
Design of a 16-bit RISC Processor Using VHDL

Karansingh P. Thakor, Ankushkumar Pal

Department of EXTC

Xavier Institute of Engineering

Mumbai, India

 Prof. Madhura Shirodkar

Department of EXTC

Xavier Institute of Engineering

Mumbai, India

Abstract— This paper targets the design and implementation

of a 16-bit RISC Processor using VHDL (Very High Speed

Integrated Circuit Hardware Description Language). As IC chip

design involves complex computations and intense usage of

resources, by using an HDL we can save resources and time by

implementing it using the software approach. The

implementation strategies have been borrowed from the popular

MIPS architecture to a certain extent. The processor has 16-bit

arithmetic and logical instruction set which has been designed

and simulated. The instruction set is extremely simple and it gives

an insight into the kind of hardware that would be required to

execute the instructions accordingly. The ALU, instruction

register, program counter, register file, control unit and memory

have been integrated in the proposed processor. All the modules

in the design are coded in VHDL to ease the description,

verification, simulation and hardware implementation. The

blocks are designed using the behavioral approach.

Keywords — RISC Processor, MIPS, SPU, ALU, ISA, VHDL,

PC, Opcode, clock, timing, FPGA, instruction, LOAD, JZ, JNZ,

ADD, ALB, AGB, waveform, RTL Schematic, 16-bit, Xilinx ISE,

Isim.

I. INTRODUCTION

 Processors are divided into 3 categories 8-bits, 16-bits

and 32-bits depending upon the demand of performance, cost,

power and programmability. 16-bit processors have higher

performance and power than 8-bit processors and lower power

consumption than 32-bit processors. They are often used in 16-

bit applications such as disk driver controller, cellular

communication and airbags. A RISC processor uses load-store

architecture, fixed length instructions and pipelining. In load-

store architecture, load instruction reads data from memory

and writes it to a register, data-processing instructions process

data available in registers and write the result to a register and

store instruction copies data from register to memory.

 This paper investigates the methodology of soft-core

processor development. The software used was Xilinx ISE

14.5. The target family chosen was Spartan 6 FPGA with

device XC6SLX9 and package CSG324. The simulation was

performed in ISim.

II. INSTRUCTION SET

 The first step was to design the Instruction Set Architecture

(ISA). The instruction set contains instructions supported by

the processor. The first nine instructions perform arithmetic

and logical instructions. The memory read instruction reads the

data from the memory address which is specified in a register

(Rs) and writes the data word to the register mentioned in the

instruction (Rd). The memory write instruction writes the data

in the specified register (Rs) to the target address which is also

specified in a register (Rt). There is an unconditional jump that

jumps to a memory address that is calculated by adding the

current value in the Program Counter and the 8-bit offset

specified in the instruction. This gives the target branch

address. A similar procedure is followed by the Conditional

Jumps but the address is calculated beforehand as an optimistic

operation and is stored in a special register, so that if the

condition is true then the branch target address is written into

the Program Counter. If the condition is false then the Program

Counter will not be modified and execution will continue as if

no branching took place. There is also a no operation (NOP)

instruction. The complete instruction set is given in Table I.

TABLE I. INSTRUCTION SET

 Instruction Opcode Operation

1 ADD 0 0 0 0 Rd = Rs1 + Rs2

2 SUB
0 0 0 1 If RS1 > RS2

Then Rd = RS1 – RS2

Else Rd = RS2 – RS1

3 AND 0 0 1 0 Rd = Rs1 & Rs2

4 OR 0 0 1 1 Rd = Rs1 | Rs2

5 NOT 0 1 0 0 Rd = ~ Rs

6 XOR 0 1 0 1 Rd = Rs1 ^ Rs2

7
CMP

(Equal

0

1

1

0

If Rs1 = Rs2

Then Equal = 1, else Equal =0

If R1 = 0
Then AZ = 1, else AZ=0

If Rs2 =0
Then BZ =1, else BZ =0

If Rs1> Rs2

Then AGB = 1, else AGB = 0

If Rs1< Rs2

Then ALB = 1, else ALB = 0

8 SHIFT LEFT 0 1 1 1 Rd=Rs1 <<1

9
SHIFT

RIGHT

1 0 0 0
Rd=Rs1 >>1

10 LOAD 1 0 0 1 Rd = Mem[Rs1]

11 STORE 1 0 1 0 Mem[Rs1] = Rs2

12 JUMP 1 0 1 1 PC = PC+Offset

13 NOP 1 1 0 0 No operation

14 JZ 1 1 0 1 PC = PC+Offset if Rd == 0

15 JNZ 1 1 1 0 PC = PC+Offset if Rd != 1

16
LOAD 8-BIT

IMMEDIATE

1 1 1 1
Rd = 8-bit Immediate

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

238

III. INSTRUCTION FORMAT

 After deciding the instructions, the next step was to

decide the instruction format. The uniform and orderly

placement of the fields in the instruction is called instruction

format. The instruction words are of 16-bits each. For

uniformity, the operation code (opcode) was kept as 4-bits for

all the instructions. So there are 16 instructions. The register

file has 16 registers of 16-bits each. In order to address 16

registers, we need a 4-bit register address field in an

instruction.

A. Arithmetic and Logical Instructions

 The arithmetic and logical instructions have a common

format : the opcode, the destination register address (Rd), the

first source register address (Rs1) and the second source

address (Rs2). This format applies to two operand instructions

like AND, SUB etc. For single operand instructions like NOT

only a single source register address is required. Hence the 4-

bits for source register 1 are unused and we use the address in

the field for the second register.

Opcode

(4-bits)

Destination

Register (Rd)
Address (4-bits)

Source Register 1

Address (4-bits)
(Rs1)

Source Register 2

Address (4-bits)
(Rs2)

Fig. 1. Format of an Arithmetic or Logical Instruction

B. Compare Instruction

 The compare instruction compares the two source

addresses (Rs1 and Rs2) and outputs a word that is stored in

the destination register (Rd). Each bit represents some

characteristic of the data. There are five conditions and each of

the first five bits of the output word correspond to a single

condition. If any bit is set it means that, that condition is true.

The interpretation of each bit is given in Table II. The

instruction also sets the five flag bits of the processor. These

flag bits are used for the conditional jump instructions to

decide if that condition is true.

Opcode
(4-bits)

Destination
Register

Address (4-bits)

(Rd)

Source Register 1
Address (4-bits)

(Rs1)

Source Register 2
Address (4-bits)

(Rs2)

Fig. 2. Format of Compare Instruction

Fig. 3. Format of Compare Instruction Output word

TABLE II. INTERPRETATION OF COMPARE OUTPUT WORD

Bit Abbreviation Meaning

0 EQUAL 0 Rs1 and Rs2 are equal

1 Rs1 and Rs2 are unequal

1 AZ 0 Rs1 is NON-ZERO

1 Rs1 is ZERO

2 BZ 0 Rs2 is NON-ZERO

1 Rs2 is ZERO

3 AGB 0 Rs1 is not greater than Rs2

1 Rs1 is greater than Rs2

4 ALB 0 Rs2 is not greater than Rs1

1 Rs2 is greater than Rs1

C. Memory Access Instrucions

 There are two memory access instructions, a memory read

and a memory write. The memory read instruction (or LOAD

instruction) loads a 16-bit word into the register address

specified in Rd. The memory address is stored in the first

source register (Rs1). The memory write (or STORE)

instruction takes the contents in the specified source register

(Rs2) and writes it to a memory location stored in the first

source register (Rs1).

Opcode

(4-bits)

Destination Register

Address (4-bits) (Rd)

Source Register 1

Address (4-bits) (Rs1)

Unused

(4-bits)

Fig. 4. Format of Memory Read (LOAD) instruction

Opcode

(4-bits)

Unused

 (4-bits)

Source Register 1

 Address (4-bits) (Rs1)

Source Register 2

Address (4-bits) (Rs2)

Fig. 5. Format of Memory Write (STORE) instruction

D. Unconditional Jump

 The unconditional jump will change the branch of

execution of the program and will load the previously

calculated target address into the Program Counter. The 8-bit

offset is provided in the first 8-bits of the instruction. The next

four bits are unused.

Opcode(4-bits) Unused (4-bits) 8-bit offset (Immediate)

Fig. 6. Format Unconditional (JMP) instruction

E. Conditional Jumps – JZ and JNZ

 As stated before, the compare instruction also sets the flags

of the processor. These flags are used to decide whether the

condition to be checked for each of these jumps is true or not.

Opcode

(4-bits)

Address of Register to be checked

(4-bits)

8-bit offset (Immediate)

Fig. 7. Format Conditional (JZ & JNZ) instruction

 JZ – Jump if Zero

This instruction checks whether the register specified the

4-bits after the opcode has a zero value or not. If it is, then

the condition is true and the branch target address will be

written into the program counter. If false the program

counter remains unaffected.

 JNZ – Jump if Non-Zero

JNZ has exactly the opposite condition as JZ, it checks if

the register specified is not zero. But the instruction

format is the same.

F. Load 8-Bit Immediate

 This instruction is useful to load 8-bit immediate data into

the registers. For now, the processor treats the 8-bit immediate

as an unsigned integer and only appends 8 zeroes (i.e. 0x00)

ahead of the number to make it 16-bit. This is only for the

preliminary stage. A sign-extension unit would be much more

efficient for this purpose. The format is given in Figure 8.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

239

Opcode

(4-bits)

Destination Register

Address (4-bits) (Rd)

8-bit offset (Immediate)

Fig. 8. Format of LI instruction

IV. ARCHITECTURE

 After the instructions and their formats were finalized, the

architecture could finally be developed. The architecture was

developed in stages. The processor was initially simple in

design in stage 1, so it was called simple processing unit or

SPU for short. But in the further stages, more of the

instructions, were implemented and in stage 3 all the

instructions were implemented. The stages are described

below.

A. SPU Version 1

 It is a simple processor. It is simply a test module which

cannot be used as a part of any system. There was not much

functionality built into this processor. Only 3 blocks were

implemented:

Fig. 9. SPU Version 1 architecture

 Instruction Register (IR)

The ISA is uniform as bit ranges of instructions are shared.

The decoder takes the bit fields, separates them

accordingly and feeds them to the other units it is

connected to.

 ALU

Works like a standard ALU in this version

 General Purpose Register File (GPRF)

On each clock cycle, it updates the source 1 and 2 register

outputs when given the selection inputs for them and write

to the destination register if enabled.

 There are certain drawbacks of this version of the

processor. Instructions have to be fed directly to the IR, latency

periods need to be inserted between instructions and it cannot

interface to memory or perform branching.

B. SPU Version 2

 This version is self-sustaining and can fetch instructions on

its own. The SRAM module acts as memory. No latency

periods are needed. Inspiration was taken from the multi-cycle

MIPS datapath for this implementation. New components were

added to facilitate this such as the Control Unit (CU), Program

Counter (PC) and some multiplexers. The processor uses

several components in a single cycle and the processor uses a

5-state finite state machine to control these components. In

each state the CU generates the control signals for each module

in the different states. The five states are: START, FETCH,

DECODE, EXECUTE & WRITEBACK.

Fig. 10. SPU Version 2 architecture

 There were no proper means to write instructions to

memory as no user interface was created and there was no

means for branching, but it successfully performed arithmetic

and logical instructions at a good speed. A VHDL testbench

was created for this processor. A small example program could

be typed into the SRAM module and for simulation of the

testbench.

 The state diagram is shown below in Figure 11. It only

describes the execution of arithmetic and logical instructions.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

240

Fig. 11. SPU Version 2 state diagram

C. SPU Version 3

 Version 3 implements all 16 instructions. The architecture

was modified. The Control Unit was modified the most as it

had to provide more control signals than before. Only registers

and multiplexers were added as these are low on real-estate and

are also cheaper to implement as compared to completely new

modules. The extra control signals that were added were for

the branching and memory write instructions. The control

signals are given in the Table III. The Figure 12 shows the

architecture of the processor.

Fig. 12. SPU Version 3 architecture

 The processor is enclosed in the black box. The memory

is only an external unit. This version can interface with the

memory using control signals Mem_write, Mem_read and the

respective lines for sending and receiving address and data

from memory. Some new states were also added to handle the

memory read, write, conditional and unconditional branching

instructions.

Fig. 13. SPU Version 3 state digram

TABLE III. CONTROL SIGNALS USED BY THE

PROCESSOR

Control Signal Value Function

GPRF_wr

0 Disables write to register file

1 Enables write to register file

IR_wr

0 Disables write to instruction decoder

1 Enables write to instruction decoder

PC_Write

0 Disables write to Program Counter

1 Enables write to Program Counter

PC_WCond

0 Disables write to Program Counter for

conditional jumps

1 Enables write to Program Counter for
conditional jumps

PC_Source

0 Passes the calculated next address to the

Program Counter

1

Passes the branch target address to the
Program Counter for an unconditional

jump or if the condition is true for a

conditional jump

ALU_op

0000-

1111

Takes value passed from Control Unit to

decide what action takes place

ALU_Src_1

0 Passes data in source register 1 to ALU

1 Passes PC_addr to ALU during FETCH

cycle

ALU_Src_2

00 Passes data in source register 2 to ALU

01 Passes X’0001’ to ALU

10 Passes 8-bit Immediate to ALU

Rs2_select

0 Passes the address of source register 2

when the instruction is not a conditional

jump

1 Passes the address of the register to be

checked for a conditional jump

 MemtoReg

0 Passes the data calculated by ALU to

register file

1

Passes the data stored in a memory

location during a memory read

instruction

IorD

0 Passes the Program Counter contents as
the next address

1

Passes the memory address stored in

source register 1 for a memory write
instruction

Mem_Write

0 Disables write to Memory

1 Enables write to Memory

Mem_Read

0 Disables read from Memory

1 Enables read from Memory

Cu_state

0000-

1111

Tells us what state the processor is in

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

241

V. SIMULATION RESULTS

A. Top-Level Module

 A top-level module that contains the instances of the

processor, an external memory and an address decoder was

created.

 The module SPU_3_top is the processor block. All the

components of the processor are instantiated in this top-level

block. The RTL schematic is shown in Figure 14.

 As very large memories take a long time to synthesize and

utilize too much of the FPGAs resources a small memory with

16 addresses was chosen for simulation purposes, so an

address decoder was used that could convert a 16-bit address

to a 4-bit address. The memory module contains the test

program to be executed. The program is typed into the memory

before simulation.

Fig. 14. RTL Schematic of SPU_3_top processor

 The RTL schematic is expanded below and it shows us the

different blocks in the processor.

Fig. 15. Expanded RTL Schematic of SPU_3_top

B. Device Utilization

TABLE IV. RESOURCES UTILIZED BY PROCESSOR

Slice Logic Utilization Utilization

Number of Slice Registers 150 of 11,400 1%

Number of Slice LUTs 201 of 5,720 3%

Number of IOBs 62 of 200 1%

Number of occupied Slices 69 of 1,430 4%

C. Simulation in ISim

 The example program given in Table V contains a single

instruction of each type. A clock of 2us was used.

 LOAD 8-BIT IMMEDIATE

The LI instruction takes 4 cycles to execute. The

instruction here is xF001. It loads Immediate x0001 into

register R0. Waveform is shown in Figure 16. Here it takes

8us to execute.

 ADD

The ADD instruction takes 4 cycles to execute. The

instruction here is x0301. It adds the value in registers R0

and R1 and places the answer in R3. Waveform is shown

in Figure 17. All 9 arithmetic and logical instructions in

the instruction set take the same amount of time for

execution.

 TABLE V. EXAMPLE PROGRAM IN MEMORY

Address Instruction Machine Code

(0000)16 LI R0 x01 (𝐹001)16

(0001)16 LI R1 x02 (𝐹102)16

(0002)16 LI R2 x0A (𝐹20𝐴)16

(0003)16 ADD R3, R0, R1 (0301)16

(0004)16 LI R5 x0D (𝐹50𝐷)16

(0005)16 JZ R4 x03 (𝐷403)16

(0006)16 0000 (0000)16

(0007)16 0000 (0000)16

(0008)16 ADD R4, R0, R2 (0402)16

(0009)16 STORE R5, R4 (𝐴054)26

(000𝐴)16 JMP x005 (𝐵005)16

(000𝐵)16 0000 (0000)16

(000𝐶)16 0000 (0000)16

(000𝐷)16 0000 (0000)16

(000𝐸)16 0000 (0000)16

(000𝐹)16 LOAD R8, R2 (9820)16

Fig. 16. Waveform of LI instruction

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

242

Fig. 17. Waveform of ADD instruction

 JZ – Conditional Jump

The JZ instruction takes 5 cycles to execute, irrespective if

condition is true or false. The instruction here is xD403. It

checks the value in register 4 and if the condition is true it

updates the program counter with the new address which

offsets the current address by 3. As the current address is

x0005 and the condition is true, the next address will be x0008.

The JNZ instruction executes in the same manner. Waveform

is shown in Figure 18.

Fig. 18. Waveform of JZ instruction

 STORE – Memory Write

The STORE instruction writes the data in a register to a

given memory location. It takes 5 cycles to execute. Here the

instruction is xA054. It writes the data stored in register 4 to

the memory address stored in register 5. The processor goes

through the MEM_ADDRESS and MEM_ACCESS states

before finally performing the write. Waveform is shown in

Figure 19.

Fig. 19. Waveform of STORE instruction

 JMP – Unconditional Jump

The instruction will cause a jump to the next address formed

by adding the current address in the program counter to the 8-

bit offfset in the instruction. It takes 3 cycles to execute. Here

the instruction is xB005. The current address is x000A after

adding the offset we get the new address as x000F. The

execution will now jump to that memory location. The

instruction at that address is x9820. Waveform is shown in

Figure 20.

Fig. 20. Waveform of JMP instruction

 LOAD – Memory Read

The LOAD instruction will write the data stored in the memory

address which is stored in the source register 1 to the

destination register. It takes 4 cycles to execute. Here the

instruction is x9820. It loads register 8 wth the data at address

stored in register 2. The waveform is shown in Figure 21.

Fig. 21.

Waveform of JMP instruction

VI.

CONCLUSION

A 16-bit RISC processor has been realized. It can execute

an instruction set with 16 instructions of different classes like

arithmetic and logical, jumping -

both conditional and

unconditional jumps and memory interface instructions. The

simulation output is compared with the expected results and

the functionality is found correct.

 The design can be improved in several ways to make it

more sophisticated. A user interface can be developed so that

a user can enter programs and write them to memory which

will then be fetched for execution.

ACKNOWLEDGMENTS

 The authors would like to thank their

project guide,

Prof.

Madhura Shirodkar. Her insight and vision have

made it

possible for us to pursue and understand developments in the

areas

of

Processor Design, VHDL programming and FPGAs.

 The authors

would also like to thank our Principal,

Director, teachers and staff of the Xavier Institute of

Engineering, Mumbai, India

for providing all the facilities to

conduct this project.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

243

REFERENCES
[1] Vishwas V. Balpande, Abhishek B. Pande, Meeta J. Walke,

Bhavna D. Choudhari, Kiran R. Bagade, “Design and
Implementation of 16 Bit Processor on FPGA”, IJARCSSE,
January 2015.

[2] Nupur Gupta, Pragati Gupta, Himanshi Bajpai, Richa Singh,
Shilpa Saxena “Analysis of 16 Bit Microprocessor Architecture
on FPGA Using VHDL”, IJAREEIE, April 2014.

[3] V. R. Gaikwad, “Design, Implementation and Testing of 16 bit
RISC Processor”, IOSR-JVSP, March 2013.

[4] Amanjyot Singh Johar, “16 bit Reduced Instruction Set
Computer (RISC) Processor Design A Project Report” ,
Department of Electrical and Computer Engineering, University
of Illinois at Chicago, September 2013.

[5] M.Kishore Kumar, MD.Shabeena Begum, “FPGA Based
Implementation of a 32-bit RISC processor”, IJERA, Setember
2011.

[6] David A. Patterson, David R. Ditzel, “The Case for The
Reduced Instruction Set Computer”.

[7] J.B. Nade, Dr. R. V. Sarwadnya, “The Soft Core Processors : A
Review”, IJIREEICE, December 2015.

[8] Anders Wallander, “A VHDL Implementation of a MIPS” ,
Department of Computer Science and Engineering, Lulea
Teniska Universitet, January 2000

[9] Anjana R, Krunal Gandhi, “VHDL Implementation of a MIPS
RISC Processor”, IJARCSSE, August 2012.

[10] David A. Patterson, John L. Hennessey, Computer Organisation
And Design, Third edition, 2007.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

244

