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Abstract— This paper targets the design and implementation 

of a 16-bit RISC Processor using VHDL (Very High Speed 

Integrated Circuit Hardware Description Language). As IC chip 

design involves complex computations and intense usage of 

resources, by using an HDL we can save resources and time by 

implementing it using the software approach. The 

implementation strategies have been borrowed from the popular 

MIPS architecture to a certain extent. The processor has 16-bit 

arithmetic and logical instruction set which has been designed 

and simulated. The instruction set is extremely simple and it gives 

an insight into the kind of hardware that would be required to 

execute the instructions accordingly. The ALU, instruction 

register, program counter, register file, control unit and memory 

have been integrated in the proposed processor. All the modules 

in the design are coded in VHDL to ease the description, 

verification, simulation and hardware implementation. The 

blocks are designed using the behavioral approach.  

Keywords — RISC Processor, MIPS, SPU, ALU, ISA, VHDL, 

PC, Opcode, clock, timing, FPGA, instruction, LOAD, JZ, JNZ, 

ADD, ALB, AGB, waveform, RTL Schematic, 16-bit, Xilinx ISE, 

Isim. 

I.  INTRODUCTION  

        Processors are divided into 3 categories 8-bits, 16-bits 

and 32-bits depending upon the demand of performance, cost, 

power and programmability. 16-bit processors have higher 

performance and power than 8-bit processors and lower power 

consumption than 32-bit processors. They are often used in 16-

bit applications such as disk driver controller, cellular 

communication and airbags. A RISC processor uses load-store 

architecture, fixed length instructions and pipelining. In load-

store architecture, load instruction reads data from memory 

and writes it to a register, data-processing instructions process 

data available in registers and write the result to a register and 

store instruction copies data from register to memory. 

 

        This paper investigates the methodology of soft-core 

processor development. The software used was Xilinx ISE 

14.5. The target family chosen was Spartan 6 FPGA with 

device XC6SLX9 and package CSG324. The simulation was 

performed in ISim. 

II. INSTRUCTION SET 

      The first step was to design the Instruction Set Architecture 

(ISA). The instruction set contains instructions supported by 

the processor. The first nine instructions perform arithmetic 

and logical instructions. The memory read instruction reads the 

data from the memory address which is specified in a register 

(Rs) and writes the data word to the register mentioned in the 

instruction (Rd). The memory write instruction writes the data 

in the specified register (Rs) to the target address which is also 

specified in a register (Rt). There is an unconditional jump that 

jumps to a memory address that is calculated by adding the 

current value in the Program Counter and the 8-bit offset 

specified in the instruction. This gives the target branch 

address. A similar procedure is followed by the Conditional 

Jumps but the address is calculated beforehand as an optimistic 

operation and is stored in a special register, so that if the 

condition is true then the branch target address is written into 

the Program Counter. If the condition is false then the Program 

Counter will not be modified and execution will continue as if 

no branching took place. There is also a no operation (NOP) 

instruction. The complete instruction set is given in Table I. 

TABLE I.  INSTRUCTION SET 

 Instruction Opcode Operation 

1 ADD 0 0 0 0 Rd = Rs1 + Rs2 

2 SUB 
0 0 0 1 If RS1 > RS2 

Then Rd = RS1 – RS2 

Else  Rd = RS2 – RS1  

3 AND 0 0 1 0 Rd = Rs1 & Rs2  

4 OR 0 0 1 1 Rd = Rs1 | Rs2 

5 NOT 0 1 0 0 Rd = ~ Rs 

6 XOR 0 1 0 1 Rd = Rs1 ^ Rs2 

7 
CMP 

(Equal 

 

 

 
 

 

 
0 

 

 

 
 

 

 
1 

 

 

 
 

 

 
1 

 

 

 
 

 

 
0 

If Rs1 = Rs2 

Then Equal = 1, else Equal =0 
 

If R1 = 0 
Then AZ = 1, else AZ=0 

 

If Rs2 =0 
Then BZ =1, else BZ =0 

 

If Rs1> Rs2 

Then AGB = 1, else AGB = 0 
 

If Rs1< Rs2 

Then ALB = 1, else ALB = 0 

8 SHIFT LEFT 0 1 1 1 Rd=Rs1 <<1 

9 
SHIFT 

RIGHT 

1 0 0 0 
Rd=Rs1 >>1 

10 LOAD 1 0 0 1 Rd = Mem[Rs1] 

11 STORE 1 0 1 0 Mem[Rs1] = Rs2 

12 JUMP 1 0 1 1 PC = PC+Offset 

13 NOP 1 1 0 0 No operation 

14 JZ 1 1 0 1 PC = PC+Offset if Rd == 0 

15 JNZ 1 1 1 0 PC = PC+Offset if Rd != 1 

16 
LOAD 8-BIT 

IMMEDIATE 

1 1 1 1 
Rd = 8-bit Immediate 
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III. INSTRUCTION FORMAT 

          After deciding the instructions, the next step was to 

decide the instruction format. The uniform and orderly 

placement of the fields in the instruction is called instruction 

format. The instruction words are of 16-bits each. For 

uniformity, the operation code (opcode) was kept as 4-bits for 

all the instructions. So there are 16 instructions. The register 

file has 16 registers of 16-bits each. In order to address 16 

registers, we need a 4-bit register address field in an 

instruction.  
 

A. Arithmetic and Logical Instructions       

     The arithmetic and logical instructions have a common 

format : the opcode, the destination register address (Rd), the 

first source register address (Rs1) and the second source 

address (Rs2). This format applies to two operand instructions 

like AND, SUB etc. For single operand instructions like NOT 

only a single source register address is required. Hence the 4-

bits for source register 1 are unused and we use the address in 

the field for the second register.  

Opcode 

(4-bits) 

Destination 

Register (Rd)  
Address (4-bits) 

Source Register 1 

Address (4-bits) 
(Rs1) 

Source Register 2 

Address (4-bits) 
(Rs2) 

Fig. 1. Format of an Arithmetic or Logical Instruction 

B. Compare Instruction 

      The compare instruction compares the two source 

addresses (Rs1 and Rs2) and outputs a word that is stored in 

the destination register (Rd). Each bit represents some 

characteristic of the data. There are five conditions and each of 

the first five bits of the output word correspond to a single 

condition. If any bit is set it means that, that condition is true. 

The interpretation of each bit is given in Table II. The 

instruction also sets the five flag bits of the processor. These 

flag bits are used for the conditional jump instructions to 

decide if that condition is true. 

Opcode 
(4-bits) 

Destination 
Register 

Address (4-bits) 

(Rd) 

Source Register 1 
Address (4-bits) 

(Rs1) 

Source Register 2 
Address (4-bits) 

(Rs2) 

Fig. 2. Format of Compare Instruction 

 

Fig. 3. Format of Compare Instruction Output word 

TABLE II. INTERPRETATION OF COMPARE OUTPUT WORD 

Bit Abbreviation Meaning 

0 EQUAL 0 Rs1 and Rs2 are equal 

1 Rs1 and Rs2 are unequal 

1 AZ 0 Rs1 is NON-ZERO 

1 Rs1 is ZERO 

2 BZ 0 Rs2 is NON-ZERO 

1 Rs2 is ZERO 

3 AGB 0 Rs1 is not greater than Rs2 

1 Rs1 is greater than Rs2 

4 ALB 0 Rs2 is not greater than Rs1 

1 Rs2 is greater than Rs1 

C. Memory Access Instrucions 

      There are two memory access instructions, a memory read 

and a memory write. The memory read instruction (or LOAD 

instruction) loads a 16-bit word into the register address 

specified in Rd. The memory address is stored in the first 

source register (Rs1).  The memory write (or STORE) 

instruction takes the contents in the specified source register 

(Rs2) and writes it to a memory location stored in the first 

source register (Rs1).  

 
Opcode 

(4-bits) 

Destination Register 

Address (4-bits) (Rd) 

Source Register 1 

Address (4-bits) (Rs1) 

Unused  

(4-bits) 

Fig. 4. Format of Memory Read (LOAD) instruction 

Opcode 

(4-bits) 

Unused 

 (4-bits)  

Source Register 1 

 Address (4-bits) (Rs1) 

Source Register 2 

Address (4-bits) (Rs2) 

Fig. 5. Format of Memory Write (STORE) instruction 

D. Unconditional Jump 

      The unconditional jump will change the branch of 

execution of the program and will load the previously 

calculated target address into the Program Counter. The 8-bit 

offset is provided in the first 8-bits of the instruction. The next 

four bits are unused.  
 

Opcode(4-bits) Unused  (4-bits) 8-bit offset (Immediate) 

Fig. 6. Format Unconditional (JMP) instruction 

E. Conditional Jumps – JZ and JNZ 

      As stated before, the compare instruction also sets the flags 

of the processor. These flags are used to decide whether the 

condition to be checked for each of these jumps is true or not. 

 
Opcode 

(4-bits) 

Address of Register to be checked 

(4-bits) 

8-bit offset (Immediate) 

Fig. 7. Format Conditional (JZ & JNZ) instruction 

 JZ – Jump if Zero 

This instruction checks whether the register specified the 

4-bits after the opcode has a zero value or not. If it is, then 

the condition is true and the branch target address will be 

written into the program counter. If false the program 

counter remains unaffected. 

 

 JNZ – Jump if Non-Zero 

JNZ has exactly the opposite condition as JZ, it checks if 

the register specified is not zero. But the instruction 

format is the same. 
 

F. Load 8-Bit Immediate 

     This instruction is useful to load 8-bit immediate data into 

the registers. For now, the processor treats the 8-bit immediate 

as an unsigned integer and only appends 8 zeroes (i.e. 0x00) 

ahead of the number to make it 16-bit. This is only for the 

preliminary stage. A sign-extension unit would be much more 

efficient for this purpose. The format is given in Figure 8. 
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Opcode 

(4-bits) 

Destination Register 

Address (4-bits) (Rd) 

8-bit offset (Immediate) 

Fig. 8. Format of LI instruction 

IV. ARCHITECTURE 

      After the instructions and their formats were finalized, the 

architecture could finally be developed. The architecture was 

developed in stages. The processor was initially simple in 

design in stage 1, so it was called simple processing unit or 

SPU for short. But in the further stages, more of the 

instructions, were implemented and in stage 3 all the 

instructions were implemented. The stages are described 

below. 

 

A. SPU Version 1 

      It is a simple processor. It is simply a test module which 

cannot be used as a part of any system. There was not much 

functionality built into this processor. Only 3 blocks were 

implemented: 

 

 
Fig. 9. SPU Version 1 architecture 

 Instruction Register (IR) 

The ISA is uniform as bit ranges of instructions are shared. 

The decoder takes the bit fields, separates them 

accordingly and feeds them to the other units it is 

connected to. 

 

 ALU 

Works like a standard ALU in this version 

 

 General Purpose Register File (GPRF) 

On each clock cycle, it updates the source 1 and 2 register 

outputs when given the selection inputs for them and write 

to the destination register if enabled. 

 

 

 

 

 

      

     There are certain drawbacks of this version of the 

processor. Instructions have to be fed directly to the IR, latency 

periods need to be inserted between instructions and it cannot 

interface to memory or perform branching.  

 

B. SPU Version 2 

      This version is self-sustaining and can fetch instructions on 

its own. The SRAM module acts as memory. No latency 

periods are needed. Inspiration was taken from the multi-cycle 

MIPS datapath for this implementation. New components were 

added to facilitate this such as the Control Unit (CU), Program 

Counter (PC) and some multiplexers. The processor uses 

several components in a single cycle and the processor uses a 

5-state finite state machine to control these components. In 

each state the CU generates the control signals for each module 

in the different states. The five states are: START, FETCH, 

DECODE, EXECUTE & WRITEBACK.  

 

Fig. 10. SPU Version 2 architecture 

     There were no proper means to write instructions to 

memory as no user interface was created and there was no 

means for branching, but it successfully performed arithmetic 

and logical instructions at a good speed. A VHDL testbench 

was created for this processor. A small example program could 

be typed into the SRAM module and for simulation of the 

testbench. 

 

    The state diagram is shown below in Figure 11. It only 

describes the execution of arithmetic and logical instructions. 
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Fig. 11. SPU Version 2 state diagram 

C. SPU Version 3 

     Version 3 implements all 16 instructions. The architecture 

was modified. The Control Unit was modified the most as it 

had to provide more control signals than before. Only registers 

and multiplexers were added as these are low on real-estate and 

are also cheaper to implement as compared to completely new 

modules. The extra control signals that were added were for 

the branching and memory write instructions. The control 

signals are given in the Table III. The Figure 12 shows the 

architecture of the processor.  

 

 
Fig. 12. SPU Version 3 architecture 

       The processor is enclosed in the black box.  The memory 

is only an external unit. This version can interface with the 

memory using control signals Mem_write, Mem_read and the 

respective lines for sending and receiving address and data 

from memory. Some new states were also added to handle the 

memory read, write, conditional and unconditional branching 

instructions. 

 

 
Fig. 13. SPU Version 3 state digram 

TABLE III. CONTROL SIGNALS USED BY THE 

PROCESSOR 

Control Signal Value Function 

 

GPRF_wr 

0 Disables write to register file 

1 Enables write to register file 

 

IR_wr 

0 Disables write to instruction decoder 

1 Enables write to instruction decoder 

 
PC_Write 

0 Disables write to Program Counter 

1 Enables write to Program Counter 

 

PC_WCond 

0 Disables write to Program Counter for 

conditional jumps 

1 Enables write to Program Counter for 
conditional jumps 

 

 
PC_Source 

0 Passes the calculated next address to the 

Program Counter 

 
 

1 

Passes the branch target address to the 
Program Counter for an unconditional 

jump or if the condition is true for a 

conditional jump 

 

ALU_op 

0000-

1111 

Takes value passed from Control Unit to 

decide what action takes place 

 

ALU_Src_1 

0 Passes data in source register 1 to ALU 

1 Passes PC_addr to ALU during FETCH 

cycle 

 
ALU_Src_2 

 

00 Passes data in source register 2 to ALU 

01 Passes X’0001’ to ALU 

10 Passes 8-bit Immediate to ALU 

 

 

Rs2_select 
 

0 Passes the address of source register 2 

when the instruction is not a conditional 

jump 

1 Passes the address of the register to be 

checked for a conditional jump 

 

 
   MemtoReg 

 

 

0 Passes the data calculated by ALU to 

register file  

 

1 

Passes the data stored in a memory 

location during a memory read 

instruction  

 
 

IorD 
 

0 Passes the Program Counter contents as 
the next address  

 

1 

Passes the memory address stored in 

source register 1 for a memory write 
instruction 

Mem_Write 

 

0 Disables write to Memory 

1 Enables write to Memory 

Mem_Read 
 

0 Disables read from Memory 

1 Enables read from Memory 

Cu_state 

 

0000- 

1111 

Tells us what state the processor is in 
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V. SIMULATION RESULTS 

A. Top-Level Module 

      A top-level module that contains the instances of the 

processor, an external memory and an address decoder was 

created.    

 

      The module SPU_3_top is the processor block. All the 

components of the processor are instantiated in this top-level 

block. The RTL schematic is shown in Figure 14. 

 

       As very large memories take a long time to synthesize and 

utilize too much of the FPGAs resources a small memory with 

16 addresses was chosen for simulation purposes, so an 

address decoder was used that could convert a 16-bit address 

to a 4-bit address. The memory module contains the test 

program to be executed. The program is typed into the memory 

before simulation. 

 

 
 

Fig. 14. RTL Schematic of SPU_3_top processor 

       The RTL schematic is expanded below and it shows us the 

different blocks in the processor. 

 

Fig. 15. Expanded RTL Schematic of SPU_3_top 

B. Device Utilization 

TABLE IV. RESOURCES UTILIZED BY PROCESSOR 

Slice Logic Utilization Utilization 

Number of Slice Registers 150 of 11,400 1% 

Number of Slice LUTs 201 of 5,720 3% 

Number of IOBs 62 of 200 1% 

Number of occupied Slices 69 of 1,430 4% 

C. Simulation in ISim 

     The example program given in Table V contains a single 

instruction of each type. A clock of 2us was used. 

 

 LOAD 8-BIT IMMEDIATE 

The LI instruction takes 4 cycles to execute. The 

instruction here is xF001. It loads Immediate x0001 into 

register R0. Waveform is shown in Figure 16. Here it takes 

8us to execute. 

 

 ADD 

The ADD instruction takes 4 cycles to execute. The 

instruction here is x0301. It adds the value in registers R0 

and R1 and places the answer in R3. Waveform is shown 

in Figure 17. All 9 arithmetic and logical instructions in 

the instruction set take the same amount of time for 

execution.  

             TABLE V. EXAMPLE PROGRAM IN MEMORY 

Address Instruction Machine Code 

(0000)16 LI R0 x01 (𝐹001)16 

(0001)16 LI R1 x02 (𝐹102)16 

(0002)16 LI R2 x0A (𝐹20𝐴)16 

(0003)16 ADD R3, R0, R1 (0301)16 

(0004)16 LI R5 x0D (𝐹50𝐷)16 

(0005)16 JZ R4 x03 (𝐷403)16 

(0006)16 0000 (0000)16 

(0007)16 0000 (0000)16 

(0008)16 ADD R4, R0, R2 (0402)16 

(0009)16 STORE R5, R4 (𝐴054)26 

(000𝐴)16 JMP x005 (𝐵005)16 

(000𝐵)16 0000 (0000)16 

(000𝐶)16 0000 (0000)16 

(000𝐷)16 0000 (0000)16 

(000𝐸)16 0000 (0000)16 

(000𝐹)16 LOAD R8, R2 (9820)16 

 

Fig. 16. Waveform of LI instruction 
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Fig. 17. Waveform of ADD instruction 

 JZ – Conditional Jump 

The JZ instruction takes 5 cycles to execute, irrespective if 

condition is true or false. The instruction here is xD403. It 

checks the value in register 4 and if the condition is true it 

updates the program counter with the new address which 

offsets the current address by 3. As the current address is 

x0005 and the condition is true, the next address will be x0008. 

The JNZ instruction executes in the same manner. Waveform 

is shown in Figure 18. 

 

 
 

Fig. 18. Waveform of JZ instruction 

 STORE – Memory Write 

The STORE instruction writes the data in a register to a      

given memory location. It takes 5 cycles to execute. Here the 

instruction is xA054. It writes the data stored in register 4 to 

the memory address stored in register 5. The processor goes 

through the MEM_ADDRESS and MEM_ACCESS states 

before finally performing the write. Waveform is shown in 

Figure 19. 

 

Fig. 19. Waveform of STORE instruction 

 JMP – Unconditional Jump 

The instruction will cause a jump to the next address formed 

by adding the current address in the program counter to the 8-

bit offfset in the instruction. It takes 3 cycles to execute. Here 

the instruction is xB005. The current address is x000A after 

adding the offset we get the new address as x000F. The 

execution will now jump to that memory location. The 

instruction at that address is x9820. Waveform is shown in 

Figure 20. 
 

Fig. 20. Waveform of JMP instruction 

 LOAD – Memory Read  

The LOAD instruction will write the data stored in the memory 

address which is stored in the source register 1 to the 

destination register. It takes 4 cycles to execute. Here the 

instruction is x9820. It loads register 8 wth the data at address 

stored in register 2. The waveform is shown in Figure 21. 

 

 

 

Fig. 21.

 

Waveform of JMP instruction

 

VI.

 

CONCLUSION

 

     

 

A 16-bit RISC processor has been realized. It can execute 

an instruction set with 16 instructions of different classes like 

arithmetic and logical, jumping -

 

both conditional and 

unconditional jumps and memory interface instructions. The 

simulation output is compared with the expected results and 

the functionality is found correct.

 

      

 

      The design can be improved in several ways to make it 

more sophisticated. A user interface can be developed so that 

a user can enter programs and write them to memory which 

will then be fetched for execution.
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