.

During synthesis phase it is recommended to infer the micro-

functions such as multipliers, shift-registers, memories and

DSP blocks to ensure the optimal results [2],[3].

For the better performance it is recommended to use the

proper timing constraints and analyze the timing constraints

by using the timing analyzer [3]. It is even recommended to

use the proper place and route effort level while

implementing the design [3]. The place and route effort level

allows the EDA tool to use the proper algorithm to improve

the design performance and even it improves the design

placement. It is also recommended to use the proper IOB

resources and proper speed grade during design

implementation stage [3].

While using the synchronous interface it is recommended to

use the single clock synchronous RAM (read and write in the

same clock domain) and while using asynchronous interfaces

use the dual port RAM [2].

X. SUMMARY

FPGA design engineer should follow the design and coding

guidelines provided by the FPGA vendor for better reliability

and performance of the design. It is better to ensure for the

efficient, reliable, reusable and readable RTL design.

Designer need to ensure about the proper design functionality

to lead to the correct simulation and synthesis behavior. It is

essential for the designer to ensure for the achieved coverage

for the design. Designer need to ensure for the use of proper

clocking mechanism, proper clock gating cells for the better

design performance. Finally designer need to ensure for the

optimized design performance without violation of any of the

design constraints! It is always recommended to use the

linting tool in the FPGA design flow at various stages.

ACKNOWLEDGMENT

The author would like to express sincere gratitude to design

and research team of RV VLSI Design Center Bangalore,

Karnataka (India) for frequent technical discussions on

emerging and new technology.

REFERENCES

[1] IEEE standard http://standards.ieee.org/getieee/1800/download/1800-
2012.pdf www.ieee.org

[2] Altera “Quartus II Handbook”, www.altera.com

[3] Xilinx ISE simulation and synthesis guide

www.xilinx.com/support/documentation/sw_manuals/xilinx14.../sim.pd

f www.xilinx.com

[4] Wayne Wolf. 2005, “FPGA Based System Design”, Prentice Hall

[5] Altera Quartus II documentation “
www.altera.com/literature/hb/qts/quartusii_handbook.pdf”

www.altera.com

ABOUT AUTHOR

VAIBBHAV TARAATE is senior design engineer at RV-VLSI Design
Center Bangalore, Karanataka (India). He received his M.Tech. in Aerospace
Control and Guidance from Indian Institute of Technology (IIT)
Bombay(Powai) and B.E. in Electronics from Shivaji University. He has
working experience of around 14 years in the field of FPGA based designs
and semi custom ASIC designs. His area of interest includes SOC based
designs, Parallel Processing and Computing, Low power ASIC designs and
Configurable Computing Networks.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110407

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

374

