
Design of an HMAC Co-Processor Unit Based on

SHA-2 Family of

Hash Functions

 Naisy Mol S.

 PG Scholar,VLSI & Embedded Systems
 Dept.of Electronics and Communication
 TKM Institute of Technology

 Kollam, India

Sarath Raj S.
 Associate Professor

 Dept. of Electronics and Biomedical
 TKM Institute Of Technology

 Kollam,Kerala,India

Abstract—

Cryptography entails the design of algorithms

for encryption and decryption, intended to ensure the

secrecy and authenticity of messages in communication

systems. The Secure Hash Algorithm (SHA) is a family of

cryptographic hash functions published by NIST. SHA-2 is

a family of two similar hash functions, with different block

sizes, known as SHA-256 and SHA-512.Secure hash

algorithms are typically used with other cryptographic

algorithms, such as digital signature algorithms and

keyed-hash message authentication codes. Hash-based

Message Authentication Code (HMAC) is a mechanism for

message authentication using cryptographic hash

functions. This paper aims to design an efficient HMAC

crypto-processor unit for cryptographic applications such

as spacecrafts, e-mail,

electronic fund transfer,

etc. In

order to facilitate the computation of message digests, the

HMAC module provides a direct interface with the built-in

SHA-2 core through input and output ports. The coding is

done in

VHDL language, synthesized using Xilinx ISE 13.2

and simulated using ModelSim SE 6.2c.

 Keywords—

Cryptographic hash functions, Crypto-

processor,

SHA-256 , HMAC.

I.

INTRODUCTION

The growing demand of secure high-speed digital

communications has demanded the inclusion of cryptographic

primitives into system design. Since cryptographic processing

is usually not lightweight, some applications delegate those

tasks to specific hardware modules. One of the most

important requirements to be satisfied in secure

communications is data integrity and data origin

authentication. In order to satisfy those security requirements,

the U.S. National Institute of Standards and Technology

(NIST) recommends the use of the Keyed-Hash Message

Authentication Code(HMAC) based on the Secure Hash

Standard (SHS).

Several standards and protocols employ SHS and HMAC.

For instance, the Digital Signature Standard (DSS) utilizes

SHA to compute message digests and generate random

numbers. Furthermore, HMAC along with SHS is employed

in the Transport Layer Security Protocol (TLS) and Security

Architecture for the Internet Protocol (IPsec). More

specifically, those algorithms are used to perform data origin

authentication and integrity verification for the IPSec

Authentication Header(AH), Encapsulating Security Payload

(ESP), and Internet Key Exchange Protocol(IKE and IKEv2).

The security of the algorithms and protocols depends directly

on the cryptographic strength of the underlying hash

functions. Due to efficient collision search attacks against

SHA-1 and MD5 hash functions, more secure hash

algorithms of SHS, such as SHA-2 has gain more importance.

To address the ongoing demand of higher levels of security, a

high-performance HMAC/SHA-2 processor is introduced.
 This project aims to design an efficient SHA-256 core for

cryptographic applications such as space crafts, e-mail,

electronic fund transfer, etc..

This paper is organized as follows. Section 2 focuses on

cryptographic hash functions, Secure Hash Standard(SHS) and

Algorithm descriptions. In Section 3, proposed method; design

of HMAC co-processor unit based on SHA-2 family.ie,SHA-

256 is preferred for hash computation in HMAC. In section

4, the simulation results of the proposed techniques were

discussed. Conclusions and on-going

works are discussed in

section 5.

II.

LITERATURE REVIEW

A.Cryptography and Hash functions
 Cryptography is the science of secret writing with the

goal of hiding the meaning of a message. It seems closely

linked to modern electronic communication. Cryptography

itself splits into three main branches: Symmetric Algorithms,

Asymmetric (or Public-Key) Algorithms and Cryptographic

Protocols. In Symmetric Algorithms ,two parties have an

encryption and decryption method for which they share a

684

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

secret key. All cryptography from ancient times until 1976

was exclusively based on symmetric methods. Symmetric

ciphers are still in wide spread use, especially for data

encryption and integrity check of messages. In public-key

cryptography, a user possesses a secret key as in symmetric

cryptography but also a public key. Asymmetric algorithms

can be used for applications such as digital signatures and key

establishment, and also for classical data encryption.

Cryptographic Protocols deals with the application of

cryptographic algorithms, Symmetric and asymmetric

algorithms. Cryptanalysis is the science and sometimes art of

breaking cryptosystems. It is the only way to assure that a

cryptosystem is secure, and it is an integral part of

cryptology[6].

Hash functions are an important cryptographic primitive

and are widely used in protocols. They compute a digest of a

message which is a short, fixed-length bit string. For a

particular message, the message digest, or hash value, can be

seen as the finger print of a message, i.e., a unique

representation of a message. Unlike all other crypto algorithms

introduced, hash functions do not have a key. The use of hash

functions in cryptography is manifold: Hash functions are an

essential part of digital signature schemes and message

authentication codes. Hash functions are also widely used for

other cryptographic applications, e.g., for storing of password

hashes or key derivation[6].

B. Secure Hash Standard (SHS)

This Standard specifies five secure hash algorithms, SHA-

1, SHA-224, SHA-256, SHA-384, and SHA-512. All five of

the algorithms are iterative, one-way hash functions that can

process a message to produce a condensed representation

called a message digest. These algorithms enable the

determination of a message‟s integrity: any change to the

message will, with a very high probability, result in a different

message digest. This property is useful in the generation and

verification of digital signatures and message authentication

codes, and in the generation of random numbers or bits[2].
Each algorithm can be described in two stages:

preprocessing and hash computation. Preprocessing involves

padding a message, parsing the padded message into m-bit

blocks, and setting initialization values to be used in the hash

computation. The hash computation generates a message

schedule from the padded message and uses that schedule,

along with functions, constants, and word operations to

iteratively generate a series of hash values. The final hash

value generated by the hash computation is used to determine

the message digest.

The five algorithms differ most significantly in the

security strengths that are provided for the data being hashed.

The security strengths of these five hash functions depends on

cryptographic algorithms, such as digital signature algorithms

and keyed-hash message authentication codes. Additionally,

the five algorithms differ in terms of the size of the blocks and

words of data that are used during hashing. Table 2.1 presents

the basic properties of these hash algorithms.

The five hash algorithms specified in this Standard are

called secure because, for a given algorithm, it is

computationally infeasible to find a message that corresponds

to a given message digest and also infeasible to find two

different messages that produce the same message digest. Any

change to a message will result in a different message digest.

This will result in a verification failure when the secure hash

algorithm is used with a digital signature algorithm or a

keyed-hash message authentication algorithm.

Table 2.1 : Secure Hash Algorithm Properties

Algorithm

Message

Size

(bits)

Block

Size

(bits)

Word

Size

(bits)

Message

digest

size

(bits)

SHA-1 <2
64

 512 32 160

SHA-224 <2
64

 512 32 224

SHA-256 <2
64

 512 32 256

SHA-384 <2
64

 1024 64 384

SHA-512 <2
64

 1024 64 512

C. Algorithms and Descriptions

One of the goals of the HMAC algorithm is to be

independent of a given hash function, so that the latter can be

easily replaced with faster and more secure algorithms.

Besides, the underlying hash function constitutes the core of

the HMAC algorithm, and dictates its security level. Since this

paper proposes an HMAC crypto-processor unit based on

SHA-2, both algorithms are presented in this section.

SHA-2 Algorithm

The SHA-2 family of hash functions comprises four

algorithms, namely, SHA-224, SHA-256, SHA-384, and

SHA-512.The execution of SHA-2 algorithms is divided into

two parts: Pre-processing and Hash computation. A list of

SHA-2 parameters is presented in table 2.2, whereas SHA-2

symbols are listed below:

B : SHA-2 input block size (in bits);

L : SHA-2 message digest size (in bits);

D :Data path width (in bits);

N : Number of message blocks;

i : Message block index, where 1 ≤ i ≤ N;

j : Number of algorithm iterations;

t : Iteration index, where 0 ≤ t ≤ j -1;

M
(1)

,…,M
(N)

 : Message blocks;

,…, : Initial hash values;

,…., : Intermediate hash values;

W0,…,Wj: Message schedule words;

A,…, h : Working variables;

K0,…,Kj: Constants.

Table 2.2 : SHA-2 algorithm parameters

parameter

SHA-

224

SHA-

 256

SHA-

 384

SHA-

 512

B 512 512 1024 1024

L 224 256 384 512

D 32 32 64 64

J 64 64 80 80

685

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

Symbols and Operations

The following symbols are used in the secure hash

algorithm specifications; each operates on w-bit words.

∧ Bitwise AND operation.

∨ Bitwise OR (“inclusive-OR”) operation.

⊕ Bitwise XOR (“exclusive-OR”) operation.

¬ Bitwise complement operation.

+ Addition modulo 2w.

<< Left-shift operation, where x <<n is obtained by

discarding the left-most n bits of the word x and then

padding the result with n zeroes on the right.

>> Right-shift operation, where x >>n is obtained by

discarding the right-most n bits of the word x and

then padding the result with n zeroes on the left.

The following operations are used in the secure hash algorithm

specifications:

ROTL
n
(x) The rotate left (circular left shift) operation, where

x is a w-bit word and n is an integer with 0 ≤ n <w, is defined

by ROTL
 n
(x)=(x <<n) ∨ (x >>w - n).

ROTR
n
(x) The rotate right (circular right shift) operation,

where x is a w-bit word and n is an integer with 0 ≤ n <w, is

defined by ROTR
 n
(x)=(x >>n) ∨ (x <<w - n).

SHR
n
(x) The right shift operation, where x is a w-bit word

and n is an integer with 0≤n <w, is defined by SHR
 n

(x)=x

>>n.

Hash Computation

The hash computation is based on operations over D-bit

words. The number of iterations performed by the algorithm is

given by „j‟. For SHA-224/256, j = 64, whereas for SHA-

384/512, j = 80. Actually, „j‟ can be considered to represent

the number of D-bit words processed by the algorithm. More

specifically, the SHA-2 algorithms comprise „j‟ message

schedule words (W0,..,Wj), eight working variables (a, b, c, d,

e, f, g, h), and eight intermediate hash values (,…,).

Additionally, six logical functions are employed.ROR
n
(x) and

SHR
n
(x) correspond to, respectively, a rotation and a shift of

„x‟ by „n‟ bits to the right. Besides,„⊕’ represents the bitwise

XOR operation, „∧‟ the bitwise AND operation, and „¬x‟ the

bitwise complement of x[2].

After preprocessing is completed, each message

block, M
(1)

,M
(2)

,…,M
(N)

, is processed in order, using the

following steps:

For i=1 to N

{

1. Prepare the message schedule

Wt= Mt
(i)

 0≤ t ≤15

 16≤ t ≤63

2. Initialize the eight working variables

a =

b =

c =

d =

e =

f =

g =

h =

3. For t=0 to 63

{

T1 = h+ + Ch(e,f,g) + +

T2 = + Maj(a,b,c)

h=g

g=f

f=e

e=d+ T1

d=c

c=b

b=a

a= T1 + T2

}

4.Compute thei
th

 intermediate hash value H
(i)

:

= a +

= b +

= c +

= d +

=e +
= f +

= g +
= h +

}
After repeating steps one through four a total of N times (i.e.,

after processing M
(N)

), the resulting 256-bit message digest of

the message, M, is

║ ║ ║ ║ ║ ║ ║

HMAC Algorithm

 The HMAC algorithm processes two inputs, a

cryptographic key and a message, to produce message

authentication code(MAC). The combination of HMAC with

SHA-2 is denoted as HMAC/SHA-2. Individual combinations

of HMAC with the four SHA-2 algorithms are denoted as

HMAC/SHA-224, HMAC/SHA-256,HMAC/SHA-384,and

HMAC/SHA-512. Due to certain commonalities between

SHA-224 and SHA-256, as well as between SHA-384 and

SHA-512, the algorithms can also be referred to as

HMAC/SHA-224/256 and HMAC/SHA-384/512[5].

HMAC Parameters and Symbols

B : SHA-2 input block size (in bits);

L : SHA-2 message digest size (in bits);

Key : Secret key of the communicating parties;

K : Size of the Key (in bits);

K0 :Key after any necessary pre-processing;

Ipad: (Inner pad) Byte 0x36 repeated B=8 times;

Opad: (Outer pad) Byte 0x5C repeated B=8 times;

Text : The data on which the HMAC is calculated;

Hash(V) : Hash of variable/value V ;

║(0..)z: Padding with „z‟ zeros.

686

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

Parameters „B‟ and „L‟ are inherited from SHA-2. The Text

can be „n‟ bits long, where 0 n <2
B-8

 - B, whereas the size of

a MAC is „L‟ bits long. The HMAC algorithm is consisted of

seven steps as shown below. Notice that the hashes computed

in Step IV and Steps VII can be split into two parts to facilitate

its implementation.

HMAC Algorithm Steps

Step I: Pre-process key as follows

K0= Key, k=B

 Key║(0..)B-K k<B

 Hash(key) ║(0..)B-L k>B

Step II: Compute (K0⊕Ipad).

Step III: Do (K0⊕Ipad)║Text

Step IV: Hash((K0⊕Ipad)║ Text)

StepV : Compute (K0⊕Opad)

StepVI : Do (K0⊕Opad)║Hash((K0⊕Ipad)║ Text)

StepVII: Hash((K0⊕Opad)║Hash((K0⊕Ipad)

║ Text))

Step VII produces the MAC of the message digest.A

common practice is to truncate the MAC by using only its

„t‟leftmost bits. Here, MAC is „L‟ bits long, and any

truncation is performed at the user level. To compute a MAC

over the data „text‟ using the HMAC function, the following

operation is performed:

MAC(text)t= HMAC(K, text)t = H((K0⊕Opad)||

H((K0⊕Ipad) || text))t

D. Message Authentication Codes

A Message Authentication Code (MAC), also known as a

cryptographic checksum or a keyed hash function, is widely

used in practice. In terms of security functionality, MACs

share some properties with digital signatures, since they also

provide message integrity and message authentication.

However, unlike digital signatures, MACs are symmetric-key

schemes and they do not provide nonrepudiation. One

advantage of MACs is that they are much faster than digital

signatures since they are based on either block ciphers or hash

functions. Similar to digital signatures, MACs append

an authentication tag to a message. The crucial difference

between MACs and digital signatures is that MACs use a

symmetric key „k‟ for both generating the authentication tag

and verifying it. A MAC is a function of the symmetric key

„k‟ and the message „x‟

 i.e., m =MACk(x)

The principle of the MAC calculation and verification is

shown in Figure 1.The motivation for using MACs is typically

that sender and receiver want to be assured that any

manipulations of a message in transit are detected. For this,

sender computes the MAC as a function of the message and

the shared secret key „key‟. Sender sends both the message

and the authentication tag MAC to receiver. Upon receiving

the message and MAC, receiver verifies both. Since this is a

symmetric set-up, receiver simply repeats the steps that

sender conducted when sending the message. Receiver merely

re-computes the authentication tag with the received message

and the symmetric key.

Fig. 1. principle of MACs

The underlying assumption of this system is that the

MAC computation will yield an incorrect result if the message

was altered in transit. Hence, message integrity is provided as

a security service. Furthermore, receiver is now assured that

sender was the originator of the message since only the two

parties with the same secret key have the possibility to

compute the MAC. If an adversary, intruder, changes the

message during transmission, he cannot simply compute a

valid MAC since he lacks the secret key. Any malicious or

accidental (e.g., due to transmission errors) forgery of the

message will be detected by the receiver due to a failed

verification of the MAC.

III. PROPOSED METHOD

In practice, message authentication codes are constructed

in essentially two different ways from block ciphers or from

hash functions. One possible construction, named HMAC, has

become very popular in practice over the last decade. This

section presents the HMAC co-processor unit based on the

SHS, and comprising the entire SHA-2 family of hash

functions. Therefore, the proposed co-processor unit provides

applications with much higher levels of security than previous

works. In hash computation, the HMAC module allows the

user to interface directly with the built-in SHA-2 core through

the ports Key_Text_In and Msg_Digest_MAC_Out. The

proposed HMAC architecture consists of a SHA-2core,

multiplexors, logical operations, and registers as shown in

Figure 2. Three registers, namely K0_Ipad_ Hash, K0_Ipad_

Text_ Hash, and K0_Opad_ Hash are also used in hash

computation.

687

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

A. Architecture of HMAC co-processor unit

Key_Text_in

Msg_Digest_MAC_Out

Fig. 2. Architecture of HMAC unit

The HMAC hardware module to be designed needs to cope

with both message digest and MAC computations, to process

long messages and keys of different sizes (K · B and K > B),as

well as to perform pre-processing of long keys. Actually, key

reuse is supported the utilizing registers K0_Ipad_Hash and

K0_Opad_Hash in further computations. Moreover, register

K0_Opad_ Hash can also works as a temporary key storage

during the HMAC processing. The HMAC processing is

divided into five stages, such as NewKeyHash,

KeyIpadHash,TextHash, KeyOpadHash, and MACHash. The

stages are executed in aboveorder, but not all stages are

necessarily used. The size of the key, the size of the text, and

whether a key is being reused will determine the number of

stages needed[1].

B. Architecture of SHA-2 core

 The hardware design of the SHA-2 algorithm consists of

shift-registers, logical operations, D-bit adders, and a memory

to store the algorithm constants. Figure 3 shows the SHA-2

architecture. The SHA-2 architecture can be divided into four

main blocks: Intermediate Hash Computation, Compressor,

Message Scheduler, and Constants Memory.

Fig. 2. Architecture of SHA-2 core

The message scheduler's registers W0,...,W15 can be

initialized either in serial or in parallel. Serial initialization

requires the first 16 words Mt of the message M to be shifted

into the module. For this processing it takes 16 clock cycles.

It is utilized when writing a new message or key to the SHA-

2core through the HMAC module. For example, it can be a

message being hashed, a long key being pre-processed, or a

text being processed as part of a MAC computation.

Parallel initialization is used by the HMAC module to

load internally stored values directly into registers W0,...,W15.

Simultaneously, the constants memory provides the

initialization values for the working variables (a,..., h). Initial

hashes (H0,...,H7) are also set within this period of time. The

initialization of working variables and initial hashes takes one

clock cycle. When initialization is complete, the compressor

employs registers a,...,h, as well as Wt and Kt to determine the

new values of a,..., h. The algorithm takes „t‟ iterations and is

controlled internally by an iteration counter, which is

described using step 3 of SHA-2. Precisely, SHA-224/256

and SHA-384/512 utilizes 64 and 80 iterations respectively,.

In each of these iterations, registers W0,...,W15 and a,..., h are

shifted in the direction of the arrows shown in Figure 3. The

register requirements are 1024 bits for SHA-224/256, and

2048 bits for SHA-384/512.

 After „t‟ iterations, the intermediate hash computation is

performed. It would be possible to execute this operation in a

single clock cycle, eight adders are to be operated in parallel.

To save implementation area, only two adders are utilized.

Therefore, the computation of the intermediate hash is spread

Input block

Padding unit

MUX

Message scheduler

Compressor

MUX

Intermediate Hash

Computation

SHA-2 core

Output block

HMAC Registers

Input text

Message scheduler

(W0,….,W15)

Compressor (a,..,h)

Intermediate Hash

Computation (H0,..,H7)

Padding

Unit

Message digest

Const.

memory

688

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

over the last 4 iterations by computing two additions per

clock cycle. The additions are performed when t = 60,..., 63

for SHA-224/256.For instance, in SHA-224/256, H3 and H7

are computed when t = 60, H2 and H6 are computed when t =

61, and so on.

In the case of hashing a multi-block message, a new

execution cycle initiates. If serial load is used, 16 more words

Mt must be shifted into the module. If parallel load is used,

the HMAC module reloads registers W0,...,W15 with the

appropriate value. After that, the same procedure described

above is re-executed. When the hash is complete, the message

digest is available in registers H0,...,H7. Again, the message

digest may correspond to either a single hash computation or

to any of the hashes computed in the HMAC algorithm. In the

case of a single hash computation, the result is read serially.

Since a D-bit word is output per read operation, L=D

iterations are necessary. Specifically, SHA-224, SHA-256,

SHA-384 and SHA-512 require 7, 8, 6, and 8 read operations

respectively. In the case of the HMAC processing, registers

H0,...,H7 are read in parallel by the HMAC core.

The number of iterations involved in a hash computation,

makes it clear that a single bit-flip in the constants memory,

input blocks, or registers can easily compromise the

computation of the hash function and the associated upper

level application (e.g., data integrity checking and MACs).

For making hash function designs appropriate for space

applications, error detection and correction schemes must be

incorporated so that SEU (Single Event Upsets)s do not

compromise its normal operation.

IV. RESULTS AND DISCUSSION

The design entry is modelled using VHDL in Xilinx ISE

Design Suite 13.2 to obtain the synthesis report and the

simulation of the design is performed using Modelsim6.2c

to validate the functionality of the design. The simulation

result of SHA-256 algorithm is shown in figure 4.

For SHA-256 algorithm each input message block has

512 bits, which are represented as a sequence of sixteen 32-

bit words. The output or message digest are of 256 bits.

SHA-2 algorithm uses 64 iterations to produce 256-bit

message digest. The clk(clock), rst(reset), m(input

message) are the inputs and v(valid signal) , md(output

message digest) are the outputs of SHA-256 algorithm.

After forcing rst =0 and the binary value of input message

to „m‟ , output is obtained as per the algorithm described

in above sections. The six bit counter and ROM module

also designed to get the functionality of SHA-2 core.

Fig. 4. simulation result of SHA-256

The simulation result of HMAC algorithm is shown in

figure 5. The HMAC algorithm processes two inputs, a

cryptographic key and a message, to produce message

authentication code(MAC). A fully generic design of the

HMAC co-processor unit had been developed in the hardware

description language VHDL in order to achieve better

security in communication systems.

Fig. 5. simulation result of HMAC

689

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

V. CONCLUSION

This paper explains a high-performance HMAC co-

processor based on SHA-2 family of hash functions. The

utilization of hash functions and Keyed-Hash Message

Authentication Codes (HMAC) are of utmost importance to

ensure data integrity and data origin authentication in digital

communications. Hash-based Message Authentication Code

(HMAC) is a mechanism for message authentication using

cryptographic hash functions. The Secure Hash Algorithm

(SHA) is a family of cryptographic hash functions published

by NIST.SHA-2 with HMAC will not necessarily lead to

slower implementations or higher energy consumption. SHA-2

with HMAC is completely feasible to efficiently replace SHA-

1 and MD5 with SHA-2 in hardware implementations of

HMAC. These results are fundamental to support the

implementation of higher levels of security in high-end and

constrained applications.

REFERENCES

[1] MarcioJuliato and Catherine Gebotys, “A Quantitative Analysis of a

Novel SEU-Resistant SHA-2 and HMAC Architecture for Space
Missions Security” IEEE transactions on aerospace and electronic
systems, vol. 49, no.3,pp.1536-1554 ,july 2013.

[2] NIST. Secure hash standard (SHS). Federal Information Processing
Standards Publication FIPS PUB 180-3, October 2008.

[3] Sklavos, N. and Koufopavlou, O, “On the hardware implementations of
the SHA-2 (256, 384, 512) hash functions”, Proceedings of the 2003
International Symposium on Circuits and Systems (ISCAS ‟03), vol. 5,
Bangkok, Thailand, May 2003, pp. 153—-156.

[4] NIST. Advanced encryption standard(AES).Federal Information
Processing Standards Publication FIPS PUB 197, November 2001.

[5] NIST. The keyed-hash message authentication code (HMAC).Federal
Information Processing Standards Publication FIPS PUB 198, March
2002.

[6] Christ of Paarand JanPelzl, "Understanding Cryptography: A Textbook
for Students and Practitioners“ Chapters 10,11&12;page nos: 259-325.

[7] Grembowski, T and et al. “Comparative analysis of the hardware
implementations of hash functions SHA-1 and SHA-512”.Information
Security: Proceedings of the 5th InternationalConference on
Information Security (ISC‟02), vol. 2433, Sao Paulo, Brazil, Sept. 30—
Oct. 2, 2002, pp. 75—89, NewYork: Springer-Verlag, 2002.

[8] Yiakoumis I, Papadonikolakis M, and Michail H, “Efficient small-sized
implementation of the keyed-hash message authentication code”
Proceedings of theIEEE Eurocon Conference 2005 Computer as a Tool,
volume 2, pages 1875-1878, November 2005.

[9] Kim M, Kim Y, Ryou J, and Jun S, “ Efficient implementation of the
keyed-hash message authentication code based on SHA-1 algorithm for
mobile trusted computing”, Proceedings of the 4thInternational
Conference on Autonomic and Trusted Computing (ATC 2007), pages
410-419, 2007.

[10] NIST.Digital signature standard(DSS), Federal Information Processing

Standards Publication Draft FIPS PUB 186-3, November 2008

690

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030572

