

Design Implementation of an Efficient
BCD Multiplier in a Fully Pipelined Structure

J.Shankar Rao

1
, A.Suman Kumar Reddy

2

1
Student of M.Tech. (VLSI), PBR VITS, Kavali, AP, India

2
Associate Professor, Department of ECE, PBR VITS, Kavali, AP, India

Abstract—Decimal multiplication is one of the

most frequently used operations in financial,
scientific, commercial and internet based
applications. This paper presents an efficient
implementation of a fully pipelined decimal
multiplier designed with Carry Save Addition
and coded into a reduced group of BCD-4221.
This design is based on multiplier operands
recoded in Signed-Digit radix-10, a simplified
partial products generator, and decimal
adders.. Several assessments are carried out
in various N by M multiplications and their
respective synthesis results show slightly
optimistic figures in terms of area and delay in
regard to some previously published works.

Keywords-FPGA; BCD; Computer Arithmetic;

decimal floatingpoint; signed-digit radix-10.

1. INTRODUCTION
Decimal multiplication plays a key role

in many applications. This is the reason why
over recent years decimal operations have
become very popular. The major advantage is
the greater precision respect to binary
systems. Currently, this entails the
development of high-performance binary-
decimal arithmetic circuits

There are several works which focus
on fixed-point multiplication. Earle and Schulte
propose two novel sequential designs for
fixed-point decimal multiplication developing a
decimal carry-save addition in order to reduce
the critical path delay. Decimal sequential
multiplier has been developed by Sutter et al.
[6] and described important features of
efficient decimal multipliers using either
embedded BRAM´s or a low level
implementation with LUTs, MUXFX
multiplexers, and the usage of fast adders. An
implementation of a decimal parallel multiplier .

 This work presents the algorithm,
architecture and implementations of an
efficient pipelined multiplier. Its development is
based on carry save addition (CSA)
techniques in order to compress the partial
products tree.

2. AN OVERVIEW OF BCD
MULTIPLIER

A generic N-digit by M-digit
multiplication P = AxB is indicated in Fig. 1,
where A and B are the multiplicand and
multiplier respectively. The operation is made
of the following modules: generation of partial
products, reduction of partial products tree,
and fast decimal adders. Decimal
multiplication coded in BCD-8421 (8421)
presents a more complex implementation than
binary multiplication due to the presence
of invalid (8421) digits between {A, B, … F}.
These need to be corrected generating an
extra cost in computation as well as additional
multiplicand multiples that must be
implemented by the multiplier [8].The
generation of decimal partial products is based
on the techniques described in [8, 3]. First of
all, decimal digits of A are represented in BCD-
4221 (4221) to prevent the corrections
previously mentioned. This reduces the
computation complexity of multiplicand
multiples coded into (4221). A BCD-5211
(5211) format is introduced in this Section.
Both of these formats are necessary to
determine the set of multiples. For example,
the multiple 2A is computed as follows:
each(8421) digit is first recoded to (5421)
decimal as it is shown in Fig. 2a; straightaway
a 1-bit left shift is carried out, obtaining the 2A
multiple in (8421). The 2A multiple is easily
recoded from (8421) to (4221). The rest of
multiples are computed according to Fig. 2a.
The multiplier B is recoded into signed-digit

1558

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90605

Vol. 2 Issue 9, September - 2013

(SD) radix-10. The (4221) or (5211) coding is
convenient because speed-up the CSA
eduction, whose 9´s complement is generated
by simple bit inversion.

Figure 1. Decimal Sd Radix-10 pipelined
multiplier diagram this paper proposes decimal
Q:2 CSAs which reduce Q digits to two ones.
These reductions are implemented in different
versions, for Q = 3, 4, 5, 8, 9 decimal
operands.

Figure 2. Multiples for SD radix-10 encoding This will be
further detailed in Section 3. It must be pointed out that
the processing is based on the (4221) coding. Several

decimal additions are applied over two
reduced digits. The fast carry-chain adder
described in [10] is a suitable alternative due
to its high performance in terms of area-delay.

3. NXM BCD MULTIPLIER
IMPLMENTATION

A general overview of NxM-digit BCD

multiplier architecture is described below and

depicted in Fig.1. Dashed blocks indicate the main

odules of the design, and the dotted line indicates

the pipelined stages.A N-digit multiplicand A and a

M-digit multiplier B as unsigned decimal are

assumed. The (8421) multiplication is processed as

follows: the multiplicand multiples generation unit

takes the operand A and computes a set of N + 4-

digit multiplicand multiples {1A, 2A, 3A, 4A, 5A}

coded into (4221). In parallel, the sd-radix-10 unit

recodes each digit (8421) of B between {-5, -4, -3,

… +3, +4, +5} that is represented with a 1-bit sign

and 5-bit magnitude format. The recoded B is

multiplied digit-by-digit by the previously

computed multiplicand multiples. It is important to

emphasize that the (8421) coding introduces a

computational cost due to the corrections in the

decimal reduction CSA. An alternative toprevent

this drawback is to use (4221) coding

[8].Immediately after, the partial product

generation unit takes the outputs from the two

modules previously mentioned and generates M + 1

partial products which depend on eachrecoded digit

of B, represented in signed-digit radix-10

format.Each partial product coded in (4221) is at

most of N + 3-digit length. All of partial products

are taken as inputs in the decimal Q:2 CSA

reduction tree module, this simplifies Q-digit into

two decimal digits coded in (4221). The basic

scheme with regard to decimal 3:2 CSA reduction

fulfils the relation A(i) + B(i) + C(i) = 2H(i) + S(i),

i ∈{0, 1, 2, … M - 1} (Fig. 3a). The 4-bit inputs

A(i), B(i), and C(i) are simplified to 4-bit S and H

by means of 4 full-adder cells. It can be noted that

the 2H(i) is produced by the block 2X. therefore,

the considered outputs will require at least 5-bit

operands. The proposed decimal Q:2 reduction

presents two outputs: 2H and S of 8 bits each one.

This architecture can be extended to different

versions of decimal Q:2 compressors. To validate

and carry out the evaluations, several decimal Q:2

CSAs between 3:2 and 9:2 compressors were

tested. The proposed decimal Q:2 CSA is base on

several basic binary CSAs (Fig. 3b, 3c, 3d, 3e) and

these equally are made up of full or half-adders as

basic cells. . The early block is based on a(4221)

1559

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90605

Vol. 2 Issue 9, September - 2013

addition and a circuit to detect special cases.

Straightaway, the (4221) outputs are recoded into

(8421).Each mentioned stage pipeline executes a

decimal addition which is based on carry-chain

techniques. Finally, the result from the last

pipelined stage shows the multiplication N +

Mdigit AxB
.

 Figure 3. Proposed Decimal 3:2 CSA and several Binary
Adder schemes

A. Signed-Digit Radix-10 recoding /
Multiplicand Multiples Generation

The block diagram is depicted in the
Fig. 2a, the recoding is applied to each digit of
B. This transforms a (8421) set {0, 1, 2
.., 9} into the signed-digit set {-5, -4… +4, +5}
made up of a sign signal SX(i) and a 5-bit
magnitude X(i). Each digit X(i) selects the
corresponding multiplicand multiples coded in
(4221). The sign SX verifies if a negative
multiple is produced. It is important to highlight
that a negative version of a partial product is
obtained simply by inverting the bits of the
positive version using arrays of XOR gates

manipulated by SX(i). The above circuit
requires 2 slices and 6 LUTs.The following
section discusses Multiplicand Multiples
Generation (Fig. 2a), this set of multiples are
coded into (4221). Multiples 2A and 5A are
generated with recoding (8421 to 4221, 5211
to 4221) and carrying out a left shifting
process. Multiple 4A is computed as 2x2A and
3A comes from a decimal addition between A
and 2A. Each partial product has N + 3 digits.

B. Reduction partial product

After generating the M + 1 partial
products, coded into (4221), the reduction of
partial products is developed by means of
decimal Q:2 carry save additions (CSA). First,
the partial products are aligned and divided
into blocks as it is shown in Fig 4. A circuit
based on decimal 3:2, 4:2, and 8:2 CSA
compressors is proposed, which entail to
utilize block sizes of (M + 3 + M / #blocks) x Q
decimal operands

 A decimal 3:2 CSA compressor (Fig.
3a) adds three numbers A, B, C each one of
size 4-bit (coded in 4221) to get a decimal S
and a carry H, such that A + B + C = S + 2H as
it was explained in Section 3. The 2X module
observed in Fig. 3a is composed of a (4221 to
5211) coding operation and a one bit left shift
operation. The decimal 3:2 CSA is
implemented by 4 binaries 3:2 CSA, each one

1560

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90605

Vol. 2 Issue 9, September - 2013

utilizing 2 LUT3s, and a 2X block. The
hardware cost of different decimal Q:2
versions are shown in the Table I. The above
basic binary 3:2 (full adder) circuit is utilized as
basic cell in different CSA compressor
schemes. As an example the decimal 8:2 CSA
will be described: This
implementation requires 4 binary modules 8:4
CSA, 2 binary 3:2 CSA and seven 2x blocks.
Each binary 8:4 CSA is made up of one half
and 4 full adders and has an area of 7 LUT4s and

3 LUT6s. Table I exhibits the area contribution of
several decimal CSA implementations

TABLE I. AREA OF SEVERAL PROPOSED DECIMAL
CSAS

C. BCD-4221 Adder recoding

After processing the earlier stage, the
(4221) Adder Recoding unit in Fig. 5 takes as
inputs the outputs of each Q:2 reduction and
codes them into two decimal digits (4221) of 4-
bit size. This implementation is based on a
(4221) addition and a circuit to detect special
cases. As it is specified in the Section
3, a (4221) decimal addition does not require
correction as usually occurs in the (8421)
decimal adder. As soon as the circuit receives
the two outputs of 8 bits of the early
implementation, a 2-digit decimal addition in
(4221) format is carried out. The function is
represented as: 2H(i)(7..0) + S(i)(7..0) =
D1(i)(3..0) & D0(i)(3..0), where (i) represents
the “i-th” Q:2 reduction process. In Fig. 5 the
implemented architecture can be observed.

D. Decimal Addition design

After finishing the previous stage and as soon
as its outputs are computed, a (8421) decimal
addition is carried out. First of all, an aligned
process on the vectors D0 and D1 is
eveloped,just before both of them are recoded
into (8421). As it is pointed out at the
beginning of this section, various levels of
pipeline = og2 (M) + 1 are implemented.

Several decimal additions are processed at
each pipelined stage (Fig. 4),carrying out
additions of (M + 3 + M / #blocks) digits.The
proposed addition is based on 10´s
complement BCD numbers, and the carry-

chains techniques to carry out the full design.

TABLE II. IMPLEMENTATION RESULT OF NXM
DECIMAL MULTIPLIERS FULLY PIPELINED

The circuits previously mentioned were built
using different techniques as was explained in
Section I, but it can be noted that the proposed
circuit presents a delay of almost 18% and
28% less than the circuits in [4] and [6]
respectively. Due to partitioned scheme
implemented a large area penalty is generated

1561

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90605

Vol. 2 Issue 9, September - 2013

by the proposed multiplier in regard to
equentialone in [6].

IV.(a). Results verification

 To validate the designs, large numbers of
random vectors were applied to an automated
testbench that tests the behavioural models
using ModelSim. For the decimal multiplier,
over 10,000 test cases were used. A pipelined
multiplier with generic width and depth was
implemented, which carries out the above
mentioned tests. Additionally a random
numbers generation module was implemented
and used to validate the results.

IV(b).Results Comparison

 As a first comparison, the proposed design
matches up with three different decimal
multiplication implementations on FPGAs
reported in [6, 9, 11]. Table III shows the
figures in terms of area and delay for 16x16
decimal multiplications, as well as a binary
multiplier provided by Xilinx Core Generation.
It presents the performance of several
multiplications implementations on Virtex-4 [6,
11] and Virtex-6 with speed grade-3 [9]
highlighting that our proposal was
implemented with speed grade-2. It is worth
pointing out that any comparison between
circuits implemented on different FPGAs is
strongly unfair.It can be deduced that the
proposed scheme presents delays comparable
with the binary multiplier and the proposal
implemented in [9]. The advantage is that our
design requires 47% less FFs but increases
the number of LUTs utilized by almost 20%
compared with the proposal in [9]. It is worth
mentioning that the reduction tree proposed by
Vazquez et al.is built on Carry-Ripple adder
techniques and the multiplier operand is coded
using the Signed-digit radix-5 recoding which
is fully mapped into LUT-4s and LUT-6s [9].
Furthermore,
they show that the hardware cost of the
previous scheme is more efficient than the
Signed-Digit Radix-10 recoding utilizedby our

proposal.

 A Second comparison is presented in
table IV which shows delay and area for each
NxM multiplication achievement for different
the 8x8- and 16x16-digit multipliers present an
optimal pipeline depth of 6 and 7 respectively
presenting the lowest delays but with
penalization in area.

Finally, Table V provides performance

comparisons between multiplications
implemented on two large FPGAs,Virtex-5 and
Virtex-6. Taking the 8x8-digit
multiplicationpattern into consideration can be
noted that in a single Virtex-5 (lx330) can fit 73
operation cores meanwhile in a Virtex-6
(lx760) fits 177 ones, the figures demonstrate
the highperformance of our proposal.

1562

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90605

Vol. 2 Issue 9, September - 2013

V. CONCLUSION
This paper has reassessed several
implementations of N- xM-digit multiplications
on Xilinx FPGAs. This work presents the
design of several BCD multipliers and their
implementations on Virtex-6 FPGA. Previous
techniques and designs proposed are
analyzed to carry out erformancecomparison
in terms of area-delay as it was seen in
Section 4.The proposed pipelined
multiplication is based on a multiplier operand
coded into SD radix-10 recoding. A
parallelgeneration of decimal partial products
is reduced by carry save adder techniques and
decimal adders.The proposed circuit presents
a high-performance design of decimal
multiplier. Our proposal shows encouraging
results:one hand, its figures are comparable
and outperformed than other multipliers. The
other hand, a considerable number of cores
can be fit into large FPGA. Future work plans
to include the proposed multiplier in operations
based on decimal floating point.Also, a good
alternative would be to code the
multiplieroperand into SD radix-5 and SD
radix-4 formats and to compare the
performance results. Finally, a Xilinx
Microblaze Embedded processor can be
utilized to execute multiplications on SW and
HW, in order to estimate the SW-HW
performancecost.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic, 2008.

IEEE Std 754-2008.

[2] M. A. Erle and M. J. Schulte. Decimal multiplication

via carry-saveaddition. In Proc. IEEE Int Application-

Specific Systems, Architectures,and Processors Conf,

pages 348–358, 2003.

[3] B. Hickmann, A. Krioukov, M. Schulte, and M. Erle.

A parallel IEEEP754 decimal floating-point multiplier,

2007. Computer Design, 2007.ICCD 2007. 25th

International Conference on.

[4] H. C. Neto and M. P. Vestias. Decimal multiplier on

FPGA usingembedded binary multipliers. In Proc. Int.

Conf. Field ProgrammableLogic and Applications FPL

2008, pages 197–202, 2008.

[5] E. M. Schwarz, J. S. Kapernick, and M. F.

Cowlishaw. Decimalfloating-point support on the IBM

System z10 processor, 2009. IBMJournal of Research

and Development.

[6] G. Sutter, E. Todorovich, G. Bioul, M. Vazquez, and

J.-P. DeschampsFPGA Implementations of BCD

Multipliers. In Proc. Int. Conf.Reconfigurable

Computing and FPGAs ReConFig ’09, pages 36–

41,2009.

1563

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90605

Vol. 2 Issue 9, September - 2013

