
 Design Of 32 Bit Floating Point Addition And Subtraction Units Based

On IEEE 754 Standard
 Ajay Rathor, Lalit Bandil

 Department of Electronics & Communication Eng.

 Acropolis Institute of Technology and Research

 Indore, India

 Abstract

Floating point arithmetic implementation

described various arithmetic operations like

addition, subtraction, multiplication,

division. In science computation this circuit

is useful. A general purpose arithmetic unit

require for all operations. In this paper

single precision floating point arithmetic

addition and subtraction is described. This

paper includes single precision floating

point format representation and provides

implementation technique of addition and

subtraction arithmetic calculations. Low

precision custom format is useful for reduce

the associated circuit costs and increasing

their speed. I consider the implementation of

32 bit addition and subtraction unit for

floating point arithmetic.

Keywords: Addition, Subtraction, single

precision, doubles precision, VERILOG

HDL

1. Introduction

This is invaluable tools in the

implementation of high performance

systems, combining the reprogramability

advantage of general Purpose processors

with the speed and parallel processing. At

some point, require general purpose

arithmetic processing units which are not

standard components of fpga devices [10].

More recently, the increasing size of fpga

devices allowed researchers too efficiently

Implement operators in the 32-bit single

Precision format .Single precision format,

the most basic format of the ANSI/IEEE

754-1985 binary floating-point arithmetic

standard. Double precision and quad

precision described more bit operation so at

same time we perform 32 and 64 bit of

operation of arithmetic unit. Floating point

includes single precision, double precision

and quad precision floating point format

representation and provide implementation

technique of various arithmetic calculation.

Normalization and alignment are useful for

operation and floating point number should

be normalized before any calculation [3].

2. Floating Point format Representation

Floating point number has mainly three

formats which are single precision, double

precision and quad precision.

Single Precision Format: Single-precision

floating-point format is a computer number

format that occupies 4 bytes (32 bits) in

computer memory and represents a wide

dynamic range of values by using floating

point .As mentioned in Table 1 the single

precision format has 23 bit for significand (1

represent implied bit), 8 bit for exponent and

1 bit for sign. The IEEE standard specifies

that Single precision floating-point numbers

are comprised of 32 bits, i.e. a sign bit (bit

31), 8 bits for the exponent E (bits 30 down

to 23) and 23 bits for the fraction f (bits 22

to 0). E is an unsigned biased number and

the true exponent e is obtained as e=E–Ebias

with Ebias=127 the leading 1 of the

2708

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60996

significand, is commonly referred to as the

“hidden bit”. This is usually made explicit

for operations, a process usually referred to

as “unpacking”.

The IEEE standard specifies that double

precision floating-point numbers are

comprised of 64 bits, i.e. a sign bit (bit 63),

11 bits for the exponent E (bits 62 down to

52) and 52 bits for the fraction f (bits 51 to

0). E is an unsigned biased number and the

true exponent e is obtained as e=E–Ebias

with Ebias=1023. The fraction f represents a

number in the range [0,1) and the

significand S is given by S=1 [8].

The IEEE standard specifies that quad

precision floating-point numbers are

comprised of 128 bits, i.e. a sign bit (bit

127), 15 bits for the exponent E (bits 126

down to 112) and 112 bits for the fraction f

(bits 111 to 0). E is an unsigned biased

number and the true exponent e is obtained

as e=E–Ebias with Ebias=16383 [2, 10].

 Table 1: Floating point Format

Table 1 show single precision and double

precision floating point number

specification. Single precision for 32 bit and

double precision for 64 bit used different

exponent and significand. Quad precision

format used for 128 bit and described

different significand and exponent. In this

paper single precision floating point format

used. Single precision addition and

subtraction floating point operation used.

3. Addition/Subtraction

If two numbers x and y which described

floating point numbers and we perform

calculation sum or difference of two

numbers. Firstly, we check for zero of two

values and then require next step calculate

the difference of the two exponents, so need

operation of alignment. Align the

significand Ex–Ey =0 and put exponent ER

is result of the two exponents. Now add or

subtract the two significands Ex and Ey,

according to the effective operation.

Normalize the result SR, adjusting ER as

appropriate. Step by step we can perform

addition and subtraction of two floating

point numbers.

In the first step, the floating point operands x

and y are unpacked and checks for zero,

infinity. If we can assume that neither

operand is infinity. The relation between the

two operands x and y is determined based on

the relation between Ex and Ey and by

comparing the significands sx and sy, which

is required if Ex=Ey. Swapping Sx and Sy is

equivalent to swapping x and y and making

an adjustment to the sign sr. this swapping

requires only multiplexers.

In the next step, alignment of two

significand used. The significand alignment

shift is performed and the effective

operation is carried out. This step useful for

equal the significand numbers. Alignment

achieved by shifting either smaller number

to right. Now we can say that increasing it

exponent .if alignment has been completed

then we go for next step normalization.

Alignment is useful for next step of

normalization. Without this step result not

be calculated.

Normalization is last step for floating point

arithmetic operation. Sr is normalized by

after the alignment and shifter, which can

perform by right shifts. If sr is normalized,

then it shows result of two floating point

number of addition and subtraction.

Precision sign Exponent Significand

Single

precision

1 8 23+1

Double

precision

1 11 52+1

2709

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60996

Figure 1. floating-point adder/subtractor

Addition and subtraction of two floating

point number described in following block

diagram. Step by step we perform

calculation of two floating point number

addition and subtraction. Firstly if we taken

two floating point number for addition and

subtraction then in starting both number will

be unpack. After that we identify sign,

exponent and significand of both numbers.

This process depends on single precision

and double precision and quad precision

format. According to this format we taken

sign, exponent and significand bit. The IEEE

standard specifies that format.

Normalization process will be completed

after specify IEEE standard. In this step

normalize the number means move binary

point so that it is one bit from left. Shifting

the mantissa left by one bit decrease the

exponent by one or shifting the mantissa

right by one bit increases the exponent by

one. Before subtracting, compare magnitude

and change sign bit if order of operands is

changed .Alignment can be done after that

process and finally we get result of addition

and subtraction of two floating point

numbers.

4. Result and discussion

The implementation of floating point

addition and subtraction design unit for 32

bit floating point number are described in

simulation report. Simulation report explains

result of addition and subtraction of two

floating point number. A direct comparison

with other floating-point unit

implementations is very difficult to perform,

not only because of floating-point format

differences, but also due to other circuit

characteristics, e.g. all the circuits presented

here incorporate I/O registers, which would

eventually be absorbed by the surrounding

hardware. In conclusion, the circuits provide

an indication of the costs of FPGA floating-

point operators using a long format. 8.5 And

1.25 floating point additions provide 9.75

which apply input as a single precision

format.

Two floating point number in_1 and in_2

shows input data. And we get result in out

which is result or output. This is shown in

simulation waveform figure 3. This figure

show single precision addition of two

floating point numbers. In this

implementation use clock pulse and load

pulse for getting result. Resets also apply for

new calculation. In this result single

Normalize

Add

Align significands

Unpack

k

 Control

and

sign

logic

Add

/

 Sub

Pack

k

Operands

s

Sum/Difference

Significands

s

 Exponents

s

 Signs

s

Significand

d

 Exponent

t

 Sign

n

A B

s

Sub

b

Add

Mux

x

 Selective

complement And possible swap

Round and

Selective complement

Normalize

2710

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60996

precision 32 bit calculation shows. Floating

point subtraction simulation result show in

figure 4 .Two floating point number in_1

and in_2 shows input data. And we get

result in out which is result or output. 8.5

And 1.25 floating point subtractions provide

7.25 which apply input as a single precision

format. In this implementation use clock

pulse and load pulse for getting result.

 Table 2: Operator statistics on Quartus II EP3C16Q240C8 Cyclone III FPGA device

 Figure 2.Simulation waveform of floating point Adder

 Figure 3.Simulation waveform of floating point Subtractor

 Adder Subtractor

Total logic elements 184/15,408 (1%) 304/15,408 (2%)

Total combinational functions 182/15,408 (1%) 302/15,408 (2%)

Dedicated logic registers 127/15,408 (<1%) 193/15,408 (1%)

Total pin 99/161 (61%) 131/161 (81%)

Total memory bit 0/516,096 (0%) 0/516,096 (0%)

2711

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60996

5. Conclusion

Arithmetic unit has been designed to

perform two basic arithmetic operations

addition, subtraction for single precision

floating point numbers. IEEE 754 standard

based floating point representation has been

used. The unit has been coded in Verilog.

Code has been synthesized for the

CYCLONE III Family using Quartus II

Simulator and has been implemented and

verified.

References

[1] B. J. Hickmann, A. Krioukov, M. A.

Erle, and M. J. Schulte, “A Parallel IEEE

P754 Decimal Floating-Point Multiplier,” in

25th IEEE International Conference on

Computer Design .IEEE Computer Society,

October 2007, pp. 296–303.

[2] M. F. Cowlishaw, “Decimal Floating-

Point: Algorism for Computers,” in 16th

IEEE Symposium on Computer Arithmetic.

IEEE Computer Society, June 2003, pp.

104–111.

[3] ANSI/IEEE STD 754-1985, “IEEE

Standard for Binary Floating-Point

Arithmetic”1985.

[4] Loucas, L., Cook, T.A., Johnson, W.H.,

“Implementation of IEEE Single Precision

Floating Point Addition and Multiplication

on FPGAs”, InProc. IEEE Symposium on

FPGAs for Custom Computing Machines,

1999.

[5] Belanovic. P., Leeser, M., “A Library of

Parameterized Floating-Point Modules and

Their Use”, In Proc. Field Programmable

Logic and Applications, 2002, pp. 657-666.

 [6] Shirazi, N., Walters, A., Athanas, P.,

“Quantitative Analysis of Floating Point

Arithmetic on FPGA Based Custom

Computing Machines”, In Proc. IEEE

Symposium on FPGAs for Custom

Computing Machines 1995, pp. 155-162.

[7] Li, Y., Chu, W., “Implementation of

Single Precision Floating Point Square Root

on FPGAs”, In Proc. 5
th

 IEEE Symposium

On Field Programmable Custom Computing

Machines 1997, pp .226-232.

[8] Goldberg, D., “What Every Computer

Scientist Should Know About Floating-

Point Arithmetic”, ACM Computing

Surveys.

[9] Paschalakis, S., Lee, P., “Double

Precision Floating-Point Arithmetic on

FPGAs”, In Proc. 2003 2nd IEEE

International Conference on Field

Programmable Technology (FPT ’03),

Tokyo, Japan, Dec. 15-17, pp. 352-358,

2003.

2712

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60996

