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Abstract 
The minimum-distortion framework 

is dedicated to the problem of optimizing 

distortion functions so that they better 

correspond to statistical detectability as 

restrained by blind feature-based 

steganalyzers. In reality, utmost distortion 

functions are gotten heuristically and do not 

generalize well to other cover sources. Here, 

we restrain ourselves to independent 

embedding variations and present practical 

tools that can use for “learning” the 

embedding algorithm fora given cover 

source. 

 

Keywords:  
Batch steganography, stegosystem, Gibbs 

constructional,  

 

1. Introduction 
Our motivation for solving the 

problem of the cost-function design comes 

from the HUGO algorithm that assigns the 

costs of individual changes based on the 

pixel neighborhood. Unfortunately,this 

approach does not easily generalize to other 

cover sources, such as JPEG or colorbitmap 

images, neither is it clear how to optimize 

the design. Here we open the questionof the 

cost-function design and strive for a robust 

approach that generalizes well to unseen 

coverimages and unseen steganalytic 

features to avoid overfitting to a particular 

cover source and featurespace. For example, 

the Feature Correction Method, which is a 

heuristic approach to embed 

 

 

while approximately preserving the cover-

image feature vector, is known to be overly 

sensitive to thechosen feature set and does 

not generalize or scale well. The work in has 

an alternate featurepreservation approach 

and also empirically considers the dynamics 

between steaganographer andsteganlyzer. 

 

2. Empirical Design of Cost 

Functions 
We focus on designing adaptive 

embedding schemes for the payload-limited 

sendersubjected to sequential steganalysis. 

In this regime, the sender decides on the 

number of bits hewants to hide in a given 

cover object, embeds his payload, and sends 

the stego object through apassively 

monitored channel. In sequential 

steganalysis, the warden has to decide 

whether agiven image is cover or stego 

solely based on a single object. We 

deliberately omit the possibility 

ofintentionally spreading the payload into a 

group of cover images – a technique known 

as the batchsteganography. This mode can 

improve the security of the scheme; 

however, it should no longer betested with 

sequential steganalysis. 

A common way of testing 

steganographic schemes is to report a chosen 

detection metric (ROCcurve, accuracy, 

minimum error probability under equal 

priors PE, etc.) empirically estimatedfrom a 

database of cover and stego images where 

each stego image carries a fixed relative 
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payload.Whenever possible, we report 

results obtained from cover images of 

roughly the same size to reducethe effect of 

the square root law [1].Our goal is to design 

a set of functions i, i 2 {1, . . . , n}, 

which, given the original cover image,assign 

the cost of changing individual cover 

elements to their new values. For digital 

images, thedependence between two cover 

pixels rapidly decreases with their distance. 

In case of gray-scalespatial-domain digital 

images, the cost of changing a single pixel 

should mainly depend on its immediate 

neighborhood. For this reason, we constrain 

ρito be a real-valued function ρ with 

smallsupport, ρi(x, yi) = Ө(xρ(i), yi), where 

xρ(i) denotes cover pixels spatially close to 

pixel i.From practical experiments, it is 

possible to identify the quantity that should 

drive the costs. 

 

3. Inverse single-difference cost 

model 
Let  θ ≥0 and Ni = {xi,!, xi,↑, xi,→", 

. . . , xi,↓} be a setof eight pixels from the 3 

× 3 neighborhood of the i
th

 pixel. We use the 

±1 embedding operation,Ii = {xi − 1, xi, xi + 

1} ∩ I, and define 

 
 

At the image boundary, the set of 

neighboring pixels Ni is reduced 

accordingly. This cost assignmentpenalizes 

changes in textured areas less than those in 

smooth regions depending on the 

differencesbetween neighboring pixels. 

 

4. Blind Steganalysis 
The only way of evaluating the 

security of steganographic schemes for 

empirical covers is to subjectthem to a 

steganalysis test. According to Kerckhoffs’ 

principle, we allow the warden to know 

allelements of the stegosystem (the cover 

source statistics, the embedding algorithm 

and the size ofthe possible payload) except 

for the (possibly encrypted) message. Given 

a single image, the wardenhas to decide 

whether it is cover or stego. In this simple 

binary hypothesis test, the warden canmake 

two types of errors – either detect the cover 

image as stego (false alarm) or recognize 

thestego image as cover (missed detection). 

The corresponding probabilities are denoted 

PFA and PMD,respectively. The 

relationship between these two errors is 

completely described by the ROC 

curveobtained by plotting 1 − PMD(PFA) as 

a function of PFA. Unfortunately, ROC 

curves cannot bedirectly used for evaluating 

steganalyzers (embedding algorithms) as 

they cannot be ordered (theymay overlap).  

 

5. L2R_L2LOSS - soft-margin 

optimization criterion 
Although there exist many 

algorithms for binary classification, SVMs 

are popular for their goodability to 

generalize to unseen data samples. The 

success of SVMs lies in the optimization 

criterionwhich, for the case of a linear 

classifier, looks for the separating 

hyperplane maximizing the distance(often 

called margin) between itself and the closest 

data points. Intuitively, the larger the 

marginbetween two classes, the better they 

can be separated and the smaller the PE 

error becomes. Weuse the size of the margin 

for a linear SVM as the optimization 

criterion. Let C be the set of N cover images 

and S the set of N stego images obtained 

from C by embeddinga pseudo-random 

message into each image. By extracting a d-

dimensional feature from each image,we 

obtain a set of 2N vectors {fi €R
d
|i2 {1, . . . 

,2N}}. We also define the labels gi, i € {1, . . 
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. ,2N},as gi= −1 if fi was obtained from a 

cover image and gi= +1 otherwise. 

Furthermore, we normalizeall cover feature 

vectors fi so that the sample variance of each 

element is 1. This scaling is thenapplied to 

stego features as well. SVMs with a linear 

kernel [3] classify a new sample f as coverif 

w
T
f <0, where w€Rdis the normal vector of 

the decision hyper plane obtained by solving 

theoptimization problem: 

 
Here,p(w; fi, gi) is a loss function 

and C >0 is a penalty parameter. By 

minimizing (7.1.2), we maximize the margin 

while penalizing the misclassified samples. 

We focus on the so-called L2-SVMpenalty 

function ρ(w; fi, gi) = max(1 − giwTfi, 0)2. 

The optimization problem can also be 

formulated in its dual form [3]: 

 
 

Where , D being a 

diagonal matrix with Dii= (2C) −1, and Qij= 

gigjfi
T
fj, i, j 2{1, . . . , 2N}. Given, the 

solution to is  From 

the duality, the value of h (ἀ ), forany ρwith 

ρiρ 0, bounds the optimal solution to the 

primal problem from below. Wecall 

theoptimal value of h (ρ), the L2RρL2LOSS 

(L2-regularized L2-loss) criterion. 

Thesmaller the value of this criterion, the 

larger the optimal value of, and the smaller 

thepossible margin between cover and stego 

samples becomes. Therefore, stegano -

graphers should beinterested in minimizing 

L2RρL2LOSS.  

We used a dual coordinate descent 

method [3] with 104 iterations, C = 0.1, and 

ρ= 0.1 asimplemented in the LIBLINEAR 

[2] package to calculate L2RρL2LOSS. 

Evaluating L2RρL2LOSS withsecond-order 

SPAM features took 1–2 seconds for N = 80 

512 × 512 cover images on a cluster of 

40CPUs when the message-embedding and 

feature-extraction parts were distributed 

using OpenMPI. 

When optimizing ρusing 

L2RρL2LOSS, we fix the set of cover 

images C and the set of 

pseudorandommessages we will be 

embedding. We did this by fixing the seeds 

used for choosing the coverimages and the 

seed used by the embedding simulator. 

Although L2RρL2LOSS may have 

differentvalues when evaluated across 

different sets C, the minimum w.r.t. ρstays 

approximately the same. 

The figure shows the value of the 

L2R_L2LOSS criterion based on the CDF 

set when evaluated for different values of ρρ 

0 in (7.1.1) and the number of images in C. 

We can see that even with 40images, the 

optimal value of ρis close to the value 

obtained from the SVM-based classifier. 

Because the L2R_L2LOSS criterion can be 

evaluated quickly, it can be minimized using 

numericalmethods even for a high 

dimensional ρ. unfortunately, for higher 

dimensional ρ, the surface obtainedby this 

criterion w.r.t. ρis not smooth enough for 

gradient-based optimization methods to be 

usedefficiently. Instead, we used the 

Nelder–Mead simplex-reflection method 

with elements of the initial simplex 

generated uniformly at random in [0, 1]. 

Due to the non-smooth nature of the 

optimization criterion, we cannot guarantee 

that we reached a globalminimum (in fact, 

the solution will be most likely a local 

minimum). 
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Figure: Comparison of different cost 

assignments in the inverse single-difference 

costmodel with a payload-limited sender 

embedding 0.5 bpp using the L2RρL2LOSS 

(left) andMMD2 (right) optimization 

criteria. The results are compared with the 

PE error obtained from anSVM-based 

classifier. All results were produced using 

the CDF set and the BOWS2 database of512 

× 512 grayscale images. 

 

6. Other optimization criteria 

and their relevance to cost 

design 
Due to the non-smooth optimization 

surface, we may be interested in other 

metrics. Metrics leadingto a smooth 

optimization surface may produce an 

embedding algorithm whose cost 

assignmentsmay be easier to interpret. Here, 

we present one such metric – the Maximum 

Mean Discrepancy(MMD) [54, 96]. MMD 

has been used for comparison of 

steganographic methods [5] and 

othermachine learning problems, such as 

feature selection [6]. Originally, MMD was 

designed as astatistical test for the two-

sample problem – to decide whether two 

data sets were obtained fromthe same 

distribution. The theoretical derivation of 

MMD appears in [5]. Here, we only review 

theconnection between MMD and binary 

hypothesis testing. 

Let C0 and S0 be the sets of N0 

cover and stego images, respectively. We 

require the set of coverimages used for 

creating S0 to be disjoint with C0. Let ci, si2 

Rd, i 2 {1, . . . ,N0}, be the featurevectors 

representing the ith cover and stego image, 

respectively. As in Section 7.1.2, we 

normalizeci and sito unit variance obtained 

from the cover features. An unbiased 

estimate of MMD2 

Is the Gaussian kernel with parameter ρ 0. 

We set the widthof the Gaussian kernel to 

ρ= 10−3, which closely corresponds to the 

―median rule‖ [4]. In practice,we used the 

set of N ρ 2N0 cover images from which C0 

and S0 were derived using a pseudo-

randompermutation. For a given set of N 

cover images, we define the MMD2 

criterion as the sample meanof 

MMD(C0,S0)2 calculated over M pseudo-

random partitions. For the 1234-dimensional 

CDF set,evaluating MMD2 using N = 80 

512 × 512 cover images with N0 = 40 and M 

= 105 took 4 secondson a 40-CPU computer 

cluster when all operations were parallelized 

using OpenMPI. 

The MMD2 criterion is related to 

binary classification using Parzen windows. 

Asimple binary hypothesis testing problem 

(deciding whether a given image is cover or 

stego) can besolved optimally using the 

Likelihood Ratio Test (LRT) once the exact 

probability distributions ofcover, PC, and 

stego feature vectors, PS, are available. 

Given an unknown feature vector f, the 

LRTcalls f cover if PC(f) > PS(f) and stego 

otherwise. Because neither PC or PS are 

available, one maywant to estimate them 

from a set of N cover and N stego training 

samples fi € Rd withlabels gi,i 2 {1, . . . 

,2N}. The Parzen estimate of PC(f) defined 

as 
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ˆ  

‖counts‖ the number of training vectors that 

are close to f. Here, Kρ(fi, f) is a kernel 

giving largerweights to vectors closer to f. A 

popular choice for Kρis the Gaussian kernel 

Kρ(fi, f) = kρ(fi, f) =  

 The Parzen estimate of PS(f), denoted ˆ 

PS(f), is defined in a similar way. Whenwe 

substitute ˆ PC(f) and ˆ PS(f) into the LRT, 

we obtain the Parzen window classifier. 

Therefore,MMD(C0, S0)2 calculates a 

finite-sample estimate of the average 

detection criterion with equal-priors: 

This obtained using the leave-one-out cross-

validation. Due to the Gaussian kernelkρ, 

MMD(PC, PS)2 ρ 0 and MMD(PC, PS)2 = 

0 if and only if PC = PS. For this reason, the 

steganographer should minimize the MMD2 

criterion when calculated from N = 80 and N 

= 40 coverimages using N0 = N/2 and M = 

105 over different values of ρρ 0. The 

results obtained from theSVM-based 

classifier are plotted for reference. Due to 

bootstrapping, the MMD2 criterion results in 

asmooth optimization surface even for a 

high-dimensional ρ. We used a simple 

gradient descent-basedoptimization 

technique to minimize MMD2. 

 

7. Application to Digital Images 

in DCT Domain 
Most adaptive embedding schemes 

for JPEG images embed message bits while 

quantizingthe DCT coefficients during JPEG 

compression and minimize an additive 

distortion functionderived from the rounding 

errors. This approach utilizes the side-

information in theform of a never-

compressed image, which may not always 

be available. In this section, we focus 

ondesigning adaptive embedding schemes 

that start directly from a JPEG image and 

derive the costsof changing a single DCT 

coefficient from its neighborhood. 

We used a mother database of 6, 500 

images obtained from 22 different cameras 

at their fullresolution in a raw format from 

which a database of 6, 500 grayscale JPEG 

cover images was created.Each raw image 

was first converted to grayscale, resized to a 

smaller size of 512 pixels using 

bilinearinterpolation while preserving the 

aspect ratio, and finally JPEG compressed 

using quality factor75.A common way of 

expressing the payload in DCT-domain 

steganography is the number of 

bitsembedded per non-zero AC DCT 

coefficient [8], which we denote as ―bpac.‖ 

This is becauseessentially all embedding 

schemes for DCT domain never change zero 

coefficients and some evenavoid changing 

DC coefficients due to their high impact on 

statistical detectability. According to [8],the 

most secure algorithm that does not rely on 

any side-information is the nsF5, which 

minimizesthe number of changed non-zero 

AC DCT coefficients. Using our 

terminology, the nsF5 uses abinary 

embedding operation that decreases the 

absolute value of a non-zero AC DCT 

coefficient, i.e.,Ii = {xi, xi −sign(xi)} 

whenever xi 6= 0 is an AC coefficient, and 

Ii = {xi} otherwise.The detection 

wasimplemented using the CDF set with a 

Gaussian SVM-based steganalyzer.Similar 

to the spatial domain, we design the costs 

based on the differences between DCT 

coefficientseither from neighboring blocks 

or from similar DCT modes in the same 8 × 

8 block. Thisallows us to express the context 

in which a single change is made. We 

represent a JPEG imagex in a matrix 

notation, where xi,j2 I , {−1024, . . . , 1024} 

denotes the DCT element of mode(i mod 8, j 

mod 8) in the di/8e , dj/8eth block. The set 

{xi,j|i mod 8 6= 0 ρj mod 8 6= 0} 

describesall AC DCT coefficients in x. We 
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define the following cost model, which we 

use with a ternaryembedding operation. 

 

8. Inter/intra-block cost model:  
Let ρ= (ρir, ρia) 2 R(2ρ+1)+1 ×R(2ρ+1)+1 

be the model parameters 

 
describing the cost of disturbing inter- and 

intra-block dependencies with ρir = (ρir,−ρ, . 

. , ρir,ρ,ir,•) and ρia = (ρia,−ρ, . . . , ρia,ρ, 

ρia,•). The cost of changing any (even zero) 

AC DCT coefficient 

 
where Nir ={xi+8,j , xi,j+8, xi−8,j , xi,j−8} 

and Nia ={xi+1,j , xi,j+1, xi−1,j , xi,j−1} are 

inter- and intrablockneighborhoods, 

respectively. As before, ρia,z= ρia,• and 

ρir,z= ρir,• whenever |z| >ρ. Wereduced the 

sum in (7.3.1) accordingly when the 

required element falled outside of the image 

boundary. Compares the performance of 

embedding algorithms based on the 

aboveinter/intra-block cost model when 

optimized using the L2RρL2LOSS criterion 

with CC-PEV featuresand payload 0.5 bpac. 

We report the performance of two 

algorithms for ρ = 6. In the firstversion, both 

ρir and ρia were optimized, while in the 

second version only the inter-block part 

ρirwas optimized while ρia = (0, . . . ,0). To 

show that the optimized algorithms are not 

over-trained tothe CC-PEV features 

calibrated by cropping by 4×4 pixels, we 

report the PE error obtained from aGaussian 

SVM-based steganalyzer utilizing the CDF 

set. Similar performance results were 

obtainedusing the CC-PEV feature set with 

calibration by cropping by 2×4 pixels, which 

suggests that thealgorithms are not over-

trained to a specific feature set. 

Unfortunately, the algorithm optimizedw.r.t. 

both inter- and intra-block parts did not 

achieve a better performance than the 

algorithmwith ρia = 0, which is just a special 

case. This is due to the fact that the Nelder–

Mead algorithmconverged to a local 

minimum (the L2RρL2LOSS criterion was 

smaller for the case with ρia = 0). 

When compared with the non-

adaptive nsF5 algorithm, both versions 

increased the payload for thesame level of 

security more than twice. All algorithms can 

be implemented using the multi-

layeredSTCs [7] in practice. In the figure 

shows that the loss introduced by such a 

practical implementationis small when 

implemented using STCs with constraint 

height h = 10.We found out experimentally 

that it is more effective to optimize the cost 

functions w.r.t. largerpayloads. Methods 

optimized for smaller payloads, such as 0.1 

bpac, did not achieve as high 

performancefor higher payloads as methods 

optimized for larger payloads. 

 

9. Conclusion 
The basic premise behind 

steganography designed to embed while 

minimizing a certain distortionfunction is 

that the distortion is related to statistical 

detectability. In the past, 

steganographersusedheuristically defined 

distortion functions and focused on the 
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problem of embedding with 

minimaldistortion while no attempt was 

made to justify the choice of the distortion 

function or optimize itsdesign. Since the 

problem of embedding with minimal 

distortion has been resolved in a near-

optimalfashion in Chapters 5 and 6, what 

remains to be done and where the biggest 

gain in steganographicsecurity lies is the 

form of the distortion function.The main 

contribution of this chapter is a practical 

methodology using which one can 

optimizethe distortion to design 

steganographic schemes with improved 

security. We do so by representingimages in 

a feature space in which we define a 

criterion evaluating the separabilitybetween 

thesets of cover and stego features. The 

distortion function is parametrized and the 

parameters arefound by optimizing them 

w.r.t. the chosen criterion on a set that is 

relatively small – 80 coverand stego images. 

The result is validated on various cover 

sources using blind steganalyzers. 

Weintentionally use steganalyzers that 

utilize different feature spaces than the one 

in which we optimizeto demonstrate that our 

optimized design generalizes to other feature 

sets as well cover sources.We work with 

additive distortion functions that can be 

written as a sum of costs defined for 

eachpixel, while each pixel cost depends on 

neighboring cover pixels. After investigating 

three differentchoices for the criterion, we 

selected the margin of a linear SVM as the 

most suitable one that iscomputationally 

efficient yet still closely tied to detectability 

as determined by a binary classifiertrained 

on a large set of images.The merit of the 

proposed work is demonstrated by 

incorporating the optimized cost for the±1 

embedding operation in the spatial domain 

and the ±1 operation for the DCT domain. 

Theimprovement over current state of the art 

is especially apparent in the DCT domain 

where themethods with optimized costs can 

embed more than twice as large payloads for 

the same detectabilityas the nsF5 algorithm. 

The costs are robust in the sense that the 

improvement can be observed even when 

the new method is tested with steganalyzers 

using a different feature set and even on 

aslightly different cover source.Without any 

doubts, better parametric models for the 

distortion in the DCT domain can andshould 

be considered. For example, the cost 

parameters should be dependent on the 

spatial frequencyof DCT coefficients. This 

would substantially increase the 

dimensionality of the parameter spacewhich 

would need to be balanced out by a 

corresponding increase of the number 

images. Thisappears to be a mere issue of 

increased complexity rather than one that 

would render our approachinapplicable and 

we might consider it in our future work.  
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